
 74

Requirements Processes: An Experience Report

Julio Cesar Sampaio do Prado Leite*, Soeli T. Fiorini*, Amador Durán**, Beatriz
Bernárdez**, Juan Sánchez Díaz+ and Emilio Insfrán Pelozo+

*Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
**Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, España.

+Departamento de Sistemas Informáticos, Universidad Politécnica de Valencia, España
*{julio,soeli}@inf.puc-rio.br. **{amador,beat}@lsi.us.es

+{jsanchez,einsfran}@dsic.upv.es

Abstract. Processes are certainly a key element in software management.
Defining and using processes is believed to be an important factor towards
quality. Our paper describes a general process language and the experience on
its use by two different research teams with two different requirements
processes. The process language is the basic representation for a process reuse
repository implemented as a web application. The web application was used in
order to describe a process for requirements management and a process for
interface generation based on requirements information. We present both
processes as well as an evaluation of the prototype. Our results are a
confirmation of the importance of process reuse and of the possibility of sharing
requirements information by publication, on the web, of requirements
processes.

Keywords: requirements engineering, requirements process, process reuse,
requirements management, interface

1. Introduction

In the last few years, a large number of new techniques and methods in different
areas, have presented the process perspective as a new form of visualizing and
improving production, business or support operations in organizations. In terms of
organizational theory, there is a shift from the functional perspective to a cross-
function one, based on processes. This trend is substantially enforced as globalization
of the economy introduced the need for quality standards, and those are
fundamentally based on process oriented audits. That is, to meet quality standards,
organizations need to document and follow well-defined processes.

The quality movement has reached software engineering. Standards, following the
pioneers CMM (Capability Maturity Model) [1] and ISO 9000, have emerged and
most of them are centered on processes. Software process is the cornerstone of
software quality. No quality can be achieved if the software development organization
does not follow established and well-defined processes.

The first ideas about software process were geared towards automation. Defining
software processes as programs could lead to greater automation in software
construction. Today there are several environments that implement processes in an

 75

automated fashion, however, as researchers found out, automating processes is not a
trivial endeavor. As such, as in organizations, software engineering has also started to
use the notion of process without relying in automation. The possibility of
establishing process description and communicating these descriptions to others has
been seen as an important managing tool for software engineers.

The growing interest in Process Engineering was an evolution of studies focused
on products which verified that the quality of the developed software has a strong
relation with the process which is used to elaborate it. In 1984, at the First
International Workshop on Software Processes –(ISPW) a group of researchers
learned about the new subject on process technology, which emerged. Afterwards,
more than twenty workshops and conferences have been held (ICSP, IPTW, EWSPT,
FEAST and PROFES).

Nowadays, attempting to improve processes, many companies try to reach levels
of process maturity [2], based on their improvement and definition. However, those
improvements are expensive, and they rely on the involvement of managers and
teams, process data, people who know process modeling, training, and cultural
change. Several factors, imposing difficulties, make companies spend long periods of
time to define some processes [2], and some of them give up in the middle of the
maturity process. A frequently mentioned process to accelerate this within a company
is to replicate one organizational process reusable in other projects. At this point, the
process descriptions are very important because they allow the knowledge to be
reused.

Our paper reports on results from this standpoint. For us, processes are task
descriptions that have a fixed objective and are informative on how humans, using
different resources can accomplish an objective. Particularly we are interested in
processes for requirements engineering. Working on software processes, Fiorini [3]
has identified problems with existing software description languages and on the
effective reuse of software process information. In order to meliorate the problems
Fiorini has proposed an environment and a process language that enables a more
complete description of processes as well as guide and facilitate their reuse.

In this context, we are presenting two different proposals of requirements
engineering process. One focused on requirements management and the other on
interface generation from user requirements. Both are results of research experience
on requirements engineering and were performed by different research groups. As
such, we see our article as contributing to the dissemination of processes and
evaluating Fiorini´s proposal.

The rest of this paper is organized as follows. In section 2, the process definition
language used in the experiences is defined. In section 3, the web tool developed for
supporting the process definition tasks is presented. In sections 4 and 5, two
experiences of process definition are reported. In section 6 some observations from
the experiences are described. Finally, in section 7 some conclusions are presented
and future work is pointed out.

 76

2. The Process Description Language (ROpl)

A process modeling language is a formal notation used to express process models.
A process model is the description of a process, expressed in a process modeling
language [4]. The language we are using, ROpl, is a process description language
geared towards reuse [5]. The language is a strong typed description language that
focus on the enumeration of atributes for a given process. It is a static language and
has no interpreter for its semantics. The grammar is defined in XML[6], a meta
language for ROpl, allowing us to specify the structure of ROpl. As such, the
information concerning ROpl structure can be sent/received and processed on the
Web in an even way. Because the processes naturally have a hierarchical structure, we
adopted XML, taking the advantage of its benefits to work with documents
structuring.

The XML’s DTD (Document Type Definition) contains or points out at the
declarative marks, which define a grammar or set of rules to a certain class of
documents. Since ROpl has three major types: usual process, pattern process and
standard process, its DTD has three different representation for a process.

Following we provide an overall description of the three process types and the
operands of each type. See [5] for more details.

2.1 Standard Process

It is a standard (for example, CMM or ISO) in a form of process. It is a base for
process definition, according to specifics process improvement and quality assurance
standards. It has a normative finality.

A standard process pattern is organized around the idea of section, sub-section and
item. The structure of a standard process is described below, where, as in DTD
specifications, the comma means sequence. Other features such as attributes or
cardinality or have been omitted for the sake of readability.

Process-Standard :=

Name, Keywords, Objective, Applicability, Type, Description,
Author, Version, Representation, Where-to-Find, Adaptation,
Artifacts, Concepts, Actors, Section

Section :=

Name, Objective, Description, Sub-Section

Sub-Section :=

Name, Reference, Objective, Description, Representation,
Training, Verification, Metrics, Tool, Item

Item :=

Name, Reference, Pre-Condition, Input, Description,
Constraint, Output, Post-Condition, Pre-Condition, Input,

 77

Recommendation, Constraint, Output, Post-Condition, Use-
Pattern

2.2 Process Pattern

It is a process that deals with problems related to processes. According to the
definition of patterns, it can not be new or hypothetical [7] [8].

A process pattern is organized around the idea of community, family and
individual. That is, a process is composed of macro activities which are composed of
micro activities. The structure of a process pattern is described below, using the same
notation that was used for describing the structure of standard processes.

Process-Community :=

Name, Keywords, Origin, Objective, Classification, Problem,
Context, Cause, Representation, Artifacts, Family-Process,
Individual-Process

Process-Family :=

Id, Context, Cause, Control , Related-Pattern, Representation,
Family-Solution

Family-Solution :=

Name, Pre-Condition , Input , Recommendation, Constraint,
Output, Pos-Condition, Use-Pattern

Process-Invididual :=

Id, Context, Cause, Control , Related-Pattern, Representation,
Individual-Solution

Individual-Solution :=

Name, Pre-Condition , Input , Recommendation, Constraint,
Output, Pos-Condition

 2.3 Usual Process

It is any existing process that is neither a standard nor a pattern. It is not a standard
process because it does not have the normative finality and it is not a process pattern
because it has not been tested (applied) a considerable number of times to solve one
recurrent problem.

An usual process has 3 abstraction levels: the process, the macro activity and the
detailed activity. That is, a process is composed of macro activities which are
composed of detailed activities. Its structure is defined as follows:

 78

Process :=
Concept, Actor, Verification, Metrics, Training, Method, Tool,
Templates, Police, Artifacts, Name, Author, Classification,
Type, Objective, Description, Pre-Condition, Pos-Condition,
Macro-Representation, Micro-Representation, Conformance,
Characteristics, Macro-Activity

Macro-Activity :=

Name, Description, Pre-Condition, Input, Output, Previous-
Activity, Pos-Condition, Constraint, Actor-in-Charge, Method,
Tool, Micro-Activity

Micro-Activity :=

Name, Description, Pre-Condition, Input, Output, Previous-
Activity, Pos-Condition, Constraint, Actor-in-Charge, Method,
Tool

Besides the three basic types, we also have a type called solution process which is

an instance of either the framework or of any other process (pattern, usual or
standard), or of the combination of those.

A process framework models the behavior of the processes in a given domain. A
process framework is defined as a reusable process. Its kernel models the common
activities among the processes of the domain. Hot -spots model the specific and
flexible parts of the processes of the domain and they are specified during the
instantiation of the framework. The hotspots are activities or other elements of the
process (techniques, tools...), that define characteristics or specific paths of a solution
process (process instance). The hotspots are instanced by the process engineer,
redefining the description of activities or elements, both on the macro and detailed
levels. The framework itself will have to be represented as a process, identifying the
parts that are hot spots and common activities. The instantiation of one processes
framework generates a solution process. ”[3]. See also figure 1.

However, accomplishing the mapping and documentation of processes is an
arduous and painstaking job, particularly in large organizations, because it involves
people who are expected to supply information regarding the manner in which they
perform their activities.

Given this context, it is important that the infrastructure to support process
description and further use be functional and ease to use. Based on a process reuse
architecture [3], figure 1, a Web tool was developed, RPS (http://www.re.les.inf.puc-
rio.br/soeli), in order to provide this infrastructure.

3. The Web Tool (RPS)

RPS is a Web tool designed to provide support for the edition and retrieval of
process information. The tool uses ROpl as its basis. Figure 2 shows the main menu
with two types of selection: by the menu on the left or by the chart, where you have

 79

the possibility of reusing a framework or reuse directly patterns, standards or
processes.

PROCESS INSTANCE (SOLUTION PROCESS)

COMMON PARTS

FLEXIBLE PARTS

Kernel

Hot-Spots

PROCESS FRAMEWORK

Usual
Process

Process
Patterns

 Standard
Process

Framework

Activity
 y

Activityx
 x

REUSE
GUIDELINES

 PROCESSES MODELING LANGUAGE

PROCESS
TYPES

Figure 1. Process Reuse Architecture

The menu on the left give the option of a) data entry (cadastro), for cataloguing
new processes, b) view a process (consulta), to visualize in HTML a given chosen
process, or c) access control (utilitários), for managing access and passwords.

Several different pages are available according to the function requested. The
processes are stored as XML [6] files and are prettyprinted using XSL (Extensible
Stylesheet Language) [6], which makes possible different presentation styles for
processes. Depending on the type of reuse (figure 1) a special path of the flow below
is followed, that implies that there different possibilities of re-using the information
stored in the data base.

RPS is a prototype and as such has several limitations, however we believe that it
opens an avenue of opportunities regarding the research of how processes are
presented, their languages and the reuse possibilities of processes. Our initial results
[5] were very positive. On the next two sections we detail two different processes and
a respective assessment of the tool for each process.

 80

Figure 2. RPS main Page

4. First Experience: Requirements Management Process

The first experience took place at the Departmento de Lenguajes y Sistemas
Informáticos at the Universidad de Sevilla and was driven by two members of the
local Requirements Engineering Research Group. The goal was to describe a detailed
process for Requirements Management (RM), taking the approach described in [9] as
a basis and focusing on requirements change management. The RM process was
initially modeled using UML activity diagrams [10], as shown in figure 3 and figure
4.

In figure 3 a context diagram for Requirements Engineering (RE) is presented.
Following RPS, RE was defined as an usual process, and Requirements Development
(RD) and Requirements Management (RM) as macro activities. In figure 4, a detailed
description of the RM macro activity is displayed.

The former approach was defining RM as a process itself, but the structure shown
in figure 4 was eventually chosen in order to maximize reuse of already defined
processes. The reason of this choice was that all RM defined processes in the
repository were at the macro activity level, and the current implementation of the web
tool do not allow changing the abstraction level (process, macro activity or detailed
activity) of an asset

 81

Figure 3. Requirements Engineering Process Overview

The framework reuse strategy was initially discarded after some attempts because
the only available framework in the web tool process repository, a framework for RE,
was too general and we found an usual process asset that was much closer to our
approach. So, the free partial reuse strategy was finally chosen, achieving a high reuse
ratio, although some translation work was needed, since the reuse processes was
initially described in Portuguese and the target language was English.

5. Second experience: Semi-Automatic User Interface Generation
from User Requirements

The second case study used to evaluate the tool is about a semi-automatic user
interface generation method. This process is based on user requirements. The case
study is organized as follows: first, our user interface generation method, and second
each phase and activity is explained in detail. Finally the experience of using the tool
for the process definition is reported.

Requirements Engineering
<<process>>

Requirements Development
<<macro activity>>

Requirements
Baseline
[current]

Requirements Management
<<macro activity>>

Requirements
Baseline
[revised]

Requirements
[raw]

Marketing, Customers, Management

Change
[requested]

Project Environment

 82

A
n

a
ly

ze
 c

h
an

g
e

 im
p

a
ct

<
<

de
ta

ile
d

 a
ct

iv
ity

>>

C
o

m
m

un
ic

a
te

c
h

an
g

e
 a

p
p

ro
v

al

ch
an

ge
ap

pr
o

ve
d

?

R
e

g
is

te
r

c
h

an
g

e
 r

eq
u

e
st

<
<

de
ta

ile
d

 a
ct

iv
ity

>>
C

h
an

ge
[r

e
qu

es
te

d]

M
a

ke
 a

 d
ec

is
io

n
<

<d
et

ai
le

d
 a

ct
iv

ity
>

>

T
ra

ck
 c

h
an

g
e

<
<d

et
ai

le
d

 a
ct

iv
ity

>
>

V
e

ri
fy

 c
h

an
g

e
<<

de
ta

ile
d

a
ct

iv
ity

>
>

R
eq

u
es

t
R

ec
ei

ve
r

O
ri

g
in

at
o

r

E
va

lu
at

o
r

C
h

an
ge

[r
e

gi
st

e
re

d]

C
h

an
ge

 C
on

tr
ol

 B
o

ar
d

Im
p

ac
t A

n
al

ys
is

R
ep

or
t

[n
o

]

C
o

m
m

un
ic

a
te

c
h

an
g

e
 r

ej
ec

ti
o

n

C
h

an
ge

[r
ej

e
ct

ed
]

C
h

an
ge

[a
pp

ro
ve

d
]

[y
es

]

C
o

m
m

u
n

ic
a

te
 c

h
an

g
e

<
<

de
ta

ile
d

 a
ct

iv
ity

>>

P
ro

je
ct

 m
an

ag
er

V
er

if
ie

r

ch
a

ng
e

ve
rif

ie
d?

[y
es

]

R
eq

ui
re

m
en

ts
B

as
e

lin
e

[c
u

rr
e

nt
]

M
o

di
fi

er

M
ak

e
ch

a
n

g
e

<<
d

et
a

ile
d

ac
tiv

ity
>

>

R
eq

ui
re

m
en

ts
B

as
e

lin
e

[u
pd

at
ed

]

[n
o

]

R
e

qu
ire

m
en

ts
B

as
e

lin
e

[r
ev

is
e

d]

Figure 4. Activity Diagram for Requirements Management

 83

When a software product is designed and implemented, it is very important to
assure that the user requirements have been properly represented. To achieve this
objective, a guided software production process is needed, starting from the initial
requirements engineering activities and through to the resultant software product. In
this section, a methodological approach for generating user interfaces corresponding
to the user requirements is introduced. As opposed to other proposals, we defend the
idea of having a process with a high degree of automation where the generation of
user interfaces corresponding to precise user requirements has a methodological
guidance. Furthermore, a corresponding visual tool, which allows us to almost
completely automate the entire process, has been implemented. A detailed discussion
about the tool can be found in [11]. An important contribution of the method is that it
automatically generates an inter–form model of navigation which is based on the
relationships include and extend specified among the use cases. The introduction of
this navigation feature makes possible to use the generated interfaces in web
environments.

In short, this section presents both a methodological proposal and the associated
support tool, which backs it up, within the field of requirements engineering. They are
based on the Unified Modeling Language (UML [10]), extended by the introduction
of Message Sequence Charts (MSC) [12]. As we view MSCs as extended UML
Sequence Diagrams by adding the needed stereotypes, the approach can be considered
UML-compliant from the notational point of view.

A clear, precise iterative process allows us to derive user interface prototypes in a
semi-automatic way from scenarios. Furthermore, a formal specification of the system
is generated and represented through state transition diagrams. These diagrams
describe the dynamic behavior of both the interface and control objects associated to
each use case or each MSC. The method has four main steps: the first two steps
require analyst assistance to some degree, whereas the last two steps make the process
of scenario validation fully automated by means of prototyping

5.1 Description of the Proposal

In this section we present precise method or process to guide the generation of
user interfaces corresponding to the user requirements, according to the ideas
introduced in section 4 and using the UML diagrams class model, state transition
diagrams and message sequence charts. Figure 1 shows a schematic representation of
the activities contained in the proposed method. As we have commented above, the
first two activities, namely scenario representation and synthesis of use cases, are
manual activities which the analyst must carry out. The last two, specification
generation and generation of prototypes, are totally automatic.

Figure 5 also fixes the order in which these activities should be performed. The
process begins at the scenario representation stage where a use case model is created.
The next stage consists of describing use cases by means of MSC. During the stage of
specification generation, a state transition diagram (STD [13]) for the class User
Interface and another STD for the Control Object are automatically obtained from a
given MSC. Lastly, the final stage consists of automatically generating the user
interface prototypes as well. The method is iterative; in consequence, the prototyping
is used to validate and enrich the initial requirements.

 84

Informal
Requirements

Use Case
Model

Message
Sequence

Charts

Scenario
Representation

Specification
Generation

Use Cases
Synthesis

State Transition
Diagrams

U. I.
Generation

Manual Activities Automatic Activities Deliverables

1 2

3

4
Application

Forms

Prototype
Animation

Prototype
Evaluation

Figure 5. Schematic Representation of the Method

5.2 Tool utilization

We have considered as “usual process” the describe method in the last section. We
can define four macro activities: use case model construction, use cases synthesis,
specification generation and user interface generation. Each macro activity can be
decomposed in detailed activities. We shall now proceed to explain the macro activity
“use cases synthesis” in detail.

This macro activity can be decomposed in tow detailed activities: message
sequence chart construction and message sequence chart labeling. The former
detailed activity can be described as follow. Once we have obtained the Use Case
Model, we need to work with the involved use case information to undertake the
process of designing a software system. To do this, use cases must be formally
described: the formal definition of a use case is achieved by using a graphic, non-
ambiguous language, such as MSC. In this phase, which is a manual one, the use case
templates are used as help so that the analyst can detect the events sent by the actors
and by the classes of problem domain. In each MSC, besides the participating actors
(initiator, supporting actors), one class for the user interface and one class that acts as
control object are introduced, according to the initial Objectory proposal [14] and
according to the UML approaches for a software production process [15].

The last detailed activity also can be described in the sequel manner. An important
piece of data that must be introduced in this step, is constituted by the labels that will
appear in the user interface to identify relevant pieces of information. When following
the flow of events specified in the MSC, a given piece of information enters or exits

 85

the user interface object, the analyst must specify the corresponding label, that will
play a basic role in the process of generating the user interface.

Apart from the labels, information about the type of the arguments of each event
specified in the diagram must be introduced. The allowed types are the basic data-
valued types (number, Boolean, character, strings, enumerated) and the object-valued
types corresponding to the system classes. The types of the event arguments together
with the class attributes are used in the process of the interface generation.

6 Conclusions

We have briefly presented an infrastructure for process reuse and detailed the
ROpl, a process language proposed to cast processes for reuse. The infrastructure is
supported by a web application that provides editing, retrieving and visualization
mechanisms. In order to gain more understanding on requeriments processes as well
as on the effectiveness of the prototype tool, we conducted two experiences with two
different research groups. We detail below the final remarks of each research group.
We end the section enumerating further work.

The first experience at the Universidad de Sevilla was highly positive. The search
facilities were a key aspect, and the facet-based schema has proved to be extremely
useful. The reuse guideline for frameworks was also very useful, especially because it
offered a broad view of the framework, its activities and some guides for making
reuse decisions. The flexible view of the concept of framework was also a positive
aspect, since any activity in a framework can be reused or not, not only hot spots,
although some of them are strongly recommended but no one is considered as
mandatory.

One of the drawbacks was the strictly sequential model of processes and the lack
of an standard graphical representation of processes. It would be interesting to have a
richer model in which processes could be ordered in a more flexible way. Other found
problem was the strict level hierarchy, in which an item initially created at one level
(process, macro activity or activity) cannot be changed to an upper or lower level and,
in the case of detailed activities, they must be reused together with their parent macro
activity, not isolated.

From the point of view of “Universidad Politécnica de Valencia”, we have
encountered a powerful mechanism of process definition and reutilization, but we
have only fully exploded the former characteristic, process definition. There is a
coherent classification of process types: standard, pattern, usual and solution. The
variable level of granularity in process definition and decomposition (macro and
detailed activities) let us employ the desire level of abstraction and detail.

In the other hand, there are also negative aspects. There is not a graphical notation
to depict process and activities dependency. The precedence process relation is very
restrictive. Finally, there is not a view model or users and users groups. Any user can
access to all database. We have not found a privacy policy and information protection.

Regarding future work, we understand that different issues vary in terms of effort
needed and maturity over time. The short term issues are those related to the tool,
like: better user interface, language customization, privacy and security, and of course
a more stable platform. Requiring more effort would be things related to the language
concept itself, for instance, during the first experience, it was found as interesting the

 86

possibility of having more than 3 levels of abstraction. It would be nice if recursive
composition could be applied when defining a process, i.e. if a process could be
defined as recursively composed by other process, having as many depth levels as
necessary. In terms of long term we would be interested in auditing and populating
the repository together with a more robust tool. Collaborations like the one presented
in this paper, we believe, will foster the possibility of improving the repository as well
as provide a larger user base for testing the tool.

References

[1] Paulk, C.M., Curtis, B., Chrissis, M. B., Weber, V.C.: Capability Maturity Model for
Software, Ver. 1.1, Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-93-TR-24, ESC-TR-93-177, 1993.

[2] SEI, Process Maturity Profile of the Software Community 1999 Year End Update, SEMA
3.00, Carnegie Mellon University, March, 2000.

[3] Fiorini, S. T., Leite, J. C. S. P., Lucena, C. P.: Process Reuse Architecture, Klaus R. Dittrich,
Andreas Geppert, Moira C. Norrie (Eds.): Advanced Information Systems Engineering,
13th International Conference, CaiSE 2001, Interlaken, Switzerland, June 4-8, 2001,
Proceedings. Lecture Notes in Computer Science 2068 Springer 2001, pp. 284-298.

[4] Finkelstein, A., Kamer, J., Nuseibech, B.: Software Process Modelling and Tecnology,
Research Studies Press Ltda, 1994

[5] Fiorini, S. T., Arquitetura para Reutilização de Processos de Software (Software Process
Reuse Architecture), PhD Thesis, Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro, April, 2001.

[6] http://www.w3.org/TR/REC-xml and http://www.w3.org/Style/XSL/
[7] Coplien, J. O.: Software Patterns, SIGS Books & Multimedia, USA, 1996.
[8] Gamma, E., Helm, R., Johnson, R., e Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Design, Addison-Wesley, 1995.
[9] Wiegers, Karl E., Software Requirements, Microsoft Press, 1999.

[10] Booch G; Rumbaugh J; Jacobson I, The unified modeling language, Addison-Wesley.
1999.

[11] Sánchez J; Pastor O; Fons J; From user requirements to user interfaces: a methodological
approach, Klaus R. Dittrich, Andreas Geppert, Moira C. Norrie (Eds.): Advanced
Information Systems Engineering, 13th International Conference, CAiSE

2001, Interlaken, Switzerland, June 4-8, 2001, Proceedings. Lecture Notes in Computer Science
2068 Springer 2001, pp. 60-75.

[12] ITU: Recommendation Z. 120: Message Sequence Chart (MSC). ITU, Geneva, 1996.
[13] Harel D.: State Charts: a visual formalism for complex systems, Science of Computer

Programming, 8(3), 231-274. 1987.
[14] Jacobson I et al. Object-Oriented Software Engineering: A use case driven approach. New-

York ACM Press, 1992.
[15] Jacobson I; Booch G; Rumbaugh J. The Unified Software Development Process. Addison-

Wesley, 1999.

http://www.w3.org/TR/REC-xml

