Formal and Informal Aspects of
Requirements Tracing

Francisco A. C. Pinheiro

Universidade de Brasilia
Departamento de Ciéncia da Computacao
facp@cic.unb.br

Abstract. We discuss some formal and informal issues regarding re-
quirements tracing. Our view is that requirements tracing needs are
guided by necessity and not by any pre-defined structure. On the other
hand the use of formal techniques and formalization of requirements trac-
ing itself is essential for an efficient automation and has many benefits
such as allowing verification. We present an abstract formal model for
tracing with some capability to meet the informal needs of requirements
tracing such as the use of informal or unstructured information and the
need to trace information not thought of in advance.

Keywords: Requirements traceability, requirements models, require-
ments processes

1 Introduction

Regardless of its essential technical aspects, the development of software systems
is a social activity involving, from the start, the user’s needs for the system and
a whole web of social interactions as well as individual and group perception
of what is being done. Therefore, software development mixes both the formal
and informal aspects of information. These aspects are called the ‘dry’ and the
‘wet” in (Goguen 1992). They are also discussed in (Goguen 1996) with respect
to requirements engineering. Taking the view that the informal aspect is more
dominant in the initial phases of software development we would expect it to
have a great influence on many of the requirements engineering activities. This
paper discusses some formal and informal issues regarding requirements trac-
ing, and presents an abstract formal model for tracing with some capability to
meet the informal needs of requirements tracing such as the use of informal or
unstructured information and the need to trace information not thought of in
advance.

First we present a view of requirements traces as being naturally produced
during software development, and of requirements traceability as being the abil-
ity to capture those traces. Then, we discuss the concepts of trace definition,
production, and extraction in the context of software tracing models. This sets
up the context for our discussion on the formal and informal aspects of require-
ments tracing. Finally, we present an abstract tracing model and argue for its
adequacy to deal with some informal needs of requirements tracing.

2 Requirements Tracing

A prominent aspect of requirements traceability we wish to highlight is the nat-
ural occurrences of traces. We trace a requirement back to a document because
the requirement carries traces of the document. It may be that the requirement
is directly extracted from the document, it may be that the document contains
statements supporting the requirement, or it may be something else. In any case,
the existence of some influence of one on another is necessary if they are to be
viewed as related objects. In the same way, we trace a requirement forward to
a design module because the module carries traces of the requirement. Again,
it may be that the module is designed to meet the requirement, it may be that
the module specifies a test procedure for the requirement, or it may be some-
thing else. In this view we have to identify which traces we want to control, how
they may be captured, and how they may be followed afterwards. Our working
definition will be:

Requirements Traceability refers to the ability to define, capture,
and follow the traces left by requirements on other elements of the soft-
ware development environment and the traces left by those elements on
requirements.

This definition depends on previous notions. For us, a software development
environment involves not only the technical, but also the social aspects of soft-
ware development. Its elements comprise not only the technical artifacts such as
specifications, diagrams, and code, but also people, policies, decisions, and even
less tangible things like goals and concepts.

The idea is that traces are naturally produced as a result of activities, actions,
decisions, and events happening during software development. If a requirement is
a result of some discussion, traces of the discussion are present on the requirement
at the very moment of requirements elaboration. This is just as footprints are
present on a surface at the very moment someone walks on it. The definition of
what traces should be considered, what elements should be involved, how trace
production may be captured, and how traces should be retrieved is central to
any tracing model.

In ordinary usage a trace is defined as a mark, track, sign, etc. showing what
has ezisted or happened (Murray et al. 1989). The ‘mark’ does not need to be a
material thing. It can be, for example, a non-material indication or evidence of
the presence or existence of something, or of a former event or condition. In the
natural world to trace something amounts to look for, or to follow the course,
development, or history of traces, or occurrences of traces, left by whatever is
being traced.

In computer science terms the picture is slightly different because this def-
inition is blurred by the need for representation. Things should be defined and
represented in machine processable ways in order to be accessible by computer
programs. Moreover, whatever is defined in that way should also be produced
in machine processable terms, i.e., it should be registered or stored in a medium

that can be accessed by computer programs. Also, the ways of accessing those
representations should be machine effective. Therefore any tracing model is cir-
cumscribed with respect to trace definition, trace production, and trace extrac-
tion.

2.1 Trace Definition

When one software object leaves traces on another software object, those objects
may be viewed as related in some way. The nature of the trace is represented
by the particular relation indicating how the two objects interact. For example,
consider that a requirement is derived from another one indicating that although
they may be different requirements one induced the existence of the other. If we
trace this requirement back to the one from which it was derived then we may
view the derived requirement as carrying traces of the other.

In order to be able to register traces of software objects a tracing model
should define what its trace units are and what its traces are, i.e., how they are
represented in the model. A tracing model should also define what sorts of traces
may exist, indicating what the trace is intended to represent, what are the units
that may be involved, and under what conditions traces may be registered.

A tracing model may define just one sort of trace to cover all possibilities,
but this would leave the interpretation of the trace to take place outside the
model. For example, a tracing model may have only one kind of link to indicate
the there is a trace of an object on another one. However, as all links are alike
it is not possible to determine from the information in the model what are the
different types of traces. Only in very specific cases is it possible to fully define
a trace so that its interpretation would be formally precise. Nevertheless, even
if the interpretation is left to be done outside the model, it is still possible to
incorporate in the model indications of how the trace should be interpreted. For
example, one may use named links to give additional information of what the
trace is meant to represent.

2.2 Trace Production

In the natural world a trace is produced as a result of actions, events, or condi-
tions which naturally impress or leave a mark of their effect. Software traces are
also naturally produced as a result of the working practices of software develop-
ment. However, the use of automated tracing models may not capture traces as
they are produced.

The trace production itself can sometimes be automated. In this case the
software development activities are carried out using tools that are integrated
with the tracing model in a way that allows the automatic registration of traces.

Trace production is an important aspect of tracing models not only because
one can trace only what is available, but also because it may interfere directly
with the activities of developing software. It may impose an overload on people
carrying out these activities. The less intrusive the trace production, the more
efficient and accurate the use of the tracing model is.

2.3 Trace Extraction

In order to follow a trace it is necessary to extract the registered representation
of the trace. The trace may be extracted in several ways and the trace extraction
features of a given tracing model depend on how the trace is defined and on how
the trace is produced.

Trace extraction depends on trace definition and production to the extent
that one can extract only what has been registered. Trace extraction also needs
to be defined in the model in terms of an effective procedure to perform the
extraction. A tracing model should provide different and flexible ways to extract
information registered in it, so that the most appropriate one can be chosen for
each occasion.

3 Formal and Informal Needs for Tracing

One aspect of registering the relevant information is to define the adequate ref-
erential: relevant with respect to what? The referential in question is usually
set by the methods and techniques employed by the people developing systems.
Those methods and techniques determine to a great extent what kind of infor-
mation is needed in the next steps and how they relate within the framework
prescribed by them. However, not all needs for tracing may be encompassed by
using methods and techniques. Certainly not when what is sought refers to the
very use of them. For example, the answer to what data-flow is input to process
X in a certain data-flow diagram involves only elements from the method itself,
while asking why a particular process in the same diagram is described the way
it is can only be answered with recourse to a meta-model, where the use of the
model can be assessed. In this case the referential involves a wider context that
may include the social environment in which the development is carried out.
The use of formal tracing models helps in automating the traceability pro-
cess. Not only is the automation of the model facilitated, but also the automatic
generation of traces and the definition of procedures to verify consistency and
correctness of traces. In short, using a formal tracing model, it is easier to enforce
the appropriate registration and extraction of traces and trace units according
to a given interpretation of appropriateness — the interpretation given by the
model. But formalization may apply not only to formal models of traceability.
The use of formal definitions for the contents of a trace unit or formal descrip-
tions for software processes may also bring benefits for requirements tracing. For
this allows the definition, and automation, of traces in a more fine-grained way.
For example, using formal specification languages to describe the system being
developed makes possible the definition of traces involving not only the specifi-
cation as a whole, but also its elements. This may increase traceability efficiency
since it provides a more focused way of discerning which traces to follow if the
need for tracing is identified with a particular element of the specification.
However, not all activities in software development are amenable to formal-
ization and for those which are, we constantly face an applicability problem.

The automation of some activities may be perceived as non-natural, so that
their enforcement would hamper traceability rather than help it. At least, en-
forcing non-natural practices causes problems that easily overcome the possible
traceability benefits. Another point is that it may not be possible to correctly
register all relations prescribed by a given tracing model. This point has two
aspects. First, even if the relations are regarded as meaningful they may not
be perceived as such by all people in charge of registering them and, therefore,
they will probably be left out. Second, one cannot devise all necessary relations
for future traceability needs. This point is explored in more detail in the next
section.

The information that should be made traceable is in many cases inherently
informal, e.g., texts and natural language statements, diagrams, graphs, etc. The
reduction of this type of information to some formal structure may facilitate their
manipulation but it is likely not to fulfill traceability needs since what relates a
text, graph, or diagram to a requirement is not their formal features, if any. They
are related instead based on many different grounds, e.g., relevance, translation,
causality, policies and even organizational politics. Also, the reason to relate
this type of information to other artifacts in software development is in itself an
important information to be made traceable. The rationale behind each decision
is in many cases what is sought when tracing software objects. But it is not
sufficient to capture the argumentation in a frozen way; sometimes one wants to
reassess the line of reasoning followed in achieving a given decision. This may
be subject to formalization in terms of a model capturing the discussion process
in some reasonable structure, but more important than that is the possibility to
capture part of the context in which the discussion occurred. This points to the
use of multiple representation and hyper-media artifacts: playing back a video
or tape recorded interview allows not only the reassessment of what happened
but also a re-interpretation of the events.

Informality is also needed to deal with the fundamentally unstructured way
in which information is gathered and used. Information itself is in many cases
unstructured or, more particularly, has a complex structure which is depen-
dent on the (social) context. Moreover, the production and posterior use of this
kind of information is also complex and context sensitive. Therefore, no pre-
defined structure will contain the necessary elements to satisfy the real needs
for traceability. The search for related information is guided by necessity not by
pre-defined structures.

4 Traceability Support

The diversity and huge amount of information dealt with when developing large
software systems points to the need for automated tools to support develop-
ment practices, including traceability. To some extent requirements traceability
is already supported by existing tools and environments to automate the devel-
opment process. Thus, configuration management systems support the definition
of project baselines and control of software versions, process centered environ-

ments allow the definition and control of software processes and the enactment
of associated tools, CASE tools provide support for several phases of the devel-
opment, etc. All these tools and traceability tools in particular offer ways for
registering and retrieving related information.

Current traceability support provides useful ways to manage large amounts of
information. When developing large systems it is hard to remember all links that
were made to relate information and it may even be impossible, in a distributed
or multi-team development, to know that they exist. Moreover, the matter is
complicated when immediate links to a given piece of information are not what
is required. One usually wants to follow a chain of links that goes far away
from the starting point of tracing. Current traceability support comes in handy
for these cases, allowing the retrieval of important related information which
would otherwise be difficult to find. Moreover, the fact that increasingly large
and complex software systems are constantly being built with varying degrees of
success implies that traceability is somewhat achieved in the process. After all,
for a system to be satisfactorily completed implies that people have performed
the natural going back and forth of the development process.

However, we suggest that the existing traceability support is not as adequate
as it should be (or at least, as it can be). We argue that current traceability tools
do not provide full support, and that traceability is achieved through personal
contact and searches that go beyond automation, e.g., group discussions and
inquiries. There is some evidence for this view, which explains the existence
of many proposals to enhance traceability through models aimed at capturing
requirements related discussion (Ramesh and Dhar 1994, 1992, Ramesh and
Luqi 1994), design rationale (Potts and Burns 1988), personnel based traceability
(Gotel 1995,Gotel and Finkelstein 1995), etc.

Most of the time the information should be traced beforehand in order for it
to be (automatically) traceable in future. This circularity is enforced by current
traceability tools, which are based on the existence of explicit relations between
objects (through links, attributes, etc.). To register related information in these
tools amounts to establishing a trace; one links documents to requirements only
if there is a perceived trace between them. In the same way requirements are
linked to design modules, and those to code and so on. As one traces only
what has been related, the net result is that problems that require forward or
backward traceability to or from any given object are supported only to the
extent that (traceability) links already exist. The same can be said of almost all
traceability techniques: requirements are tagged with information known to be
relevant; cross references are made with objects known to be related; traceability
matrices are filled with known connections, etc. Therefore, the current support
for traceability is restricted, to a great extent, to the extraction of information
already made traceable.

However, tracing existing links can hardly be considered as satisfying all
needs for tracing. Two problems can easily be identified. On one hand, in an
environment characterized by dynamic change and in which the unfolding pro-
cess of developing information is open to negotiation and to several solutions,

it is not possible to foresee all links that are going to be needed in future. On
the other hand, even for those links that may be thought of in advance, it may
not be adequate to register them all. For this second point there is an interest-
ing illustration. In a study for the NASA Goddard Space Flight Center Mission
Operations and Data Systems Directorate (MO&DSD)! a commercially success-
ful requirements tool is said not be used because people “felt they spent more
time than they wanted on traceability”. What is interesting is the fact that a
requirements traceability tool is left out precisely because it requires too much
traceability. In addition, an existing link may not give the necessary information
to trigger the desire of a person to follow it in all relevant cases.

As for the impossibility of complete automation, we agree that much of the
information used in system development, mainly in its initial phases, is of an
unstructured nature or, at least, little is gained from imposing one particular
structure. We believe that this is true not only of information viewed as a unit,
but also of information viewed as relations. Although it is our view that tracing
cannot be fully automated (e.g., in the extreme case it is even possible that the
information wanted is not stored in a computer at all; which does not mean that
such information was not used at some point in the development), we believe
that the basic framework provided by existing traceability tools may be enhanced
to cope with some unstructured information. Although the arguments may not
be the same, our conclusions agree with the conclusions of a recent workshop
on requirements engineering (Pohl and Peters 1996) which identified a need for
improvements in tool support for traceability to automatically record the traces
and provide suitable interfaces for using trace information, and in tool support
for structuring and documenting requirements as well as support for several kinds
of representation such as video, text, graphics, diagrams, etc. Before presenting
our requirements tracing model we review, in the next subsections, some of the
proposed support for requirements tracing.

4.1 Tracing Models

Tracing models provide a representation for traces and trace units. They estab-
lish the structures containing the elements and the relations used in tracing,
usually specifying their types as well as the constraints under which the ele-
ments of the model can be related. They also provide the means to interpret the
structure obtained.

— The 1B1s (Conklin and Begeman 1998, Rein and Ellis 1991) related models
intend to capture design rationale by providing automated support for dis-
cussion and negotiation of design issues. Basically, they implement the Issue
Based Information Systems model which consists of four concepts and nine

! The report is part of the MO&DSD tools capability inventory and is available on the
net http://joy.gsfc.nasa.gov/MSEE/doors.htm. It only reflects a personal judgement
but illustrates our point that traceability information is not always dealt with in
advance.

kinds of links to relate them. The basic concept of the 1BIS model is that of
Issue. An Issue may be any problem, concern, or question that may require
discussion (and resolution). Each Issue may have many Positions ascertain-
ing a possible solution for it. Each Position may in turn have Arguments
supporting or rejecting it.

The REMAP model (Ramesh and Dhar 1992, 1994, Ramesh and Luqi 1993,
1994) enlarges the 1BIs model. It adds to the original set of IBIS concepts
(Issue, Position, and Argument), the new concepts of Assumption, Decision,
Requirement, Constraint, and DesignObject. The links among IBIS concepts
remain the same and new ones are created involving the new concepts. Some
examples of these new links are: a Requirement Generates an Issue, an As-
sumption Qualifies an Argument, an Argument Depends-on an Assumption,
and a Decision Resolves an Issue.

Contribution Structures is a model that addresses personnel-based trace-
ability (Gotel 1995, Gotel and Finkelstein 1995, 1996), making traceable
the human sources of requirements, requirements related information, and
requirements related work. It consists of a web of relations among contrib-
utors (the agents of a contribution) and the artifacts resulting from their
contributions. It also encompasses relations among contributors themselves,
revealing organizational structure, and relations among artifacts, revealing
semantic dependencies, as well as (derived) relations indicating notions such
as social role, commitment, temporality, etc.

Document centered models usually represent traces as relations between doc-
uments of different types. An example is soDOs (Horowitz and Williamson
1986b, 1986a) which also includes concepts for software life-cycle. Other ex-
amples are hypertext models like RETH (Kaindl 1993) and HYDRA (Pohl
and Haumer 1995). Hypertext models are particularly suitable for captur-
ing informal or originally unstructured information. Also, using hypermedia
features they allow the assessment of information in its original format.
Database guided models are used to register trace information on databases
for later retrieval. The work of Toranzo and Castro (1999) presents a quite
complex database model. The idea is for the model, tuned by user needs,
to be used by great diversity of users and environments, selecting the more
useful entities for each occasion.

4.2 Tracing Methods

Tracing methods define an organized set of activities and establish the procedures
necessary to make artifacts related to each other according to some model. The
model need not be explicit. Instead the procedures may be centered around some
general concept of related elements and make use of traceability techniques.

— The RADIX method (Yu 1994) is centered around a document based trace-

ability model. Trace units are marked parts of texts inside documents. There
are a pre-defined number of marks to delimit parts of the text specifying their

nature, e.g., requirement, explanation, keyword. Traces are defined by ex-
plicitly marking a trace unit with references to other texts and documents.
The method itself consists of several steps to organize the production, use,
and verification of these documents.

4.3 Tracing Techniques

We classify as tracing techniques the specific activities and their resulting prod-
ucts used for requirements tracing.

— Traceability Matrices. They are used to relate requirements to other soft-
ware development artifacts. Usually requirements are listed along rows and
the other artifacts like specification, design modules, and programs along
columns. The order may be reversed. At each crossing of a row and a col-
umn a mark is made if the respective requirement and artifact are related. It
is possible to envisage more sophisticated ways of using traceability matrices,
e.g., using different marks to indicate different kind of relationships.

— Cross References and Indexing Schemes. They are references made across
several artifacts to indicate links between them, or lists of indices contain-
ing the related artifacts for each one. Cross references are used, for exam-
ple, as part of the RADIX method and indexing is implemented in READS
(Smith 1993).

Tracing techniques may easily be incorporated into several methods and may
also be used in conjunction with different models. Indeed, some form of trace-
ability matrices is implemented in almost all current traceability tools.

4.4 Tracing Languages

There are a number of specification languages with features allowing references
to requirements. For example, the statements traces-to and traces-from in
the requirements specification language RSL (Alford 1977) and the statement
by-requirements in the prototype system description language PspL (Lugi and
Steigerwald 1991). However, they are not languages primarily intended for re-
quirements tracing.

— Database query languages. At the moment, most of the current requirements
tracing tools use conventional database query languages to inspect and re-
trieve trace information from their databases.

— Regular expressions. They are used as part of the tracing model implemented
by TOOR (Pinheiro and Goguen 1996). The following section describes their
use in more detail.

4.5 Tracing Processes

Tracing processes are models of the software development process incorporating
ways to trace the process elements. This is a very promissing way to deal with
the informal needs of requirements tracing. Jarke (1998) identifies the adapt-
ability to project specific needs as a critical issue and Démges and Pohl (1998)
cite integration into the process, adaptation to the situation, and support for
organizational knowledge creation as desirable features of tracing environments.
Other types of process information that could be traced are assignment of tasks
to individuals and organizational hints to specific expertise (Rose 1998).

A recent work in this direction is the requirements baseline model proposed
by Leite (1995). In this model a baseline allows the control of the evolution of
software artifacts and the development phases. The model is able to distinguinsh
among releases and configurations and has proved to be adaptable: a work on
scenario based software development has been successfully carried out using the
structure prescribed by it (Breitman and Leite1999, Leite et al. 1998).

4.5.1 Tracing as a By-Product Many of the tracing information related to
software artifacts may be captured as a by-product of the development process.
Therefore, tools designed to automate the development are good sources of trace-
ability information. CASE (Dawson and Dawson 1995) and IPSE (Tombros and
Geppert 1995, Finkelstein et al. 1995) tools are particularly suitable for this pur-
pose, naturally integrating and maintaining information related to the activities
and processes they support. However, traceability is not their primary concern
and, therefore, better support is still given by specific traceability tools. This is
reflected in the existence of interfaces to CASE tools from almost all industrial
requirements management systems. A good and well documented example of the
automatic production of tracing information as a result of development practices
is given by the NATURE project (Jarke et al. 1993, Pohl and Jacobs 1994).

5 TOOR’s Approach

This section describes the TOOR’s approach to traceability. TOOR is a tool im-
plementing an abstract traceability model that may be viewed as consisting of
three languages: a language to define structures of related objects, a language to
express relationships, and a language to define module structures. A consequence
of the abstract nature of the model is that its use in a particular situation re-
quires instantiation by a concrete tracing model. Using our model to implement
an 1BIs-like structure of related objects is different from using it to implement a
structure of related objects following the Contribution Structures approach. In
addition to its many distinguishing features our model address the two points
discussed above: it makes possible from inside a single environment to trace
information according to relations not thought of in advance, and it provides
structuring facilities that can be made as general or specific as is convenient.

Trace Definition Trace Production
' Configuration State and
! Modular Structure !
I (e} I
1 o 1
T | PG\ T
1 Project ! \‘\i ' Module
1 Specification | ﬂ 1 1 Specification |
I I I (o] (] I
oo __. X Pt e .
I I
I I
| |
B I N
----------- L Y _____Y__
|___ Selective Tracing 11 Browse !' Module Tracing |
Trace Extraction

Fig. 1. TOOR’s abstract tracing model components

Figure 1 illustrates the model. The definition language is basically the FOOPSs (So-
corro 1993, Rapanotti and Socorro 1992) specification language with constraints
for the way traces and trace units should be defined. Each concrete instantiation
of the model, i.e., each specification defining particular traces and trace units,
is called a project specification. The configuration state consists of the actual
objects (trace units) and relations (traces) registered using TOOR. Projects are
developed in a modular way and objects are created and used in the context
of modules. The module specification language is represented as part of trace
production to suggest that a project structure need not be defined in advance,
rather it may be the result of the development itself with modules being dynam-
ically created and imported. The extraction features comprise a browse mode
to inspect the configuration state, an interactive (or modular) tracing mode to
trace according to the project structure, and a selective mode, using regular
expression to express patterns of related objects. The following sections discuss
the model features in an informal way. A more technical presentation is given in
(Pinheiro and Goguen 1996) and the details are elaborated in (Pinheiro 1997).

5.1 The Project Specification

The first step in using TOOR’s traceability model is to define a project speci-
fication. The project specification instantiates the TOOR’s abstract traceability
model with a concrete one. It is a formal specification written in FOOPS con-
taining the definitions of the objects that can be traced during the development
of a project and the definitions of the relations intended to capture traces of

one object on another. The project specification also defines an environment for
the project, which consists of the menus and templates that TOOR supplies to
register the actual objects used in the project development. Each class for the
objects we wish to trace, such as People and Statement, should be specified and
each relation we require, such as Assert between People and Statement objects,
should also be specified as a class in the project specification.

5.1.1 The Use of Abstract Data Types

TOOR. allows the specification of abstract data types for the value of objects’
attributes. Thus, for instance, a data type for files may be defined such that a file
associated to an attribute is not just a reference pointer; it is an actual value for
that attribute that may be accessed and modified via the operations specified for
the corresponding data type. Moreover, since the operations specified for a data
type can be used in regular expressions, external information can be actively
used when tracing objects.

The following module defines a class of stored documents whose contents
in TOOR are taken directly from the file in which the document is stored.
The module declares a class StoredDoc as a subclass of Document, which
is defined in the imported module DOCUMENT. The content attribute is
redefined to get values of sort T$File and the other attributes are not
modified . The sort T$File together with the operations to manipulate
it are defined in the imported module FILE

omod STOREDDOC is

class StoredDoc .

extending DOCUMENT .

protecting FILE .

subclass StoredDoc < Document .

at content : Document -> T$File [redef]
endo

Using this specification, every time an object of class StoredDoc is reg-
istered in TOOR, its content attribute should be filled with an existing
file name.

5.1.2 Specifying Relations

R elations in TOOR are declared as classes containing at least the attributes
t$source and t$target to hold the objects being related. Attributes t$source
and t$target should be object valued attributes taking their values from objects
of the classes representing the domain and codomain of the relation.

The parameterized module below defines a generic relation class Relation.
It is intended to be instantiated with the modules containing declarations for
the classes representing the domain and codomain of the relation being defined.

omod RELATION[X :: CTRIV, Y :: CTRIV] is
class Relation .

extending TOORLINK .

subclass Relation < ToorRel .

at t$source : Relation -> CTriv.X .

at t$target : Relation -> CTriv.Y .

at t$type : Relation -> RelType .
endo

The parameter module CTRIV is a theory specifying syntactic and semantic con-
straints actual modules should satisfy to be used as arguments. In this case CTRIV
contains only a single declaration for a class CTriv. Therefore, any module declar-
ing a class may be used as an argument for RELATION. The module TOORLINK
contains the declarations necessary to compute the mathematical properties of
relations such as image, counter-image, etc., according to the relation type de-
fined in the attribute t$type.

The module below declares a relation Extract on objects of class Document
to objects of class Requirement.

omod EXTRACT is
extending RELATION[DOCUMENT ,REQUIREMENT] *
(class Relation to Extract)
var E : Extract .
ax t$type(E) = ordinary .
endo

The symbol * is a rename operator. In this case it renames the class
Relation to be Extract. There is an automatic mapping that asso-
ciates the class CTriv.X to the principal class of DOCUMENT and the class
CTriv.Y to the principal class of REQUIREMENT. Therefore, the t$source
attribute of Extract takes values from Document and its t$target at-
tribute takes values from Requirement. The relation type is set to ordinary
meaning that objects are related if there is a link between them.

5.1.3 Specifying Relation Axioms

T he basic constraint two objects should obey to be related under a partic-
ular relation is that the source object should be of the class specified for the
relation domain and the target object should be of the class specified for the
relation codomain. This constraint is automatically defined by the coarity of the
t$source and t$target attributes, i.e., by the class of the objects that may be
used as their values. A second common constraint is determined by the type of
the relation. For example if a relation R is specified as antisymmetric and the
objects ol and o2 are already related under R, then it is not possible to relate
them in the reverse order. However, it is possible to further restrict the way two
objects may be related. For a relation named R, this further constraint is given

by a method may-R with signature may-R : Toor0bj ToorObj -> Bool, where
Toor0bj is a superclass for all classes in TOOR and Bool is the type for booleans.
This method should be specified by the user if necessary.

The following module declares a relation called State on objects of class
People to objects of class DbReq (for database requirements) which is
considered to be declared in the module REQUIREMENT. In this case there
is an explicit view mapping the class CTriv of argument Y to the class
DbReq of REQUIREMENT.

omod STATE is
extending RELATION[PEOPLE,view to REQUIREMENT is
class CTriv to DbReq . endv] *
(class Relation to State)
me may-State : People DbReq -> Bool .
var S : State . var P : People . var R : DbReq .
ax t$type(S) = ordinary .
cax may-State(P,R) = department(P) == technical .
endo

The relation name is State and, therefore, the method used to verify if
two objects may relate is named may-State. The constraint axiom for
may-State specifies that only people from the technical department can
state database (DbReq) requirements.

Axioms and object’s properties are evaluated each time an object is created.
In this way two objects may be considered related even if there is no direct
link between them. For example, if a relation R is declared as transitive and the
object ol is related to object 02 under R and object 02 is related to object 03
under R, then the object o1 is considered as related to object 03 even if there is
no link between them, i.e., even if the user does not explicitly relate them.

Another type of indirect link by which objects may be considered related even
if there is no link between them is given by composition of relations. For example,
one may want to declare that a requirement r is Derived from a document d if
it is derived from a document d’' and d' is part of d, i.e, considering PartOf C
Document x Document and Derive C Document X Requirement one may want to
specify

(Vd,d" € Document)(Vr € Requirement)
((d,r) € Derive if (d',r) € Derive and (d,d') € PartOf).
To specify that objects are related under a relation R through composition of
other relations it is necessary to explicitly declare a method is-R, with signature

is-R : ToorQObj ToorObj -> Bool, together with its corresponding axioms.

The situation described above may be specified in the following way:

omod DERIVE-PARTOF is

extending DERIVE .

extending PARTOF .

me is-Derive : Document Requirement -> Bool .

var D : Document . var R : Requirement .

cax is-Derive(D,R) = member(image(’Derive,D),R) or

inter (image (’Part0f,D) ,image-1(’Derive,R) =/= empty .

endo

As usual, the modules PARTOF and DERIVE import the generic module
RELATION to declare the relations Part0f on Document to Document
and Derive on Document to Requirement, respectively. The method
is-Derive is specified to result in true if there is a common element
in the image of D under Part0f and in the counter-image of R under
Derive. The functions member, inter, image, and image-1 for member-
ship and intersection of sets and image and counter-image of relations,
respectively, are all defined in the module TOORLINK which is imported
by RELATION.

5.1.4 Evolving and Adapting Project Specification

O nce a project specification is defined the user may start a specific project
by creating objects and relating them. Of course, the project specification may
be expected to evolve. A new class may be considered necessary to better reg-
ister the relations between objects or an existing class may be modified. For
example, on reaching the design phase there may be a need to register techni-
cal manuals as a specific subclass of Document or to create a new class to hold
entity-relationship diagrams. Also, after some time it may be noticed that some
classes have attributes that are never used and removing these attributes would
facilitate the registration of objects. Relations may also be perceived as unneces-
sary for a particular project, or not detailed enough. Also, there may be a need
for new relations. Therefore, the use of a project specification makes possible not
only the definition of different traceability models, but also a given traceability
model may evolve over time to cope with particular traceability needs and to
adapt to changing situations.

5.2 The Tracing Language

Objects in TOOR may be traced in different ways. One of powerful way is to
use regular expressions to describe patterns of related objects. These patterns
are expressed in terms of object and relation identifiers combined by means of
regular operators. For example, the regular expression

(reql | req2) Derive req3

consists of the object identifiers reql, req2, and req3, and the relation class iden-
tifier Derive. The regular operator | expresses an alternative and concatenation

of identifiers is expressed by a space between them. Given a regular expression,
TOOR, searches its configuration of object and relations for objects related in the
way described by the pattern. In the example above an object reql related to
req3 by Derive would match the pattern.

5.2.1 Regular Definitions for Properties

T he pattern matching procedure of TOOR does not use only object and relation
identifiers. Regular expressions are extended to consider object’s properties and
the methods and axioms defined for each class. A sample of some possible regular
expressions is given below:

<*-input> Derive [Requirement] (1)

Docl Extract ; Derive [Requirement] (2)

Docl ToorRel+ regA (3)

Docl Extract [[Requirement x if priority(x) == highl] (4)

The regular expression (1) is matched by any object whose identifier matches
the regular expression *-input and is related by Derive to an object of class
Requirement; (2) is matched by an object identified by Doc1 related to an object
of class Requirement by a composition of relations Extract and Derive; (3) is
matched by object Docl related to object reqA by a chain consisting of one or
more relation objects (every relation in TOOR is a subclass of ToorRel); (4) is
matched by object Docl related by Extract to objects of class Requirement
having a high priority.

The use of axioms in TOOR’s regular expressions allows the tracing of infor-
mation according to relations not thought of in advance. This is possible because,
as exemplified in Example 5.1.3, relations may be specified by axioms that may
be added or removed from a project specification in order to conform to a par-
ticular situation or line of reasoning. Another instance of this ‘tracing in the fly’
is given below.

5.2.2 Active Use of Hypermedia Information for Tracing

T he definition of abstract data types and the use of operations and methods
associated to them as part of regular expression queries promote the active
use of hypermedia information for tracing purposes. For example, a data type
Video for files containing video scenes may be defined together with an operation
is-there-scene that given two Video files A and B returns true if the scenes
in A are contained in B and false otherwise. Thus, if requirements objects are
defined to have an attribute video-evd of sort Video the user may associate a
video file as a value for this attribute. Moreover, if a certain requirement req-A
is being analyzed the user may want to retrieve all other requirements possessing
similar video evidence, i.e., all requirements for which the video file used as a

value for video-evd contains the scenes of the video file associated to req-A.
This would simply be expressed as

[[Requirement x if

is-there-scene(video-evd(req-A) ,video-evd(x)) == truel]

Note that the retrieved requirements may not be related in the sense of having
a physical link between them. The relation between req-A and the retrieved
requirements is that they share a common piece of video evidence; in this example
this relation was thought of, and expressed as a regular expression query, at the
very moment of analyzing req-A. Of course, the above query may be enlarged
to consider other kinds of chains to, for instance, retrieve all people related to
req-A or even people related to each matched requirement.

[People] ToorRel [[Requirement x if

is-there-scene(video-evd(req-A) ,video-evd(x)) == true]]

This sort of direct use of hypermedia information to trace objects is not possible
with current industrial tools. Most of them have mechanisms to import/export
graphics into the documents they produce but they do not use this type of
information to actively trace objects.

5.3 Structuring Projects

TOOR modules are used to structure projects by providing scopes for the creation
and use of objects in a project development. They are not intended to structure
the system being developed. The main purpose of TOOR modules is to establish
a space for object creation and a policy for object use. Objects in TOOR are
registered inside modules and may be used inside the module in which they are
registered. Also, module importation allows an object registered in one module
to be used in another one. TOOR modules allow the user to structure the project
development by defining particular signatures for each module, thus restricting
the type of objects that may be registered in them. For example, a module
REQ-ELICIT may be specified to have a signature consisting of classes People,
Document, Requirement and the relation classes involving them. In this way
an object of class Spec cannot be registered in REQ-ELICIT and, consequently,
the user is forced to register it in the appropriate module, say SYSTEM-SPEC.
However, SYSTEM-SPEC may well import REQ-ELICIT so that relations between
requirements and specifications can be made.

TOOR has an interactive tracing mode that, given an object to be trace, is
used to traverse the project module structure looking for objects related to the
given one. The user may control the traversal by choosing the objects and mod-
ules to be used in each step and even backtracking to previous points. Another
way of using modules for tracing is explained below.

5.3.1 Using Modules to Restrict the Tracing Space

A given module or set of modules may be used to restrict the tracing space. For
example, when tracing with regular expressions the objects and relations that
are considered to match a certain pattern are only those registered or being used
in the selected modules. This is useful when one wants to restrict the tracing to
certain parts of the project. For instance, if an error is found, during the coding
phase, in a certain source code object it may be advisable to trace it first looking
for relations to other source code objects, going back at most to specification
objects. If this is the case and if the project is structured in a way that these
objects are registered in specific modules, then the appropriate modules may
be selected to restrict the tracing. Another example would be the tracing of
requirements objects excluding those objects registered in modules created only
to hold tentative requirements. The choice of which modules to use to restrict a
trace depends on the purpose of tracing and, of course, on the way a project is
structured.

Restricting the trace to selected modules has the advantage of giving addi-
tional freedom in the way regular expressions are written. Since the class of any
object in TOOR is a subclass of ToorObj and the class of any relation is a sub-
class of ToorRel, the regular expression below is matched by any object related
by any chain of relations to the object identified by programA.

[Toor0Obj] ToorRel+ programA

By selecting the appropriate modules one can use such a general expression and
be sure that no object outside the selected modules will match the pattern.

6 Conclusions

The presentation of TOOR’s abstract tracing model highlighted some of its fea-
tures intended to meet the informal needs of requirements tracing as discussed
in the earlier sections of this paper. One question that may be asked is to what
extent traceability can be automated in a useful way. After all, design and re-
quirements are recognized as ‘wicked problems’ (Bubenko 1995, Yeh 1991, Som-
merville 1989) where the problem domain and the solution domain overlap and
solution for one aspect of the problem usually results in subtle ramifications,
unfolding a chain of previously unsuspected problems. In such an intangible and
inherently inconsistent environment it may be argued that traceability will al-
ways be achieved through non-automated initiatives. It may be the case that, as
Wieringa (1995) points out “the world is the ultimate traceability tool”. Despite
the platonic connotations of such a statement, this view is in accordance with
some of the traceability practices highlighted in the preceding sections. Accord-
ing to our view it is not possible to fully automate requirements traceability.
However, we believe that progress can still be made, and that the answer lies
in an adequate mix of the formal and informal aspects of software development
and in a smooth transition between the two.

References

Mack W. Alford. A requirements engineering methodology for real-time processing
requirements. IEEE Transactions on Software Engineering, SE-3(1):60-69, January
1977.

Breitman, K.K. and Leite, J.C.S.P.: Processon de Software Baseado em Cenérios.
II Workshop on Requirements Engineering (WER99), pp. 95-105, Buenos Aires,
September 1999 (in Portuguese).

J. Bubenko. Keynote address. In Proceedings, Second IEEE International Symposium
on Requirements Engineering, York, England, March 1995. IEEE Computer Society
Press.

Jeff Conklin and Michael L. Begeman. gIBIS: A hypertext tool for exploratory pol-
icy discussion. ACM Transactions on Office Information Systems, 6(4):303-331,
October 1988.

C. W. Dawson and R. J. Dawson. Towards more flexible management of software
systems development using meta-models. Software Engineering Journal, 11(3):79—
88, May 1995.

Doémges, R., Pohl, K.: Adapting Traceability Environments to Project Specific Needs.
Communications of the ACM 41:12 (1998) 54-62

Anthony Finkelstein, Jeff Kramer, and Bashar Nuseibeh, editors. Software Process
Modelling and Technology. Research Studies Press / Willey, 1995.

Joseph Goguen. The dry and the wet. In Eckhard Falkenberg, Colette Rolland, and El-
Sayed Nasr-El-Dein El-Sayed, editors, Information Systems Concepts, pages 1-17.
Elsevier North-Holland, 1992. Proceedings, IFIP Working Group 8.1 Conference
(Alexandria, Egypt).

Joseph A. Goguen. Formality and informality in requirements engineering. In 4th Inter-
national Conference on Requirements Engineering, pages 102-108. IEEE Computer
Society Press, April 1996.

Orlena Gotel. Contribution Structures for Requirements Traceability. PhD thesis,
Department of Computing, Imperial College of Science, Technology, and Medicine,
University of London, August 1995.

Orlena Gotel and Anthony Finkelstein. Contribution structures. In Proceedings, Second
IEEE International Symposium on Requirements Engineering, pages 100-107. IEEE
Computer Society Press, March 1995.

Orlena Gotel and Anthony Finkelstein. Revisiting requirements production. Software
Engineering Journal, 11, 1996.

E. Horowitz and R.C. Williamson. SODOS: a software documentation support environ-
ment - its definition. IEEE Transactions on Software Engineering, 12(8):849-859,
1986.

Ellis Horowitz and Ronald C. Williamson. SODOS: A software documentation support
environment — its use. IEEE Transactions on Software Engineering, 12(11):1076—
1087, November 1986.

Leite, J.C.S.P and Oliveira, P.: A Client Oriented requirements Baseline. Proceedings
of the Second International Symposium on Requirements Engineering (RE95), pp
108-115, IEEE Computer Society Press, York, March 1995.

Leite, J.C.S.P. et al.: Enhancing a Requirements Baseline with Scenarios. Requirements
Engineering Journal, vol. 2, pp. 184-198, Spring-Verlag, December 1998.

Jarke, M.: Requirements Tracing. Communications of the ACM 41:12 (1998) 32-36

M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassiliou. Theories underlying
requirements engineering: An overview of NATURE at genesis. In Stephen Fickas

and Anthony Finkelstein, editors, Proceedings, IEEE International Symposium on
Requirements Engineering, pages 19-33, California, January 1993.

H. Kaindl. The missing link in requirements engineering. ACM SIGSOFT Software
Engineering Notes, 18(2):30-39, 1993.

Luqi and Robert Steigerwald. CAPS as a requirements engineering tool. Communica-
tions of the ACM, pages 75—83, 1991.

James A.H. Murray, Henry Bradley, W.A. Graigie, and C.T. Onions, editors. The
Ozford English Dictionary. Oxford University Press, Oxford, UK, 1989.

Francisco A. C. Pinheiro. Design of a Hyper-Environment for Tracing Object-Oriented
Requirements. PhD thesis, Programming Research Group, Oxford University Com-
puting Laboratory, Oxford, UK, (1996 forthcoming).

Francisco A.C. Pinheiro and Joseph A. Goguen. An object-oriented tool for tracing
requirements. [EEE Software, 13(2):52-64, March 1996.

Klaus Pohl and Peter Haumer. HYDRA: A hypertext model for structuring informal
requirements representations. In Second International Workshop on Requirements
Engineering: Foundations of Software Quality (REFSQ’95), Jyvaskyla, Finland,
June 1995.

Klaus Pohl and S. Jacobs. Traceability between cross-functional-teams. In 1st Inter-
national Conference on Concurrent Engineering, Research and Application, Pitts-
burgh, USA, August 1994.

Klaus Pohl and Peter Peters. Workshop summary — second international workshop
on requirements engineering: Foundations of software quality (REFSQ’95). ACM
SIGSOFT Software Engineering Notes, 21(1):31-34, January 1996.

C. Potts and G. Burns. Recording reasons for design decisions. In Proceedings, 10th
International Conference on Software Engineering, pages 418-426, April 1988.
Balasubramaniam Ramesh and V. Dhar. Supporting systems development using knowl-
edge captured during requirements engineering. IEEE Transactions on Software

Engineering, 18(6):498-510, June 1992.

Balasubramaniam Ramesh and V. Dhar. Representing and maintaining process knowl-
edge for large scale systems development. IEEE Ezpert, 9(2):54-59, 1994.

Balasubramaniam Ramesh and Luqi. Process knowledge based rapid prototyping for
requirements engineering. In Stephen Fickas and Anthony Finkelstein, editors,
Proceedings, IEEE International Symposium on Requirements Engineering, pages
248-255, California, January 1993.

Balasubramaniam Ramesh and Luqi. An intelligent assistant for requirements valida-
tion for embedded systems. Submitted to IEEE Ezpert, 1994.

Lucia Rapanotti and Adolfo Socorro. Introducing FOOPS. Technical Report PRG-TR-
28-92, Programming Research Group, Oxford University Computing Laboratory,
1992.

Gail L. Rein and Clarence A. Ellis. rIBIS: a real-time group hypertext system. Inter-
national Journal of Man-Machine Studies, 34(3):349-367, March 1991.

Rose, T.: Visual Assessment of Engineering Processes in Virtual Enterprises. Commu-
nications of the ACM 41:12 (1998) 45-52

Thomas J. Smith. READS: A requirements engineering tool. In Stephen Fickas and
Anthony Finkelstein, editors, Proceedings, IEEE International Symposium on Re-
quirements Engineering, pages 94-97, California, January 1993.

Toranzo, M. and Castro, J. The Multiview++ Environment: requirements traceability
from the perspective of stakeholders. II Workshop on Requirements Engineering
(WER99), pp. 95-105, Buenos Aires, September 1999.

Adolfo Socorro. Design, Implementation and Evaluation of a Declarative Object-
Oriented Programming Language. PhD thesis, Oxford University Computing Lab-
oratory, 1993.

Tan Sommerville. Software Engineering. Addison-Wesley, 1989.

Dimitrios Tombros and Andreas Geppert. A survey of database support for process-
centered software development environments. Technical Report ifi-95-28, Computer
Science Department, University of Zurich, 1995.

Roel J. Wieringa. An introduction to requirements traceability. Technical Report
IR-389, Faculty of Mathematics and Computer Science, University of Vrije, Ams-
terdam, September 1995.

R. T. Yeh. System development as a wicked problem. International Journal of Software
Engineering and Knowledge Engineering, 1(2):117-130, 1991.

Weider D. Yu. Verifying software requirements - a requirement tracing methodology
and its software tool - RADIX. IEEE Journal on Selected Areas in Communications,
12(2):234-240, 1994.

