

 246

Developing Use Cases from Organizational Modeling

Victor F.A. Santander, Jaelson F. B. Castro
Universidade Federal de Pernambuco – Centro de Informática

{vfas,jbc}@cin.ufpe.br

Abstract: The object oriented development paradigm has attracted many sup-
porters in the Software Engineering community. One of the most important ad-
vances was the Unified Language Modeling (UML), a standard for visual mod-
eling. Use Cases Diagrams have been used for capturing system functional re-
quirements. However, the system development occurs in a context where or-
ganization processes are well established. Therefore, we need to capture organ-
izational requirements to define how the system fulfils the organization goals,
why it is necessary, what are the possible alternatives, what are the implications
to the involved parts, etc. Unfortunately, UML and other scenario-based tech-
niques are ill equipped for modeling organizational requirements. We need
other techniques, such as i*, to represent these aspects. Nevertheless, organiza-
tional requirements must be related to functional requirements represented as
Use Cases. In this paper we present some guidelines to assist requirement engi-
neers in the development of use cases from the organizational models repre-
sented by i* technique.

Keywords: Scenarios, Organizational Modeling, Requirement Engineering.

1. Introduction

The development of complex software systems, susceptive to certification and

within a limited budget, has been a constant challenge for software engineers. Several
techniques, methodologies and tools have been proposed to assist and support the
development of quality software [9] [12] [16] [26]. The software crisis [3] remains
present in many aspects. Frequently, we can find software that does not meet the real
needs of the customers. Among the main reasons for this failure we can emphasize:
the lack of well defined software processes, software requirements not well under-
stood and agreed, use of unsuitable techniques as well as the own nature of the com-
plex software.

The software engineering community has emphasized Requirement Engineering as
the most critical activity in the software development process. System requirements
must be appropriately elicited, analyzed, validated and managed to meet the stake-
holders needs. Requirement documents usually are incomplete or inconsistent, gener-
ating software products with low quality and unsatisfied customers. Therefore, it is
very important to perform the requirement engineering activities efficiently as well as
to try to eliminate requirement problems still in the early phases of the software devel-
opment [26]. Current researches in requirement engineering have proposed techniques
and methodologies, which aim at the development of more complete and consistent

 247

requirement documents. Among the main aspects that must be considered in the elabo-
ration of the requirement documents we can mention: to consider all relevant elements
of the organizational environment where the software will execute, to elicit the func-
tional and non-functional requirements, to assure that these requirements are the most
complete as possible as well as to assure that the documented requirements meet the
needs of users and customers.

To define system requirements we can use many techniques presented in literature.
In the 1970’s, techniques such as DFD and ER [13] which were developed to elicit
and document functional requirements. More recently, techniques such as scenarios,
use cases, ethnography, formal methods have been considered as viable alternatives
for requirement engineers. Among these techniques, we can highlight scenario-based
techniques. Scenarios are used to describe the interactions between users and software
systems. One of the most popular scenarios technique are the so-called Use Cases. As
a consequence Use Cases have been incorporated into the Unified Modeling Language
(UML), a standard for visual modeling, one of the most important advance in the
object-oriented development [2]. In UML, Use Cases are used for capturing system
functional requirements.

However, system development occurs in a context where organizational processes
[4] [5] [27] are well established. Therefore, we need to capture organizational re-
quirements to define how the system fulfils the organizational goals, why it is neces-
sary, what are the possible alternatives, what are the implications to the involved parts,
etc. Unfortunately, use cases in UML and other scenario-based techniques are ill
equipped for organizational requirement modeling. We need others techniques, such
as i* [27] to represent these aspects. We argue that i* framework, is well suited to
represent organizational requirements that occur during the early-phase requirements
capture, since it provides adequate representation of alternatives, and offers primitive
modeling concepts such as softgoal and goal.

Nevertheless, organizational requirements must be related to functional require-
ments represented with techniques like Use Cases. Usually, use case development
demand great experience of the requirement engineers. The heuristics presented in the
literature to develop use cases are not sufficient to permit a systematic development.
Indeed, they do not consider relevant organizational aspects such as goals and soft-
goal. In this work, we propose some guidelines to support the integration of i* and use
case technique. We describe some heuristics to assist requirement engineers to de-
velop Use Cases in UML based on the organizational i* models. The i* framework
can be used to improve the understanding of how systems fulfils organization goals. In
the figure 1, we present elements of our proposal.

 248

Figure 1. A vision of mapping process between organizational modeling and scenarios.

The objective is to integrate in fact, goal driven methodologies, the i* framework

and scenarios, indicated under a goal-oriented analysis. There are very promising
early results researches such as [6] [18] [19] [20] [23]. In our proposal, elements such
as goal, softgoal, resource and task presented in i* are analyzed to generate goals of
use cases. In the i* framework, actors depend each other to reach goals and softgoal
and to realize tasks. We must also investigate which and how these elements are re-
lated to system requirements and system use cases.

In this paper we present guidelines that allow requirement engineers to develop use
cases (and associated scenarios) from organizational modeling described in i* frame-
work. This work is an evolution of the [24]. The original guidelines presented are
improved as well as better described into three well-defined phases (section 4, figure
5). These phases provide a more systematic way to integrate the i* technique and use
cases. Besides, other guidelines (such as Guidelines 1.5 and 2 - 2º Proposal Step in
section 4) are introduced to consider important aspects such as the use of the goal
oriented analysis in the i* and use case integration process. This approach is used in
our proposal to aid requirements engineers to discover and define use case goals from
i*. These goals are classified into three levels (business, contextual or user goal). The
analysis of these goals can aid requirements engineers to discover other use cases as
well as assure that the goals associated with use cases are in an appropriate abstraction
level. Other evolution related with our work are the evolution of the i* models and the
possible dependences modifications between actors that can to originate other use
cases for the intended software system. In the section 4 are described all guidelines of
our proposal.

 This paper is organized as follows. Section 2 introduces the concepts used by i*
framework to represent organizational requirements and early requirements. In Sec-
tion 3, we present the main concepts of scenarios-based techniques, especially use
cases technique. Section 4, we describe guidelines and steps to integrate i* organiza-
tional models and Use Cases diagrams. In order to show the viability of our proposal
we also describe how these guidelines are used in association with the meeting sched-
uler problem. Section 5 concludes the paper with a summary of its contribution.

 Goal-Oriented Analysis

Organizational

 Modeling
 (i* framework)

Scenarios

Mapping

 249

2. The i* Modeling Framework

When developing systems, we usually need to have a broad understanding of the
organizational environment and goals. The i* framework [27] provides understanding
of the reasons (“Why”) that underlie system requirements. This technique offers a
modeling framework that focuses on strategic actor relationships. Usually, when we
try to understand an organization, the information captured by standard modeling
techniques such as DFD, ER, Statechart, etc, focuses on entities, functions and flows,
states and the like. They are not capable of expressing the reason (the “why’s”) of the
process (motivations, intentions, rationales). The ontology of i* caters to some of
these more advanced concepts. Thereby, i* allows the description of the intentions and
motivations involving actors in an organizational environment. It offers two models to
represent these aspects: The Strategic Dependency (SD) Model and the Rationale
Dependency (SR) Model. The i* technique have been used in various application
areas such as: requirement engineering (like this work), business process reengineer-
ing, organizational impact analysis, software process modeling.

2.1 The Strategic Dependency Model

This model focuses on the intentional relationships among organizational actors. It
consists of a set of nodes and links connecting them, where nodes represent actors and
each link represents the dependency between two actors. The depending actor is called
Depender and the actor who is depended upon is called Dependee. Hence, this model
consists of a set of relationships among actors, capturing intentions and motivations
among them. The i* framework defines four types of dependencies among actors: goal
dependency, resource dependency, task dependency and softgoal dependency. Each
one of these dependencies represents different intentions and motivations in the organ-
izational environment. In a Goal Dependency, an actor depends on another to fulfil a
goal, without worrying how this goal will be achieved. In a resource dependency, an
actor depends on another to provide a physical resource or information. In a task de-
pendency, an actor depends on another to realize some sequence of activities. Finally,
in a softgoal dependency an actor depends on another to fulfil a fuzzy goal. The soft-
goal dependency is a different dependency because it represents a goal not precisely
defined. In requirement engineering, a softgoal represents non-functional require-
ments.

In i* we can also define different degrees of dependencies between actors: open,
committed or critical. Actors can be refined into agents, roles and positions. An agent
is an actor with concrete physical manifestations (person or system). A role is an ab-
stract characterization of the behavior of a social actor within some specialized con-
text, domain or endeavor. A position is a set of roles typically played by one agent.

Figure 2 presents the Strategic Dependency (SD) Model describing a Meeting
Scheduler [27]. The meeting initiator actor possesses a set of dependencies with the
meeting participant actor. The resources dependencies ExclusionDates(p) and
PreferredDates(p) indicate that the participant should supply information about un-

 250

suitable dates as well as some favorite dates. The Meeting Initiator depends on these
resources to continue the scheduling process.

On the other hand, the Meeting Participant depends on a proposed date (Pro-
posedDate(m)) supplied by the Meeting Initiator that might agree or not with the date.
The goal dependency AttendsMeeting(p,m) considers that Meeting Participant should
satisfy the goal to attend the meeting. In this situation, the Meeting Participant actor
can choose the way that this goal will be fulfilled. The Agreement(m,p) dependency
represents a resource that a Meeting Participant should supply to show whether one
participant do not agree with the proposed date. The Assured(AttendsMeeting(ip,m))
softgoal dependency is a reference to a softgoal with a subjective evaluation.

Figure 2. Strategic Dependency Model for the Meeting Scheduler Problem.

2.2 The Strategic Rationale Model

The Strategic Rationale (SR) Model is a supplementary model to the Strategic De-
pendency (SD) Model. This model allows modeling of the reasons associated with
each actor and their dependencies. Each actor externally possesses dependencies with
other actors but internally it possesses goals and routines that impel and justify each
dependency. To develop this model we must investigate the reasons associated with
each actor in relation to the dependencies with other actors. A good way to begin the
decomposition is to observe how the Dependee actor can satisfy the Dependum asso-
ciated with the same, and then to investigate and decompose intentions and strategic
organizational reasons as a whole. Nodes and links also compose this model. The
nodes have as base the types of dependencies defined in the SD model: goal, re-
source, task and softgoal. The links can represent two types of connections: means-
ends and task-decomposition. These links are described as:

 251

• Link means-ends: This link is associated to the obtaining of a certain end,
which can be a goal, resource, softgoal or task. The mean to obtain the end is
defined as tasks that are necessary for reach the end.

• Link task-decomposition: A node task is linked to their component tasks
through a decomposition connection. The four types of nodes existent can be
linked, decomposing a task through this link type. It is permitted by linking
the decomposition into smaller units of a node task to represent the way and
the reasons associated with the accomplishment of the task.

Figure 3. Strategic Rationale (SR) Model to the Meeting Scheduler System.

In figure 3, we present an example of the Strategic Rationale (SD) model. This

model represents the reasons associated with actors in the organizational environment
to schedule a meeting. The Meeting Scheduler actor, which represents a software
system, performs partially the meeting scheduling. The other two actors presented in
this model, the Meeting Initiator and the Meeting Participant, are responsible for pro-
viding or receiving information to the system. The Meeting Scheduler actor possesses
a Schedule Meeting task which is decomposed into three other tasks using the task-
decomposition relationship: ObtainAvailDates, FindAgreeableSlot and Obtain
Agreement. These tasks represent the work that will be accomplished by the meeting
scheduler system. In the same way, the other actors of the organizational model are
decomposed to represent the internal reasons that satisfy the dependencies with other
actors.

3. Use Cases in UML

 252

The scenarios-based techniques have been used in the software engineering to un-

derstand, model and validate users requirements. Some approaches proposing the use
of scenarios to elicit and validate requirements includes [23] [17] [16]. Among these
techniques, use cases have been receiving a special attention. Use cases diagrams are
used in the Unified Language Modeling (UML), a standard for visual modeling which
has been one of the most important advances in the object oriented development para-
digm.

Use Cases in UML [2] are used to describe the using of a system by actors. An ac-
tor is any external element that interacts with the system. A use case describes the
sequence that a user accomplishes when it interacts with a system to accomplish a task
or goal. However, the description of Use Case does not treat how this interaction will
be implemented. Subsequent phases in the software engineering such as Design and
Implementation will focus on this aspect.

A single use case can generate several scenarios. Scenarios are for use cases like
instances are for classes, meaning that a scenario is a use case’s instance. The use of
the system by the actor can involve several ways depending on the execution context
of the system. These ways are the possible use cases scenarios. The basic way to
accomplish a use case, without problems or mistakes is called primary scenario. In this
scenario, the execution of the steps to accomplish the basic functionality of the uses
case is obtained with success. On the other hand, alternative ways as well as mistaken
situations can be represented through secondary scenarios.

The secondary scenarios describe possible alternatives sequences in a primary sce-
nario. Secondary scenarios can be described separately or as extension of a primary
scenario. If a secondary scenario is more complex and includes several steps, it is
convenient to describe it separately. It is important to notice that different definitions
of scenarios are also possible. For instance, in [17] the scope attributed to scenarios is
wider. In that approach, scenarios are descriptions of situations in an evolving envi-
ronment. Scenarios evolved together with the software development process, leaving
initially the description of the macrosystem. Besides, scenarios are naturally linked to
a LEL (Language Extended Lexicon) and a BMV (Basic Model View) of the require-
ments baseline [17].

UML also allows the structuring of use cases. The relationships in UML include:

• << include >>: When a group of the common steps to several use cases

is detected in the system, we can join these steps in a single use case,
which can be used by others use cases. Thereby, a specific use case can
refrain a common behavior to several use cases, establishing that others
use cases can use the common use case (i.e. to include it) when neces-
sary.

• <<extend >>: we used this relationship for an optional or conditional
sequence of steps that we want to include in one use case. This sequence
of steps should be described in one specific use case that could be used
by others use cases when necessary. The use of the extended use case
happens in an optional or conditional behavior situation.

• <<generalization>>: generalization among use case is similar to the
classes generalization in the object-oriented paradigm. This means that
one "son" use case inherits the behavior and structure of the "father" use
case. The "son" use case is a specialization of the "father" use case add-
ing new structure and behavior as well as modifying the behavior of the
"father" use case.

We can also use the generalization mechanism among use cases to relate actors.

The actor 2, for instance, can be a specialization of the actor 1. In this situation, the
actor 2 inherits the whole structure and behavior of actor 1 and can add new structure
and behavior for the actor 1. Other additional mechanisms proposed in UML to repre-
sent and describe use cases are presented in [2]. The figure 4 presents use cases nota-
tions in UML.

The use cases development process begins with the disco
and follows with the use cases discovery associated with thes
we find all the related use case.

The second step consists of defining the basic way (prima
alternative way (secondary scenarios) for each use case dis
involves revising descriptions of the use cases behavior aspe
ships << include >>, << extend >> and << generalization >>
iterative and incremental [15]. After defining all the use cas
tem, use case diagrams are developed using the notations pres

Several heuristics to aid requirement engineers in the us
presented in [2] [25]. However, the discovery and descriptio
simple, because, in most of the situations, it demands a cert
from requirement engineers. The first aspect is discovering w
reach some service or functionality from the system.

Another difficulty, is defining which use cases really sa
providing them with a relevant result. One of the alternative
indicated in [10]. Cockburn argue that stakeholders possess
system to be developed. These goals can be of higher or lowe
use cases for the intended system.

However, the main challenge is related to how system goa
tially. Traditionally, requirement engineers accomplish this

Use Case

Actor 1

 <<include>>

 <

Actor 2

<<generalization>>

Use Case
<<generalization>>

Figure 4. Use Cases notations in U
 Use Case
253

very of the system actors
e actors. For each actor,

ry scenario) and later the
covered. The third step
cts, finding the relation-
. This process is usually
es and actors of the sys-
ented in the figure 4.
e case development are
n of use cases is not so

ain degree of experience
hich actors really wish to

tisfy the actors interests,
s to assist this process is
 goals in relation to the
r level and can originate

ls can be discovered ini-
work, using mainly their

<extend>>

 Use Case

ML.

 254

experiences to discover these goals and then to describe use cases. In this sense, we
believe that a viable alternative is to begin the use case discovery process investigat-
ing the goals and other elements represented in the i* organizational models. The use
of the defined information in organizational models can facilitate the use cases devel-
opment as well as turn this process more systematic. We have been observing that the
heuristics presented in the literature [2] [25] to use cases development, are not satis-
factory and still turn the process ad-hoc. Besides, in most situations, use cases are
developed without considering the organizational requirements previously defined by
the organization. Thereby, in this paper we propose to develop use cases starting from
the observation and analysis of organizational goals and other elements represented
through i*.

4. Developing Use Cases from Organizational Modeling.

We have shown that i* provides an early understanding of the organizational rela-

tionships in a business domain. As far as we continue the development process, we
need to focus on the functional and non-functional requirements of the system-to-be,
which will support the chosen alternative among those considered during early re-
quirements. As first step in the late requirements phase we can adopt use cases to
describe functional requirements of the system. Traditionally, use cases in UML are
developed without efficiently considering organizational requirements previously
defined. We argue that the use cases development from organizational modeling
using i* allows that requirement engineers to establish a relationship between the
functional requirements of the intended system and the organizational goals previously
defined in the organization modeling. Besides, through a goal-oriented analysis of the
organizational models, we can derive and map goals, intentions and motivations of
organizational actors to main goals of use cases. We assumed, that for each use case
we have associated a main goal, which represents what the user aims to reach as a
result of the execution of the use case. In our proposal, the use cases scenarios de-
scription can begin investigating the organizational models, which are well known and
understood by all of the stakeholders. This can avoid future inconsistencies, ambigui-
ties and uncertainties regarding to the intended system requirements.

To guide the mapping and integrating process of i* organizational models and use
cases, we have defined some guidelines. These guidelines must be applied following
the steps represented in the figure 5. In this figure, steps 1, 2 and 3 represent the ac-
tivities to discover system actors, use cases for the actors and scenarios for these use
cases. The input for the integration process (connected rectangle with the step 1), is
composed by the Strategic Dependency (SD) and Strategic Rationale (SR) models
developed through i* framework. In steps 1 and 2, the input is the Strategic Depend-
ence (SD) Model. The description of scenarios for use cases (step 3) can be obtained
from elements represented in the Strategic Rationale (SR) Model. The results of the
integration processes (connected rectangle as output of step 3) are use cases diagram
for the intended system and scenario textual descriptions for each use case. For each
step, we describe guidelines to aid requirement engineers in the accomplishment of the
step. These guidelines help the requirement engineers in the accomplishment of a

goal-oriented analysis of the SD and SR models, aiming to derive and refine goals for
use cases.

m

Guidelines are applied in each
integration process step under a
goal-oriented analysis.

Goal-Oriented Analysis

1. Discovering
actors.

2. Discovering use
cases for the actors.

3. Discovering and
describing scenarios
of use cases.
Organizational models
developed through i*
framework.

Figure 5. Steps of the integration process between i* and use ca

In the sequel we suggest heuristics for the use
ent from organizational modeling with i*.

1º Proposal Step: Discovering System Actors.
Guideline 1: every actor in i* should be analyzed for a pos
actor in use cases; For instance, we can analyze the Meetin
tor in figure 2.
Guideline 2: initially, the actor analyzed in i * should be e
tended system. Actors in use cases cannot be the software s
ing Participant actor is external to the system because it wil
intended system to meeting schedule.
Guideline 3: if the actor is external to the system, it should b
the actor in i* is an actor candidate in the Use Case diagr
pose, the following analysis is necessary:

Guideline 3.1: the actor dependencies in i* must
point of view of the intended system; For instance,
ticipant actor in i* can be mapped to use case acto
dependencies associated with it, characterize it as i
teraction context with the system. The dependenci
ing Participant and Meeting Initiator (see figure 2)
ing Participant has the responsibility to attend and
tion that will be treated in a meeting scheduler syst
Use Cases Dia-
grams and textual
description of
scenarios.
255

ses in UML

cases develop-

sible mapping for
g Participant ac-

xternal to the in-
ystem. The Meet-
l interact with the

e guaranteed that
am. For this pur-

be relevant at the
 the Meeting Par-
r, considering that
mportant in an in-
es between Meet-
, show that Meet-
 supply informa-

em.

 256

Guideline 4: actors in i*, related through the IS-A mechanism in the organ-
izational models and mapped individually for actors in use cases (applying
guidelines 1, 2 and 3), will be related in the use case diagrams through the
<<generalization>> relationship. For instance, the IS-A relationship between
Meeting Participant and Important Participant in figure 2, can be mapped to
generalization relationship among these actors in the use case diagram.

2º Proposal Step: Discovering Use Cases for the Actors.
Guideline 1: for each discovered actor for the system (step 1), we should ob-
serve all their dependencies (dependum) of point of view as dependee, look-
ing for use cases for the actor; For instance, some use cases can be associated
with the Meeting Participant actor observing their dependencies presented in
i*:

Guideline 1.1: the goal dependencies associated with the actor in i*
should be evaluated; usually, the most goals in i* can be mapped to
use cases goals; For instance, in the figure 2, the goal dependency
AttendsMeeting(p,m) between Meeting Initiator and Meeting Par-
ticipant can be mapped to the AttendsMeeting use case, which will
contain the several steps accomplished by Meeting Participant to at-
tends to the meeting.
Guideline 1.2: the resources dependencies associated with the actor
should be evaluated; the most important question in this situation is:
if an actor depends on another actor for obtaining of a resource(s),
which is the goal of the obtaining of that resource(s)? If there is a
more abstract goal, probably this goal will be candidate to be the
goal of the use case for the actor. For instance, observing the Meet-
ing Participant as Dependee, we have two resources dependencies
ExclusionDates(p) and PreferredDates(p). These resources can be
mapped to the DefineAvailDates use case for the MeetingParticipant
actor, which will contain the steps to define possible meeting sched-
uling dates. We understand that the main goal obtaining these re-
sources is the definition of available dates for the meeting by the
participants.
Guideline 1.3: the task dependencies associated with the actor
should be evaluated; the key question of this situation is: if an actor
depends on another actor in the accomplishment of a task, it should
be investigated if this task is involved in a group of tasks that aim at
a more abstract goal for the actor. Which would that aim be at?. For
instance, in the figure 3, the task dependency Organize Meeting as-
sociated with the Meeting Initiator actor, can be mapped for the use
case Organize Meeting for the Meeting Initiator actor, representing
the steps of the system used to organize a meeting.
Guideline 1.4: the sofgoal dependencies associated with the actor
should be evaluated; Typically, the sofgoal dependency in i* is a
non-functional requirement for the intended system. Thereby, a soft-

 257

goal do not represent a use case of the system but a non-functional
requirement associated with a use case of the system. For instance,
the softgoal Assured(AttendsMeeting(ip,m)) between Meeting Ini-
tiator and Important Participant actors can be mapped into a non
functional requirement associated with the use case AttendsMeeting.
This non-functional requirement indicates that it is necessary to as-
sure that the Important Participant attends to the meeting.
Guideline 1.5: consider i* model evolution to detect changes in the
dependency relationships between actors. These changes can repre-
sent new use cases for the system. For instance, initially (figure 2)
for the resource Agreement(m,p), the depender in the relationship is
the Meeting Initiator actor. In figure 6, we are now dealing with late
requirements, i.e. the software to be (Meeting Scheduler) was intro-
duced. Hence, the depender has changed to Meeting Scheduler ac-
tor, which represents a meeting scheduler system. This means that in
the illustration 6, the Meeting Scheduler actor depends on the Meet-
ingParticipant actor to agree with a date proposal for the meeting. In
contrast, in the manual process of meeting scheduling presented in
figure 2, who depends on an agreement in relation to a proposed
date for the meeting, is the Meeting Initiator actor. What is impor-
tant in this situation is to observe the objective of the goal with the
obtaining of the Agreement(m,p) resource. So, we can define a use
case Agreement, which will include several necessary steps by the
Meeting Participant to agree with the proposed date.

Guideline 2: to analyze the special situation, where an actor and their use
cases are discovered following the step 1 of the proposal, possesses depend-
encies in relation to an actor in i* that represents an intended software system
or part of it. These dependencies can generate use cases. For instance, the
goal dependency MeetingBeScheduled between Meeting Initiator and Meet-
ing Scheduler system in the figure 6, point out for the definition of the use
case ScheduleMeeting for the Meeting Initiator actor, which represents the
use of the system by the actor, describing the details of the meeting schedul-
ing process.
Guideline 3: to classify each use case and its main goal associate, in a level
of proposed goal (business, contextual or user goal). This classification aids
in the identification of possible new use cases. A business goal represents a
high level intention, related with business processes, that the organization or
user possesses in the context of the organizational environment. An example
could be the goal "organizing a meeting in the possible shortest time". A con-
text goal represents an alternative for the satisfaction of a business goal". An
example could be the goal, "meeting scheduling by software system". Fi-
nally, obtaining a user goal results in the direct discovery of a relevant func-
tionality and value for the organization actor using a software system. An ex-
ample could be the goal, "the meeting participant wish to attend the meeting"

 258

3º Proposal Step: Discovering and Describing Scenarios of Use Cases.
Guideline 1: to analyze each actor and their relationships in the Strategic Ra-
tionale (SR) model, to extract information that can lead to the description of
the use cases scenarios for the actor. For instance, let us observe the Strategic
Rationale (SR) Model in figure 3. From the Meeting Initiator actor point of
view, we verify that the Schedule Meeting task is decomposed into Ob-
tainAvailDates, FindSuitableSlot and ObtainAgreement. Since the software
system objective is to accomplish meeting scheduling, we could adopt that
these tasks are the necessary high-level steps to accomplish a meeting sched-
ule. Therefore, the use case called Schedule Meeting could be defined for the
Meeting Initiator actor. This use case could contain the steps (the primary
scenario description) regarding the need to obtain from each Meeting Partici-
pant, the available dates for a meeting (ObtainAvailDates); from of partici-
pants readiness to find the meeting dates that could be scheduled (Find-
SuitableSlot); and to obtain the participants agreement for a proposed meet-
ing date (ObtainAgreement).

In order to improve the comprehension about these guidelines, we have applied

them to the meeting scheduler problem. Recall figure 2 described a Strategic depend-
ency (SD) model for the meeting scheduler, which do not consider the existence of the
Meeting Scheduler software system. Additionally, we also consider in our case study
(see figure 6) an evolution of this early model, by considering the existence of the
actor representing the meeting scheduler software. We also consider the model in
figure 3, which represents the Strategic Rationale (SR) Model associated with the
Strategic Dependency (SD) model in the figure 5. These three models compose the
organizational models used to discover and describe use cases in UML for the Meet-
ing Scheduler system.

Following the steps proposed in the figure 5 and applying the appropriated guide-
lines, we have:

• Observing figure 6, we can find actors candidates for the use case devel-
opment. Following the defined guidelines in the 1st step of the proposal,
we verified that one of the analyzed actors does not follow guideline 2.
The Meeting Scheduler actor is a system, which is the software itself that
we aimed at to develop. Therefore, this i* actor cannot be considered as
use cases actor. The other i* actors are considered relevant because their
strategic dependencies refer to relevant aspects for the meeting scheduler
system (guideline 3) development. So, the list of candidates use cases ac-
tors includes: Meeting Initiator, Meeting Participant and Important
Participant. Better observing these candidates, we verify that Important
Participant is a type (relationship IS-A) of participant. According to
guideline 4 (1st step), we consider this actor a specialization of Meeting
Participant. Then we establish a generalization relationship among these
actors, in agreement with the defined notations in the Use cases diagrams
in UML [2].

 259

Figure 6. Strategic Dependency Model for the meeting scheduling

with computer-based scheduler.

Continuing in the use cases discovery from i* organizational models, in agreement
with the defined process in the figure 5, the next step is to discover and relate use
cases for each actor. Following the guidelines presented in the 2º Step (Discovering
Use Cases for the Actors) in our proposal, we can verify:

• For the Meeting Participant actor, observing this actor as Dependee, we

can indicate some use cases originated from the actors dependency rela-
tionships (guideline 1). Initially, we should observe the goals dependen-
cies (guideline 1.1) of the actor as Dependee. In figure 2, we verify the
goal AttendsMeeting(p,m), which represents the need of the meeting par-
ticipant actor to attend the meeting. This goal originates the use case At-
tendsMeeting. Several steps are necessary to achieve this goal. Typi-
cally, this is a user goal, considering the definition of objectives levels
proposed in the guideline 3. The fulfillment of the use case goal brings a
relevant result for Meeting Participant actor, allowing the same to attend
to the meeting. Usually, the description of the primary scenario (to be
accomplished later) for this use case, will present other users goals that
can originate new use cases for the system.

Continuing our analysis, we can observe in figure 2, associated with the
Meeting Participant (Dependee) actor, three resource dependencies: Ex-
clusionDates(p), PreferredDates(p) and Agreement(m,p). Following
guideline 1.2, we conclude that the main goal of obtaining of Agree-
ment(m,p) resource is an scheduled date agreement from each partici-

 260

pant. We could consider that in this agreement process, each participant
could agree with the proposed meeting date with certain schedule restric-
tions or duration time, for example. Still, the agreement could involve an
analysis of other possible dates. In other words, to obtain the scheduled
date agreement, firstly would involve several interactions steps between
the system and the Meeting Participant actor that could be defined in one
use case called Agreement for the Meeting Participant actor.

We also should analyze the resources dependencies ExclusionDates(p)
and PreferredDates(p) (figure 2). Using the guideline 1.2 we can observe
that the resources ExclusionDates(p), PreferredDates(p) are necessary to
obtain a more abstract goal that is related to the definition of the avail-
able dates by the Meeting Participant actor. This goal originates the use
case DefineAvailDates for the Meeting Participant actor.

• To find use cases candidates for the Meeting Initiator actor, we should

follow the same guidelines (2º Proposal Step) for Meeting Participant
actor. We have two dependencies associated with the Meeting Initiator
actor. In figure 2, the resource dependency ProposedDate(m) between
the actors Meeting Participant and Meeting Initiator, indicates that Meet-
ing Initiator should provide a proposed date for the meeting scheduling.
If we observe figure 6, we will notice that the dependency Proposed-
Date(m) was attributed to the Meeting Scheduler system. This resource
will be originated from an operation accomplished internally in the sys-
tem, with previously criteria definition and without interaction with the
Meeting Initiator actor. Therefore, a meeting date will be proposed by
the system, not being justified the definition of one use case for this pur-
pose (see guideline 1.2 and 2).

The other dependency associated with the Meeting Initiator actor is a
task dependency EnterDateRange(m) (figure 6). Following the guideline
1.3, we can consider that the task of supplying a date range for the meet-
ing scheduling is quite simple, because it just seeks to supply informa-
tion defined previously for the Meeting Initiator actor. Thereby, proba-
bly the task EnterDateRange(m) will be a step in the description of the
use case related with a Meeting Schedule goal. So, this dependency does
not directly originate a use case to the Meeting Initiator.

As there are no more dependencies for the Meeting Initiator as De-
pendee, the guideline 2 should be followed. Observing figure 6, we visu-
alize the goal dependency MeetingBeScheduled between Meeting Initia-
tor and Meeting Scheduler (which is the software system). For that, it is
clear the interaction needing between the Meeting Initiator actor and the
system for the accomplishment of the meeting scheduling. Therefore, we
can define the use case Schedule Meeting that represents the use of the

 261

system by the Meeting Initiator actor. In this use case, we describe the
details of the meeting schedule process.

Thereby, after we have used the proposed guidelines (2º Proposal Step), we have

discovered the use case ScheduleMeeting for the Meeting Initiator actor and the use
cases DefineAvailDates, AttendsMeeting, and Agreement for the Meeting Partici-
pant actor. Therefore, we can begin the description of the primary and secondary
scenarios and the use cases relationships (3º Proposal Step). At this point, the Strate-
gic Dependencies (SD) models and mainly the Strategic Rationale (SR) model, are
used as source of information for the scenarios description and the use cases relation-
ships.

For example, the use case Schedule Meeting discovered for the Meeting Initiator
actor represents the use of the system by Meeting Initiator to accomplish the meeting
scheduling. This use case should contain all the necessary steps to schedule a meeting
that begins when the Meeting Initiator supplies information to the system such as the
date range to schedule a meeting. Based on the supplied dates range by Meeting Initia-
tor, the system must find available dates for all the participants for the meeting as well
as elaborate a consensus dates list within which will be chosen a date to be proposed
and agreed. This process must result in a consensus-scheduled date for the meeting
and later in the confirmation of this date for all the participants. Thus, for the use case
Schedule Meeting, we could have the primary scenario with the following steps:

Use Case: Schedule Meeting
Actor: Meeting Initiator
Use Case Goal: Schedule a Meeting
Primary Scenario:
1. The use case begins with the Meeting Initiator actor supplying the sys-

tem with a date range for the meeting;
2. The system should request from participants (Meeting Participant) an

available date list for the meeting based on the proposed date range by
the Meeting Initiator; (the use case DefineAvailDates is included <<in-
clude>> in this step).

3. The system should find a consensus dates list, filtering information ob-
serving the available dates sent by the participants and the proposed date
range sent by Meeting Initiator;

4. Based on the consensus list, the system defines a date to be scheduled for
the meeting and it accomplishes the participants consultation;

5. The Meeting Initiator expects that the system requests the agreement for
a scheduled meeting date, containing the meeting scheduling process
when all participants agree with the date. (The use case Agreement is in-
cluded << include >> in this step).

The information for the description of this use case has as main source the Strate-

gic Rationale (SR) Model presented in the figure 3. The base information for the step

 262

1 in this use case, is extracted from the task dependency EnterDateRange, establishing
the need that Meeting Initiator supplies date range, within which should take place the
meeting scheduling. We considered that the process of establishing a date range is
quite simple, not justifying the creation of another use case for that purpose.

Steps 2 and 3 are extracted from the decompositions of the task Schedule Meeting
(associated with Meeting Scheduler in the figure 3). Step 2 is extracted from the task
ObtainAvailDates analysis. The use case DefineAvailDates is included << include >>
because it represents the necessary steps for the acquisition of the available dates list
by participants. Step 3 generates the observation of the goal FindAgreeableSlot and
the task MergeAvailDates. This step represents the internal actions of the system to
define a list of the consensus dates for the meeting scheduling.

Step 4, is extracted from observation of the resource dependency ProposedDate in
relation to the task Schedule Meeting (figure 3). It is assumed, given the defined in-
formation in the models of the figures 2 and 6, that the proposed date should be de-
fined by the system, previously using some established and defined criterion by the
Meeting Initiator, taking as base for example, priorities of organization meetings. Step
5, derives from the system need to obtain the agreement for the chosen date for the
meeting scheduling. This information arises from the observation of the task ObtainA-
greement, associated with the resource Agreement(m,p) for Meeting Participant (fig-
ure 3). Previously, in the use case discovery for the system, we assumed that to obtain
the goal that each participant agree with the proposed date, it was necessary the ac-
complishment of some interaction steps between each participant and the Meeting
Scheduler. These steps should be described in the use case Agreement. For this rea-
son, this use case is included <include> in the step 5.

We can describe the others use cases in a similar way, adopting processes and
guidelines provided in this case study.

After we have applied the proposed guidelines to this case study, we can define, as
described in the figure 7, a version of the use cases diagram in UML for the Meeting
Scheduler system. The descriptions of the discovered use cases could still be modified
or complemented, as new relationships are found. Another important aspect is that the
development of other use cases depends on the requirement engineers’ experience.
However, modeling of this nature can vary, it aims to facilitate the understanding as
well as to establish an agreement between customers and developers in the system
requirements definition.

Figure 7.Use Cases Diagram for the Meeting Scheduler system.

Meeting
Initiator

Meeting
Participant

Schedule
Meeting

<<include>>

Important
Participant

<<generalization>>

<<include>>
Agreement Attends

Meeting
DefineAvailDates

 263

 Thereby, using the i* organizational models and following the proposed guide-

lines, we can extract a useful information to develop use cases. As indicated previ-
ously, the use cases discovery and description can be improved starting from a more
detailed observation of the organizational models as well as of improvement of the
proposed heuristics in this work. However, it is important to notice that the proposal
presented in this paper is more complete and systematic than a previous proposal in
[24]. The main evolution is concerned with the use of goal oriented analysis how the
guide technique to mapping i* to use cases. Our last version of the proposed guide-
lines help Requirements Engineers to discover goals associated with use cases consid-
ering the goals, resources, soft-goals and tasks in i* of the view point of how these
elements can represent or be associated with goals of the intended software system.

Finally, we have also consider to discover new use cases, the dependences in the
SD model between i* actors and a specific actor that represent an intended software
system or part of it. In the next section, we present the final considerations of this
paper.

5. Conclusion

In this paper we presented some heuristics seeking to show the viability of
integrating organizational models developed using the i* framework with Use Cases in
UML. Both techniques were described and the proposed guidelines were applied
partially to a meeting scheduler system case study. Starting from the case study it was
possible to observe that the existent information in the strategic dependency model as
well as in the strategic rationale model can be used as base for the use cases develop-
ment. Besides, it is enable that the requirement engineers, starting from a more de-
tailed observation of the organizational models, choose the best alternative for the
software development as well as concentrate in the use cases that really fulfils the
organizational goals. In the traditional development, use cases and scenarios do not
consider in an effective way, motivations, intentions and alternatives for the systems
development. Now, the use of organizational models can assist these activities.

Using our proposal that integrates Organizational Models and Use Cases, some
important issues such as how the system fulfils the organization goals, why it is neces-
sary, what are the possible alternatives, what are the implications to the involved parts,
can be better treated and proposed solutions incorporated into the software system
development.

Some related works include the proposal of requirements-driven development pre-
sented in the Tropos framework [6] [19] and the proposal of the i* and pUML dia-
grams integration [1]. These works argue that organizational models are fundamental
to develop a more reliable software, which can satisfy the real needs of users and
organizations. Some of the future works include:

• Improvement of the proposed guidelines described in this work. The main

concerns are: (i) to describe more systematic guidelines, that can aid re-
quirement engineers to relate non-functional requirements [8], which can be
derived from sofgoals dependencies in i*, with functional requirements of the

 264

system, described through use cases in UML; (ii) to incorporate in the inte-
gration/mapping process of the i* and Use cases, the structuring mechanisms
of the actors in the i* (agent, role and position).

• Study and analyze of the Tropos framework [6] [7] [19] seeking to detect so-
lutions presented in that project, which can contribute and improve our pro-
posal;

• To extend our proposal to other scenario-based techniques presented in [17]
and in CREWS project [22] [23];

• Study other goal-oriented modeling approaches as a way of scenario discov-
ery and description [11] [21] [23] [28];

• Definition of heuristics that aids requirement engineers to elaborate more ef-
fective i* organizational models, having the scenarios development to elicit,
analyze and document system requirements;

References

[1] Alencar, F., Castro, J., Cysneiros, G., Mylopoulos, J., “From Early Requirements Modeled

by i* Technique to Later Requirements Modeled in Precise UML”, In Proceedings of the
“III Workshop de Engenharia de Requisitos”, pp 92-108, Rio de Janeiro, (2000).

[2] Booch, G., Jacobson, I., Rumbaugh, J., “The Unified Modeling Language User Guide” ,
Addison-Wesley (1999).

[3] Brooks, Frederick P., "No silver bullet; essence and accidents of software engineering",
Computer, Vol. 20, No. 4, IEEE, pp. 10-19, April, (1987).

[4] Bubenko, J. A., Extending The Scope of Information Modeling, Proc. 4th Int. Workshop on
the Deductive Approach to Information Systems and DataBases, Lloret-Costa Brava,
Catalonia, Sept. 20-22, 1993, pp73-98.

[5] Bubenko , J, A., Kirikowa, M., “Worlds” in Requirements Acquisition and Modeling,
Sweden, (1994).

[6] Castro, J., Kolp, M. and Mylopoulos, J., Developing Agent-Oriented Information Systems
for the Enterprise, Proceedings of the Second International Conference on Enterprise In-
formation Systems (ICEIS00), Stafford, UK, July, (2000).

[7] Castro, Jaelson F., Kolp, M., Mylopoulos, J., A Requirements-Driven Development Meth-
odology In: CAISE’01, The 13Th Conference on Advanced Information Systems Engineer-
ing, 2001, Interlaken, Suiça. Proceedings of the 13th Conference on Advanced Information
Systems Engineering (in Press). Heildelberg, Alemanha: Springer Lecture Notes in Com-
puter Science, 2001.

[8] Chung, L., Nixon, B.A.,Yu, E., Mylopoulos, J., Non-Functional Requirements in Software
Engineering (Monograph), Kluwer Academic Publishers, 472 pp, (2000).

[9] Clarke, Edmund M., Jeanette M. Wing et al. Formal Methods: State of the art and future
directions. ACM Computing Surveys n. 4, vol. 28. 1996.

[10] Cockburn, A., Writing Effective Use Cases, (Pre-Pub. Draft #3), Humans and Technology,
Addison-Wesley, (2000).

[11] Dardene,A., Lamsweerde, V., Fikas, S., Goal-Directed Requirements Acquisition. Science
of Computer Programming, 20, pp. 3-50, 1993.

[12] D'Souza , Desmond F., A.C. Wills, Objects, Components and Frameworks with UML:
The Catalysis Approach, Addison-Wesley, November, (1998).

[13] DeMarco, T., Structured Analysis and System Specification, Englewood Cliffs, New
Jersey: Prentice-Hall, 1979.

 265

[14] Eriksson, Hans-Erik., Penker, Magnus., Business Modeling with UML: business patterns a
work, John Wiley & Sons, 2000.

[15] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software Development Process,
Addison-Wesley (1999).

[16] Jacobson, I., Object Oriented Software Engineering: A Use Case Driven Approach, Addi-
son-Wesley (1995).

[17] Leite, J.C.S.P, Rossi, G., Balaguer, F., Maiorana, V., Enhancing a requirements baseline
with scenarios. In Proceedings of the Third IEEE International Symposium on Require-
ments Engineering – RE97, pages 44-53. IEEE Computer Society Press, January, 1997.

[18] Mylopoulos, J., Chung, L., and Yu, E., “From Object-Oriented to Goal-Oriented Re-
quirements Analysis,” Communications of the ACM, 42(1), pp. 31-37. January 1999.

[19] Mylopoulos, J., Castro, J., “Tropos: A Framework for Requirements-Driven Software
Development” , Brinkkemper, J. and Solvberh, A. (eds), Information Systems Engineering:
State of Art and Research Themes, Lectures Notes in Computer Science, Springer-Verlag,
June 2000.

[20] Mylopoulos, J., Chung, L., Wang, H.Q. , Liao, S., Yu, E., `Extending Object-Oriented
Analysis to Explore Alternatives' IEEE Software.

[21] Potts, C., Fitness for Use: the System Quality that Matters Most, Proc. Third Int’l Work-
shop Requirements Engineering: Foundations of Software Quality REFSQ’97, pp. 15-28,
Barcelona, June, 1997.

[22] Ralyté, Jolita., Rolland, C., Plihon, V., Method Enhancement With Scenario Based Tech-
niques, To appear in Proceedings of CAISE 99, 11th Conference on Advanced Information
Systems Enguneering Heidelberg, Germany, June 14-18, 1999, (CREWS Report Series 99-10).
[23] Rolland, C., Souveyet, C., Achour, C. B., Guiding Goal Modeling Using Scenarios, IEE
Transactions on Software Engineering, Vol 24, No 12, Special Issue on Scenario Management,
December, 1998.
[24] Santander, V. F. A., Castro, J. B., Desenvolvendo Use Cases a Partir de Modelagem
Organizacional, III Workshop de Engenharia de Requisitos (WER) , Rio de Janeiro, 13-14 de
Julho, 2000.
[25] Schneider, G., Winters, J. P., Applying Use Cases: a practical guide, Addison Wesley,
(1998).
[26] Sommerville, Ian., Peter Sawyer, Requirements Engineering: A good practice guide, John
Wiley & Sons, 1997, ISBN: 0 471 97444 7.
[27] Yu, Eric, Modelling Strategic Relationships for Process Reengineering, Phd Thesis, Uni-
versity of Toronto, (1995).
[28] Yu, E., “Why Agent-Oriented Requirements Engineering”, Proc. Third International Wok-
shop Requirements Engineering: Foundations of Software Quality REFSQ’97, pp 171-183,
Barcelona, June, 1997.

	Universidade Federal de Pernambuco – Centro de Informática

