
Towards a Goal-Oriented Requirements Methodology
Based on the Separation of Concerns Principle

Geórgia Maria C. de Sousa and Jaelson Brelaz de Castro

Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851, CEP: 50.732-970, Recife – PE – Brasil

{gmcs,jbc}@cin.ufpe.br

Abstract. One of the most important principles in Software Engineering is the
separation of concerns. When this principle is correctly applied, it helps to
promote comprehensibility, maintainability and reusability of software system
artifacts. However, often, crosscutting requirements are specified in a scattered
and tangled fashion. Therefore, in order to produce better requirements
specifications, this paper presents a Goal-oriented REquirements Methodology
founded on the Separation of Concerns principle. We named this methodology
GREMSoC. It intends to better manipulate with crosscutting requirements in
Requirements Engineering process providing a way to represent crosscutting
requirements apart from the requirements they affect and to specify the
composition between them in a noninvasive way. A case study of an Internet
Banking System illustrates the use of this methodology.

1. Introduction

The growing complexity of software and the demand for rapid development have
increased the importance of reusability, maintainability and comprehensibility of
software system artifacts. In order to achieve these qualities, some Software
Engineering principles can be applied throughout the software development process,
from requirements to implementation: modularity, abstraction, rigor and formality,
separation of concerns and anticipation of change [1].

Separation of concerns (SoC) means dealing with different issues of a problem
individually so that it is possible to concentrate on each one separately [40]. The main
advantages of applying this principle are: (i) decrease the complexity of the software
development by concentrating on different issues separately; (ii) support division of
efforts and separation of responsibilities [1]; and (iii) improve the modularity of
software systems artifacts. Furthermore, when the SoC principle is correctly applied,
the software artifacts tend to be cohesive and loosely coupled. The consequences of
this are manifold: an artifact can be understood in isolation; the software artifacts can
be reused; and changes to one artifact have a limited effect on others artifacts [2].

Nevertheless, due to the intrinsic relationship between some requirements,
especially between non-functional and functional ones, sometimes references to the
specification of one requirement is scattered across multiple artifacts (scattering) and
one requirement artifact contains references to multiple requirements (tangling). For
instance, each non-functional requirement (NFR) is normally repeated in every use

case that the NFR affects [3,4]. This kind of representation makes it difficult to keep
all the requirements updated and in the correct place. Moreover, the scattering and
tangling in requirements artifacts makes it difficult not only the requirements
evolution and maintenance, but also the requirements reuse and comprehension [5].

Therefore, in order to improve reusability, maintainability and comprehensibility
of requirements specifications, we advocate that requirements should be represented
according to the separation of concerns principle.

This work describes the first initiative towards a Goal-oriented REquirements
Methodology founded on the SoC principle. We named this methodology GREMSoC.
It provides a way to represent crosscutting requirements1 apart from the requirements
they affect and to specify the composition between them in a noninvasive way.

This work is organized as follows. In Section 2, we briefly present the background
of our approach, describing the main concepts used in Requirements Engineering
area. Section 3 presents the GREMSoC methodology that is illustrated by a case study
in Section 4. We review related work and compare them with our proposal in Section
5. Finally, in Section 6, we present our conclusions and future work.

2. Background

This section presents key concepts used in our methodology, from goals and
requirements to characteristics and approaches to deal with functional and non-
functional requirements.

2.1 Goals and Requirements

A goal is a high-level objective that the system under consideration should achieve
[6]. In turn, a requirement is a description of a system service or constraint needed by
a user to achieve a goal [7]. Thus, a requirement specifies how a goal should be
accomplished by a proposed system [8]. Goals whose satisfaction cannot be
established in a clear-cut sense are named softgoals2 [9].

Requirements Engineering (RE) is the branch of Software Engineering concerned
with the identification of the goals to be achieved by the system, the
operationalizations of such goals into requirements, and the assignment of
responsibilities for the resulting requirements to agents such as humans, devices, and
software [10,11]. The RE process generally includes the following intertwined
activities: domain analysis, elicitation, analysis and negotiation, specification and
validation.

Besides the services and the quality restrictions that a system should provide, a
requirements specification also should include the application domain information
and the organizational context where the system will be applied [13]. From this point
of view, we can identify three types of requirements: functional, non-functional and
organizational requirements. It is important to distinguish the types of requirements

1 A crosscutting requirement is the one that affects more than one requirement in the system
2 To indicate that a softgoal satisfying is accomplished within acceptable limits, from here on,

we will use the term to satisfice [12] rather than the term to satisfy with softgoals.

since they have different characteristics and therefore, by means of this distinction,
we can choose the adequate methods and techniques that should be used during
Requirements Engineering process.

The traditional approaches used in software development are driven by functional
requirements and their focus is on achieving the desired functionality of the system.
However, a broader view of software development is one that goes beyond the
description of system functionalities, also including organizational and non-functional
requirements in a requirements specification [13].

2.2 Functional Requirements

Functional requirements (FRs) capture the intended behavior of the system in terms of
services, tasks or functions the system is required to perform [14].

This kind of requirement is generally specified by means of inputs, processing,
outputs, controls, exceptions and entities. The more common techniques for
specifying functional requirements are: use cases, scenarios, data flow diagrams and
state transition diagrams. Currently, use case [15] is the most used practice to capture
and represent functional requirements, especially in object-oriented software
development.

A use case describes a set of interactions between actors and the system necessary
to deliver the service that satisfies the user goal. It also includes possible alternative
sequences that may satisfy the goal, as well as sequences that may lead to failure in
completing the service because of exceptional behavior, error handling, etc [16].

2.3 Non-Functional Requirements

Non-functional requirements (NFRs) are requirements that impose restrictions on the
product being developed (product requirements), on the development process (process
requirements), or they specify external constrains that the product/process must meet
(external requirements) [17]. These constraints usually narrow the choices for
constructing a solution to the problem.

The distinction between functional and non-functional requirements may cause
confusion. Some NFRs characteristics are used to distinguish them from functional
requirements:
• NFRs are focused on how the software must perform something instead of focused

on what the software must do [18];
• NFRs “cross-cut” software functionality [19];
• NFRs express constraints or conditions that need to be satisfied by functional

requirements and/or design solutions [9]
• Different from functional requirements that can fail or succeed, NFRs rarely can be

completely met: their satisfying is accomplished within acceptable limits [12].
Most approaches to systematically deal with non-functional requirements focus on

specific NFRs such as security [20] and performance [21]. In turn, the NFR
Framework [9,12,22] can be applied to a variety of non-functional requirements. In
this approach, NFRs are treated as softgoals to be satisficed by means of
operationalizations (operations, data representations, architectural decisions, etc).

Although non-functional requirements are crucial for system development success,
they are seldom analyzed and, even when they are considered, they are generally
poorly documented:
1. They are often stated in requirements specifications just as abstract, vague and

informal declarations such as: “the system should have good security, performance,
confidentiality, usability”. This kind of declaration makes it difficult to analyze and
to verify how to meet the non-functional requirement. Moreover, it may be
ambiguous since different interpretations about the real meaning of the NFR are
possible. For those reasons, we advocate that abstract declarations of NFRs need to
be broken down into smaller components and then converted into
operationalizations that together contribute for achieving these NFRs.

2. Normally, non-functional requirements are not documented in a specific artifact.
On the contrary, they are declared repeatedly in each functional artifact affected by
them. This fact contradicts the separation of concerns principle and, consequently,
the requirements comprehension, evolution and reuse are damaged.

3. The GREMSoC Methodology

The GREMSoC methodology purpose is to promote an approach to improve
reusability, maintainability and comprehensibility of requirements specifications by
means of the separation of concerns principle. The outline of GREMSoC can be
visualized in Fig. 1.

Fig. 1. Outline diagram of GREMSoC Methodology

GREMSoC intends to better manipulate with crosscutting requirements in analysis
and documentation activities since, in the most part of current approaches, these
requirements are specified in a scattered and tangled fashion. This methodology

separately considers both the analysis and the specification of functional and non-
functional requirements. Moreover, the relationships between crosscutting and non-
crosscutting requirements are documented apart.

In general, every SoC approach includes the following activities: identify concerns;
separate concerns; represent separated concerns; and compose concerns [23]. Since
our methodology is founded on the separation of concerns principle, it is interesting to
show the correspondence between the common activities of SoC approaches and the
GREMSoC activities. Table 1 presents this correspondence and furthermore, it
presents the selected techniques for each proposed activity. It is worth mentioning
that, since GREMSoC is a goal-oriented methodology, all selected techniques are
goal-oriented.

Table 1. Relating the common activities of SoC approaches with the GREMSoC activities and
their selected techniques/representations

SoC Activity GREMSoC Activity Selected Technique/ Representation
CONCERNS

IDENTIFICATION
Goal-Based Requirements
Elicitaion 

Functional Requirements
Analysis Use Cases with Goals [16, 24]

CONCERNS
SEPARATION Non-Functional Requirements

Analysis NFR Framework [9, 12, 22]

Functional Requirements
Specification Use Case Specification [25]

CONCERNS
REPRESENTATION Non-Functional Requirements

Specification
Softgoal Interdependencies Graph [12]
and Operationalization Specification

Crosscutting Identification  CONCERNS
COMPOSITION Crosscutting Specification Composition Table

A concern is a vague declaration, generally corresponding to a high-level goal for

the system being developed [17]. Hence, in our approach, the identification of
concerns is related to goal identification. This activity is facilitated when stakeholders
explicitly state the goals or they are declared in preliminary material available.
Nevertheless, most often, they are implicit and thus, the goal elicitation has to be
undertaken [6]. Although this activity is beyond the scope of our work, we will cite
some ways to accomplish it:
• Searching for intentional keywords in the preliminary documents provided,

interview transcripts, etc. [10].
• Analyzing the current system and, from this analysis, to list the goals that

solve/reduce the problems and deficiencies found in the current system [6].
The following subsections outline the approaches adopted by GREMSoC to

separate, represent and compose concerns.

3.1 Functional Analysis and Specification

We adopt the Cockburn’s approach [16,24] for the functional analysis due to two
reasons: it is goal-oriented and use-case driven. The steps of this approach are shown
as a sequence of activities in Fig. 2.

Fig. 2. Steps of Cockburn’s Approach

The first step of Cockburn’s approach is identifying the actors and their functional
goals that the system will support. A use-case specifies how a functional goal will be
reached. Eventually it also specifies the fail conditions to reach the goal and how
these conditions will be handled [24]. Then, the next step is specifying the main
success scenario for each use cases that will accomplish a user functional goal. After
that, it will be necessary to identify the failure conditions that could occur in the main
success scenarios, without considering how the system must handle them all. The last
step is specifying how the system is supposed to respond to each failure. This step can
reveal a new actor or a new goal that needs to be supported.

Table 2. Basic Use Case Template (adapted from [25])

USE CASE # N - <name >
GOAL IN CONTEXT <a longer statement of the goal, if needed>

PRECONDITIONS <What we expect is already the state of the world>

PRIMARY ACTOR <A role name for the primary actor, or description>

MAIN SUCCESS SCENARIO
 STEP ACTION
<step> <action description>

EXTENSIONS

 STEP BRANCHING ACTION
<step> <condition causing branching> : <action>

SUB-VARIATIONS

 STEP BRANCHING ACTION
<step> <list of variations>

Although use cases are part of UML [27], there is no standard template for

specifying them. In this work, we use a simplified version of Cockburn’s B asic Use-
Case Template [25] (see Table 2).

3.2 Non-Functional Analysis and Specification

The NFR Framework [9,12,22] was chosen for the non-functional analysis because it
deals with NFRs in a systematic way. In this approach, NFR are treated as softgoals to
be achieved, not in an absolute sense, but in a sufficient or satisfactory way. The NFR
softgoals and their interdependencies are graphically represented in a Softgoal
Interdependency Graph (SIG).

In the NFR Framework, abstract and subjective NFRs (e.g. security, performance)
should be represented at the top of the SIG. Then, each one should be iteratively
refined into more specific softgoals. At some point, when the NFRs softgoals have
been sufficiently refined, it will be possible to operationalize these softgoals, i.e.
providing more concrete and precise mechanisms (e.g. operations, processes, data
representations, architectural decisions, etc.) to achieve it. The next step is choosing
which operationalizations the system will adopt. During refinement and
operationalization steps, contributions and possible conflicts should be established,
defining the impact of softgoals to each other and identifying priorities (indicated by
“!” or “!!”).

Fig. 3. GREMSoC approach to analyze and specify NFRs

Fig. 3 exhibits the sequence of activities adopted by the GREMSoC approach to
analyze and specify non-functional requirements. All the activities are the same of
NFR Framework, except the last one: specify operations. This activity was added in
order to provide a detailed description of each selected operationalization (except
architectural decisions) that should be done in a specific template (see Table 3).

Table 3. Operationalization Template (adapted from [25])

OPERATIONALIZATION # N - <NAME >

NFR SOFTGOAL <the softgoal hierarchy to which this operationalization
contributes to satisfice>

GOAL IN CONTEXT <a longer statement of the goal, if needed>

PRECONDITIONS <what we expect is already the state of the world>

PRIMARY ACTOR <a role name or description for the primary actor, if needed>

MAIN SUCCESS SCENARIO
 STEP ACTION
<step > <action description>

EXTENSIONS
 STEP BRANCHING ACTION
<step > <condition causing branching> : <action>

SUB-VARIATIONS
 STEP BRANCHING ACTION
<step > <list of variations>

3.3 Crosscutting Requirements Identification and Composition

At this point of the approach, the requirements have already been individually
represented. However, there are requirements that need to be applied in some point of
another requirements specification. They are called crosscutting requirements.

According to the separation of concerns principle, the composition between
crosscutting and non-crosscutting requirements should be noninvasive. Therefore,
besides a unit to encapsulate each concern, any SoC mechanism must also provide a
composition mechanism apart to permit the integration of separate concerns and to
give them some coherence [23]. This stage of GREMSoC approach aims to address
this issue.

Firstly, it is necessary to identify among the requirements which of them are
crosscutting. A requirement is crosscutting if it affects other requirements in such a
way that the crosscutting requirement needs to be applied in some point of other
requirements specification.

The next step is specifying how each crosscutting requirement affects the
requirements it transverses. In order to do that, we provide a composition table (see
Table 4). This table should be specified for each crosscutting requirement to indicate:
(i) which artifacts it will affect (first column); (ii); when the composition should be
done (second column); (iii) in which point of the artifact the crosscutting should be
applied (fourth column); and (iv) how the composition should be done (third column).

To determine how a crosscutting requirement is applied in a particular point that it
affects, we use the following composition rule operators [26]:

• Overlap: indicates that the crosscutting requirement should be applied before or
after the step of the scenario it transverses;

• Override: indicates that the crosscutting requirement superposes the scenario’s
step it transverses. This means that the behaviour described by the crosscutting
requirement substitutes the behaviour defined by the step;

The crosscutting requirement should be identified at the table’s top. We stipulate
that the identification of the requirement artifacts should follow this syntax: {OP|
UC} #N <name>. OP indicates that the crosscutting requirement is an
operationalization; UC indicates that it is a use-case. #N represents the artifacts
number and <name> its name.

Table 4. Composition Table

CROSSCUTTING REQUIREMENT: {OP| UC} # N <NAME>
AFFECTED

REQUIREMENT
CONDITION
(OPTIONAL) COMPOSITION RULE OPERATOR AFFECTED

POINT

{OP| UC} # N <name> condition of the
composition3

{overlap.after | overlap.before |
override}

Step of the
Scenario

4. Applying the GREMSoC Methodology

We apply the GREMSoC methodology to an Internet Banking System, which is a
well-known application domain whose success rests on the adequate treatment of non-
functional requirements [28]. In the sequel, we will outline how the GREMSoC
methodology can be used in the requirements analysis and documentation activities.

4.1 Functional Analysis and Specification

The main functional goal of an Internet Banking System is to allow bank clients to
perform banking transactions through the Internet such as query transactions (account
balance and account statement) and financial transactions (transfers, bill payments,
etc.). Table 5 and Table 6 present the specification of two functional requirements.

Table 5. Use-Case Specification for View Account Statement

USE CASE # 01 - VIEW ACCOUNT STATEMENT
GOAL IN CONTEXT Visualize debits and credits’ historic of an account in a p eriod

PRECONDITIONS The account should have been identified

PRIMARY ACTOR Bank Client

MAIN SUCCESS SCENARIO
STEP ACTION

1 The actor informs the period

2 The system exhibits a list of debits and credits and its respective dates,
descriptions and document numbers.

3 The default condition is always

EXTENSIONS
STEP BRANCHING ACTION

1a
The actor informs an invalid period:
1a1. An error message is exhibited
1a2. The user repeat step 1

SUB-VARIATIONS

STEP BRANCHING ACTION

1a

Invalid Period:
Period exceed 120 days;
The initial date is subsequent to the final date;
The initial date or the final date is subsequent to today’s date.

Table 6. Use-Case Specification for Transfer of Funds

USE CASE # 02 – TRANSFER OF FUNDS
GOAL IN CONTEXT To transfer funds from an user account to another account

PRECONDITIONS The bank client account should have been identified

PRIMARY ACTOR Bank Client (user)

MAIN SUCCESS SCENARIO
STEP ACTION

1 The user informs the value of the transfer, the target account and branch number.

2 The user confirm the informed data

3 The system debits the value from the user account and credits in the target account

4 A confirmation of the transaction success is exhibited

EXTENSIONS
 STEP BRANCHING ACTION

1a
Target account does not exist:

1a1. The system exhibits an error message
1a2. The user repeat step 1 or cancel the operation

3a
The user account does not have enough funds:

3a1. The system exhibits an error message
3a2. The user repeat step 1 or cancel the operation

4.2 Non-Functional Analysis and Specification

One of the most important non-functional requirements when building information
systems to be used on the Internet is security, i.e., protecting transactions against
unauthorized access. Fig. 4 exhibits the successive decompositions and
operationalizations to satisfice the security softgoal.

Fig. 4. Softgoal Interdependency Graph for Security [Transactions] Softgoal

Firstly, the security softgoal was decomposed in three others ones: Confidentiality,
Integrity and Availability. Integrity, in turn, was subdivided in Completeness and
Accuracy. At this point, the security softgoal have been sufficiently refined and then it
will be possible to operationalize it (i.e. choose specific solutions for satisficing the
offsprings of the security softgoal).

Taking the Confidentiality softgoal, two operationalizations can contribute
positively to its satisficing: Data Encryption and Access Authorization. The former
ensures that the information can only be deciphered by the system; the latter ensures
that users are in fact whom they claim to be.

Access Authorization, in turn, can be decomposed in two others operationalizing
softgoals: Identification and Authentication (Single for query transactions or Multiple
for financial transactions). The Check Internet Password operationalization satisfices
the Single Authentication softgoal. This operationalization in conjunction with Other
Authentication softgoal satisfices Multi Authentication softgoal. Lastly, the Other
Authentication softgoal can be satisficed either by Check Customer Personal Data or
else by Check Additional Password. However, the Other Authentication satisficing
contributes negatively for user-friendly access concern.

The same reasoning was applied for the Accuracy and Availability softgoals.
Considering that the possible solutions for the system are sufficiently detailed and

that no other alternatives need to be analyzed, it is appropriate to select among

alternatives (bottom nodes of a SIG), accepting (v) or rejecting (x) each of them. In
our case study, the only rejected operationalizing softgoal was Check Additional
Password. The reason for that is represented in a claim softgoal being related to the
client difficulty to memorize many passwords.

Table 7 exhibits the specification for Check Internet Password operationalization.

Table 7. Specification for Check Internet Password Operationalization

OPERATIONALIZATION # 01 – CHECK INTERNET PASSWORD

NFR SOFTGOAL SECURITY => Confidentiality => Access Authorization =>
Authentication => Single Authentication

GOAL IN CONTEXT Check the actor identity by means of a request for his account’s
Internet Password

PRECONDITIONS The bank client account should have been identified

PRIMARY ACTOR The bank client

MAIN SUCCESS SCENARIO
STEP ACTION

1 The actor informs the Internet Password

2 The system compares the informed Internet Password with the account’s
Internet Password

3 An Ok status is returned

EXTENSIONS
STEP BRANCHING ACTION

2a The informed Internet Password is wrong (more than three times):
2a1.The Internet Password is blocked and the goal fails

2b
The informed Internet Password is wrong (less than three times):

2b1. An error message is exhibited
2b2. The user repeat step 1 or cancel the operation

SUB-VARIATIONS
STEP BRANCHING ACTION

1 The actor can inform the Internet Password by means of:
Numeric Keyboard; Virtual Keyboard

4.3 Crosscutting Requirements Identification and Composition

We have identified the following crosscutting requirements: Limit Transactions
Value, Data Encryption, Identification, Check Internet Password and Check
Customer Personal Data.

To exemplify how we identify crosscutting requirements, take in particular the
Check Internet Password Request operationalization: it needs to be applied in two
use-cases View Account Statement and Transfer of Funds, and then it is a crosscutting
requirement. In common approaches, the composition between these artifacts would
be done in an invasive way, i.e. there should be a reference to the Check Internet
Password in both use-cases View Account Statement and Transfer of Funds. This kind
of approach makes it difficult to understand, to maintain and to reuse those use-cases.

Note that, using this kind of approach, View Account Statement and Transfer of Funds
use-cases cannot be understood in isolation since to do this it is also necessary to
understand the Check Internet Password operationalization. Moreover, if the Internet
Password Request is no longer necessary, for example, then all artifacts affected by it
should be altered. Also, imagine, for example, that another system requires the same
functionality provided by the View Account Statement use-case, but it does not need
the Internet Password Request. In this case, the complete reuse of this use case will
not be possible since the use case is tangled with Check Internet Password
crosscutting requirement.

Our approach intends to address these issues. As was explained before (Section
3.3), in GREMSoC methodology the composition between a crosscutting requirement
and the requirements artifacts it affects should be specified in a table apart. This fact
helps to promote comprehensibility, maintainability and reusability of requirements
artifacts. Furthermore, since the composition is done only in one artifact, it is easy to
determine the range of artifacts that a crosscutting requirement affects and how it
affects each one of them.

Table 8 illustrates the specification for the composition between the Check Internet
Password operationalization and the artifacts it affects, according to our approach.
This specification indicates that the Check Internet Password operationalization
should be applied after the step 2 in View Account Statement use-case; and before the
step 2 in Transfer of Funds use-case.

Table 8. Specification for the Composition of Check Internet Password

CROSSCUTTING REQ: OP #01 – CHECK INTERNET PASSWORD

AFFECTED REQUIREMENT CONDITION COMPOSITION RULE
OPERATOR

AFFECTED
POINT

UC #01 - View Account Statement always overlap.before Step 2
UC #02 - Transfer of Funds always overlap.after Step 2

5. Related Works

There are two kinds of related works to our proposal: (i) works concerned with
functional and non-functional requirements and their relationships; and (ii) research
related to SoC approaches in Requirements Engineering process. Both of them are
outlined in the following paragraphs.

5.1 Approaches to Integrate Functional and Non-Functional Requirements

An interesting strategy for dealing with non-functional requirements and integrating
them into Entity-Relationship and Object-Oriented conceptual models was presented
in [29,30]. In this strategy, the software development process is carried out through
two independent cycles, one regarding the functional requirements of the system and
the other the non-functional requirements. The integration of these both views is done

by representing the operationalizations found in the non-functional view inside of
functional models such as entity-relationship and class diagrams.

A similarity of this approach and GREMSoC methodology is that both deal
separately with functional and non-functional requirements. However, Cysneiros’
approach does not apply the separation of concerns principle since the models
produced by their approach have weak cohesion and strong coupling. The former
occurs because the models contain data and methods that are not direct related with its
functionality. The latter occurs due to the models mix non-functional and functional
properties in a same entity and this fact makes it difficult to isolate each one.

5.2 SoC Approaches

Many Separation of Concern mechanisms have been proposed over the time,
including procedures, objects, packages and so forth. In the last years, however, the
research has been concerned in providing approaches for separation of crosscutting
concerns, also called of Advanced Separation of Concerns (ASOC). Many ASoC
approaches have been proposed such as Subject-Oriented Programming and Design
[31], Composition Filters [32] and Multidimensional Separation of Concerns [33].
However, Aspect-Oriented Paradigm [34] has been the one that has attracted more
research lately. In short, this paradigm employs special abstractions known as aspects
to encapsulate (and thereby separate) crosscutting concerns; while non-crosscutting
concerns are encapsulated in components such as classes or modules. The
composition between aspects and components is accomplished by means of a
mechanism named weaving.

Among the research works in Aspect-Oriented Requirements Engineering
(AORE), we can cite: [35,36,26,37,38,39]. In the sequel, we will comment about
some of them in particular.

Moreira et al. [26] and Araujo et al. [36] have proposed a model to identify and
specify quality attributes that crosscut requirements, including their systematic
integration into UML models at the requirements stage. The process proposed by
these approaches consists of three main activities: identification, specification and
composition of crosscutting requirements. GREMSoC methodology has two points in
common with those approaches: (i) the process model and (ii) the composition rule
operators used in the composition activity. However, whereas our approach makes the
composition on an artifact apart, the approach of Moreira et al. [26] and Araujo et al.
[36] makes the composition inside UML models, in an invasive way. Another
difference among these works is the treatment of non-functional requirements: they
deal with NFRs as abstract attributes such as security, performance, etc; GREMSoC,
in turn, manipulates with non-functional requirements operationalizations [12] (i.e.
operations, processes, data representations, constraints, etc) that contributes to satisfy
an abstract NFR.

In our previous work [39], we have proposed an adaptation of the NFR Framework
in order to improve the mapping and the composition of crosscutting requirements
onto artifacts at later development stages. This work was based on AORE generic
models presented in [35, 37]. The main contributions of this approach were: (i) the
adaptation of an existing requirements technique to include concepts of Aspect-
Oriented-Paradigm; and the use of NFR operationalizations [12], instead of abstract

declarations of NFRs, in the mapping and composition of crosscutting NFRs. This last
contribution was incorporated in GREMSoC methodology.

There are some differences between our previous approach and GREMSoC one:
the former is concerned only with non-functional crosscutting requirements and it was
specifically developed for the Aspect-Oriented Software Development (AOSD);
whereas GREMSoC handle with functional and non-functional crosscutting
requirements and it can be used not only in the context of AOSD but also in others
kinds of software development paradigms.

6. Conclusion

In software development, it is important to specify system artifacts with a clear
separation of concerns. The motivation for this is manifold: the understanding and
the maintenance of one artifact can be accomplished without having to know all of the
details of the larger system, as well as the reuse of system artifacts is promoted.

However, sometimes it is difficult to apply the separation of concerns principle in
the specification of requirements artifacts due to the strong relationship and the
interdependencies among some requirements. This fact is true especially in the
specification of non-functional requirements that are naturally crosscutting. Very
often, they are scattered and tangled in functional specification.

The purpose of GREMSoC methodology is to promote an approach to solve this
problem by selecting goal-oriented techniques to specify requirements separately and
by providing a way to compose these requirements in an artifact apart. This fact,
therefore, allows that crosscutting requirements are specified separately from the
requirements they affect. Therefore, we advocate that using GREMSoC methodology
the comprehensibility, the maintainability and the reusability of crosscutting
requirements specification are improved.

Our approach relies on well-known techniques such as use-cases for functional
requirements and the NFR Framework for non-functional requirements. Furthermore,
the composition mechanism is quite simple.

Our future work will focus on applying the GREMSoC methodology in others case
studies and evaluating the use of this methodology in Aspect-Oriented Software
Development.

7. References

 1. Ghezzi, C.; Jazayeri, M. and Mandrioli, D. “Fundamentals of Software Engineering”.
Prentice Hall, 1991. ISBN0-13-820432-2.

 2. Hursch, W. and Lopes, C. “Separation of Concerns”. Technical Report NU CCS -95-03,
Northeastern University, 1995.

 3. Jacobson I., Booch G., and Rumbaugh , J. “The Unif ied Software Development Process”,
Addison-Wesley, 1999. ISBN 0-201-57169-2.

 4. Malan R. and Bredemeyer D. “Defining Non -Functional Requirements”, 2001. Available at
http://www.bredemeyer.com/papers.htm. Last access: Sept. 2003.

 5. Baniassad, E.; Murphy, G.; Schwanninger, C. and Kircher, M. ”Managing Crosscutting
Concerns During Software Evolution Tasks: an Inquisitive Study”, Proceedings of the 1st
International Conference on Aspect-Oriented Software Development, April 22-26, 2002,
Enschede, The Netherlands

Concerns During Software Evolution Tasks: an Inquisitive Study”, Proceedings of the 1st
International Conference on Aspect-Oriented Software Development, April 22-26, 2002,
Enschede, The Netherlands

 6. van Lamsweerde, A. "Goal-Oriented requirements Engineering: A Guided Tour",
Proceedings of the 5th International Symposium on Requirements Engineering (RE'01),
IEEE CS Press, 2001, pp.249-261.

 7. IEEE-Std. ‘610’ “IEEE Standard Glossary of Sof tware Engineering Terminology”. Institute
of Electrical and Electronics Engineers, New York, 1990.

 8. Anton, A.“Goal -based Requirements Analysis,” Proc. 2nd IEEE Int’l Conf. Requirements
Engineering, CS Press, Los Alamitos, Calif., 1996, pp. 136–144.

 9. Mylopoulos, J.; Chung, L. and Nixon, B. “Representing and Using Non -Functional
Requirements: A Process-Oriented Approach”. IEEE Transactions on Software
Engineering, Vol. 18, No. 6, June 1992, pp. 483-497.

10. van Lamsweerde, A. “Requirements Engineerin g in the Year 00: A Research Perspective”.
Invited Keynote Paper, Proc. ICSE’2000: 22nd International Conference on Software
Engineering, ACM Press, 2000, pp. 5-19.

11. Castro, J.; Kolp, M. and Mylopoulos, J. “Towards Requirements -Driven Information
Systems Engineering: The Tropos Project”. In Information Systems, Vol. 27, Elsevier,
Amsterdam, The Netherlands, 2002, pp. 365–389.

12. Chung, L; Nixon, B.; Yu, E. and Mylopoulos, J. “Non -Functional Requirements in
Software Engineering”.Boston:Kluwer Academic Publishers, 2000. ISBN 0-7923-8666-3.

13. Loucopoulos P. and Karakostas V. “System Requirements Engineering”, McGraw Hill
International Series in Software Engineering, 1995

14. Malan R. and Bredemeyer D. “Functional Requirements and Use Cases”, 1999. Av ailable
at http://www.bredemeyer.com/papers.htm. Last access: Sept. 2003.

15. Jacobson, I.; Christerson, M.; Johnson, P. and Overgaard, G. “Object -Oriented Software
Engineering: A Use-Case Driven Approach”. Addison -Wesley, 1992. ISBN 0-201-54335-0

16. Cockburn, A. “Writing Effective Use Cases”. Addison -Wesley, 2000. ISBN: 0201702258.
17. Kotonya, G. and Sommerville, I. “Requirements Engineering: Processes and Techniques”.

Wiley, 1998. ISBN 0-471-97208-8.
18. Cysneiros, L. and Leite, J. “Non -functional Requirements: From Elicitation to Modelling

Languages”. In Proceedings of the 24th International Conference on Software Engineering,
Tutorial Session, 2002, pp: 699 - 700, ISBN:1-58113-472-X.

19. Burge, J. and Brown, D. "NFRs: Fact or Fiction", Computer Science Technical Report,
Worcester Polytechnic University, 2002, WPI-CS-TR-02-01.

20. Chung, L. “Dealing with Security Requirements During the Development of Information
System”. Fifth International Conference on Advanced Information System Engineering
(CAiSE’93). Springer -Verlag, Berlin, 1993, pp. 5-30.

21. Nixon, B. “Dealing with Performance Requirements During the Development of
Information Systems”. In Proceedings of the RE'93, IEEE International Symposium on
Requirements Engineering, San Diego, California, 1993, pp. 42-49.

22. Mylopoulos, J.; Chung, L.; Liao, S.; Wang, H. and Yu, E. “Exploring Alternatives during
Requirements Analysis”. IEEE Software Jan/Feb 2001, pp. 2 -6.

23. Aksit, M.; Tekinerdogan, B. and Bergmans, L. "The Six Concerns for Separation of
Concerns", in Proceedings of ECOOP 2001 Workshop on Advanced Separation of
Concerns, Budapest, Hungary, June 18-22, 2001.

24. Cockburn, A. "Structuring Use Cases with Goals," Journal of Object-Oriented
Programming, Sep/Oct, 1997, pp. 35-40, and Nov/Dec, 1997, pp. 56-62.

25. Cockburn, A. “Basic Use Case Template”, 1998. Available at
http://members.aol.com/acockburn/papers/uctempla.htm . Last access: Sept. 2003.

26. Moreira, A.; Araújo, J. and Brito, I. “Crosscutting Quality Attributes for Requi rements
Engineering”, 14th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2002), ACM Press, Italy, July, 2002.

Engineering”, 14th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2002), ACM Press, Italy, July, 2002.

27. Booch, G.; Rumbaugh, J. and Jacobson, I. “The Unified Modeling Language User Guide”,
Addison-Wesley, 1999. ISBN: 0201571684.

28. Patrício, L., Falcão e Cunha, J. and Fisk, R. “The Relevance of User Experience
Requirements in Interface: Design – a Study of Internet Banking”. 6th Ibero -American
Workshop on Requirements Engineering and Software Environments - IDEAS'2003,
Asunción, Paraguay, 30th April – 2nd May, 2003.

29. Cysneiros, L.; Leite, J. and Neto, J. “A Framework for Integrating Non -Functional
Requirements into Conceptual Models”. Requirements Engineering Journal – Vol 6, Issue
2 Apr. 2001, pp. 97-115.

30. Cysneiros, L. and Leite, J. “Using UML to Reflect Non -Functional Requirements”. Proc.
of the 11th CASCON, IBM Canada, Toronto, Nov 2001, pp. 202-216.

31. Harrison, W. and Ossher, H. “Subject -Oriented Programming (a Critique of Pure Objects).
OOPSLA'93, 1993, pp 411-428, ACM Press.

32. Bergmans, L. and Aksit, M. “Composing Crosscutting Concerns Using Composition
Filters”. Commun. ACM, 44(10): 51 –57, Oct 2001.

33. Ossher, H and Tarr, P. (2001) “Multi -Dimensional Separation of Concerns and the
Hyperspace Approach”. Proc. Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development. Kluwer Academic Publishers.

34. Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.-M. and
Irwin, J. “Aspect -Oriented Programming”. In Proceedings of ECOOP ‘97, Springer -Verlag.

35. Rashid, A.; Sawyer, P.; Moreira, A. and Araújo, J. "Early Aspects: a Model for Aspect-
Oriented Requirements Engineering", IEEE Joint Conference on Requirements
Engineering, Essen, Germany, September 2002, Pages 199-202.

36. Araújo, J.; Moreira, A.; Brito, I. and Rashid, A. "Aspect-Oriented Requirements with
UML", Workshop: Aspect-oriented Modeling with UML, UML 2002, Germany.

37. Rashid, A. Moreira, A. and Araujo, J. “ Modularisation and Composition of Aspectual
Requirements”. 2nd International Conference on Aspect -Oriented Software Development,
ACM, 2003, pp. 11-20.

38. Brito, I. and Moreira, A. “Towards a Composition Process for Aspect -Oriented
Requirements”. Workshop on Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design, March 17, 2003, Boston, USA.

39. Sousa, G.; Silva, I. and Castro, J. “Adapting the NFR Framework to Aspect -Oriented
Requirements Engineering”. XVII Brazilian Symposium on Software Engineering,
Manaus, Brazil, October 2003.

40. Dijkstra, E. “ A Discipline of Programming”. Prentice-Hall, 1976.

