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Abstract. With the evolution of the Web evolving towards the Semantic Web, where the 
information should be presented in a meaningful way for both humans and machines, 
arises the need for semantic interoperability. By interoperability we understand the use 
of meaningful representation mechanisms that allow for information exchange among 
agents. There is a consensus that ontologies will be this representation model. The 
information exchange process depends on our ability to engage two or more ontologies 
in conversation.  In this paper the focus is on the compatibility of different ontologies. 
We propose a strategy for automatic alignment of ontologies, implemented by an 
ontology taxonomic alignment component - the CATO component. 

1 Introduction 
The major drawback of today's web is the great volume of unstructured information. 
To face this problem, both industry and academia are exploring the possibilities of 
creating a semantic web, where information will be made available in such way that 
software agents will be able to process and integrate resources, allowing for more 
meaningful information retrieval [1]. 

Ontologies will play a major role in the semantic web. They provide a 
representation model that should become the standard for information exchange 
among agents. It is believed that in a near future most businesses on the web will 
provide the semantics of their pages by means of an ontology [2].  

The most common definition for ontologies is that of a “formal, explicit 
specification of a shared conceptualization”, proposed by Gruber [3]. For the 
purposes of this paper, we use Maedche’s definition [4], for it details the ontology 
primitive building blocks, fundamental to our approach.  

Ontology construction is supported by a number of methodologies like 
Methontology [5] and Tove [6], and methods proposed by Uschold and Gruninger in 
[7], Noy and McGuiness in [8] and Breitman and Leite in [9], but the communication 
between ontologies remains a problem. In the next section we discuss the ontology 
interoperability problem and in section 3 we propose our ontology alignment strategy. 
The implementation of this strategy is presented in section 4 and a case study is 
presented in section 5. We comment our approach and present our concluding 
remarks in section 6. 

2 Ontology Interoperability 
Ontologies represent important entities (also known as classes), their taxonomical 
relationships, properties and restrictions that apply to the entities of the domain. In 
some representations we can also use axioms to declare truths that are valid in the 



Universe of Discourse of the ontology. In the semantic web context, the use of 
ontologies, rather than to provide a domain theory, has the goal of providing a 
standard representation in which to exchange information among different agents. 
Thus it is fundamental to provide mechanisms that allow information exchange 
among ontologies.  

Currently there are a few approaches that deal with the ontology compatibility 
problem. The most salient ones are: (1) ontology merge [10], (2) ontology alignment 
[10], (3) ontology mapping [11] and (4) ontology integration [12]. 

Merging ontologies results in a unique ontology that contains all the terms from 
merged original ontologies, without indication of their former origin. Aligning 
ontologies results in separate ontologies with links among them. The links allow 
ontologies to share terms. Mapping ontologies results in a formal structure containing 
expressions that link concepts from one conceptual model to another. Finally, 
integrating ontologies results in a unique ontology created by assemblage, extension, 
specialization or adaptation of ontologies from different subject areas. When 
integrating ontologies it is possible to identify the relationships to the original 
ontology. 

2.1 Our Understanding of Ontology Alignment 
In this work, we aim at identifying common terms that exist among ontologies that 
complement one another in such way that we allow for negotiation, i.e., information 
exchange, among such representations. Therefore, we define ontology alignment as 
the process by which two ontologies1 must undergo in order to establish an 
intermediate representation that guarantees communication (information sharing and 
exchange) between them. The result of the alignment process is a persistent model 
that indicates the links between ontologies allowing for information share, exchange 
and, possibly, reuse.  

 From a software engineering point of view, the alignment process must be quick, 
automatic and reliable, in order to support current interoperability requirements of 
multi-agent systems [13]. Speed is a requirement intrinsic to the web. We understand 
that, once a request is sent by an autonomous agent, its response should be given in 
execution time (the request may have been sent to multiple agents, each with its own 
ontology, making competition and time of response very important factors). The 
process must also be automatic, for that we should not count with user intervention. 
We must remember that while the designer of the ontology is a domain expert, the 
user of the service that requires semantic exchange via ontologies is not necessarily an 
expert.  

The total alignment is desired but not necessary. We would rather guarantee a 
minimum level of reliability, which means that some of the terms will not be aligned, 
if it can be done within a reasonable time frame.  We consider partial alignment good 
enough if it is attained quickly, automatically and within pre defined reliability limits. 

                                                            
1 We implemented the alignment process for pairs of ontologies. If it is the case of aligning more than two, 

it can be done in progressive steps (two by two, always). We have conducted some experimentation in 
this sense and have noted that the order in which the ontologies are aligned does alter the final result 
significantly. Future experimentation will include the determination of heuristics to minimize the 
impacts of the order of choice in the process.  



In this case, the aligned ontology does not need to be stored since we will compute the 
alignment when it is needed.  

3 Proposed Strategy 
We propose a three step ontology alignment strategy, illustrated in Figure 1. On the 
first step we compare concepts from two ontologies lexically using a trimming 
mechanism as a stop condition. The results of this step are the input ontologies 
enriched, i.e., with the alignments of this step. The second step is comprised of the 
structural comparison of the ontologies structures and it results the concepts classified 
as equivalents. On the third step, we classify terms according to a pre defined 
similarity measurements in order to determine whether they can be aligned or not.  
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Fig. 1. Proposed ontology alignment strategy 

 



Only the concepts classified as very similar2 in this last step will be added in the 
enriched ontologies result of the first step. After this addition, the ontologies will be 
joined into a one single ontology. 

4 An Implementation for the Proposed Ontology Alignment Strategy 
To validate the proposed strategy we built an ontology taxonomic alignment 
component called CATO. This component will mediate services provided by agents 
in the framework proposed in [13, 14]. CATO uses two ontologies as input. The 
current implementation accepts ontologies written in the OWL ontology language 
[15], recommended by the W3C consortium [16]. The online version of CATO is 
available at the following address: http://cato.les.inf.puc-rio.br. 

CATO was fully implemented in JAVA [17] and it uses a specific API 
(Application Programming Interface) for Java built to deal with ontologies, the Jena’s 
API [18]. Jena functions as a framework in which to anchor the construction of 
semantic web applications. It provides a programming environment for semantic web 
ontology languages including a rule based inference mechanism. 

By using the Jena API it is possible to transform an ontology into an abstract 
model that can be dealt with using Java Object Oriented programs. A series of 
methods is also provided, that make it possible to easily retrieve concepts related 
information. The use of this API helped us focus on the alignment process, for it made 
ontology manipulation transparent. It is important however, that Jena is not an 
inference mechanism, it does not deduct information. It rather reads and filters 
information from the tags of files written in an ontology language.  

In the next sections, we describe the implementation of each step of the proposed 
strategy. 

4.1 First Step: Lexical Comparison with the Use of Synonymous and 
Trimming Mechanism as a Stop Condition 

The initial step of the proposed strategy takes two ontologies as input. Those 
ontologies are transformed to models using the Jena API, with the goal of 
manipulating those as objects. The goal of this step is to identify lexically equivalent 
concepts and sub concepts, i.e., the ones with the same semantic content.  

Each concept and sub concept of the first model is compared, one by one, to every 
concept and sub concept present in the second model, using name similarity as the 
criteria. Besides using the label, synonyms are also used.  

The use of synonyms enriches the comparison process, because it provides more 
refined information. Automatic extraction of valid synonyms from existing 
dictionaries is not a trivial task, so we were forced to create a synonym database to aid 
in this process.  

One ontology may contain concepts imported from other ontologies. At the time of 
the creation of the ontology model by the Jena API, all the imported terms will be 
present in the model, as if they were part of the original ontology. Each concept in an 
ontology has a unique identifier formed by the set of its name and the namespace of 

                                                            
2  similarity rate over than 75%  



the ontology it belongs to. The namespace verification procedure allows us to identify 
imported concepts from those original to the ontology. For the sake of speed, we do 
not take into consideration concepts that have been imported from other ontologies. 
Results from our experimentation with the CATO component have shown that it 
would slow down the process excessively. Besides this, the information of those 
concepts would not help in the following steps of the strategy.  

Once lexical similarity has been detected between concepts, it is necessary to 
compare the sub trees of the pair to determine if they are in fact compatible (and thus 
reliable alignment). It is important to note that this step's alignment strategy is 
restricted to the concepts, sub concepts and instances of the ontology. We are not 
considering properties at this time. A concept instance is represented by the pair name 
and namespace. Because we compare concepts from different ontologies, its 
namespace are different. Our trimming strategy aims at the identification of the 
instances, which share the same label in the compared ontologies, from the concepts 
that were identified as equivalent by the lexical analysis. In this case, we had to filter 
the input and compare the instances’ name of the concepts separately from its 
namespaces. 

The result of the proposed strategy’s first stage is the models of both original 
ontologies enriched with links that point to concepts and sub concepts that were 
identified as equivalent. The links are added to both models. The enriched models are 
stored in OWL format and will be the input to the next step of the proposed strategy.  

4.2 Second Step: Structural Comparison Using an Implementation of 
the TreeDiff Algorithm 

The second step of the proposed ontology alignment strategy is the comparison 
between the structure hierarchies of the ontologies. This comparison is based on the 
subsumption relationship held among ontology concepts. Ontology properties 
(defined as function that relates the concepts non taxonomically, in Maedche’s 
definition in section 1) are not considered.  

Our  approach is thus more restricted than the one proposed in [19], that  analyses 
the ontologies as graphs, taking into consideration both taxonomic and non taxonomic 
relationships among terms. Because we only consider the taxonomic relationships at 
this point, we are able to make use of well known tree comparison algorithms. We are 
currently using the TreeDiff [20] algorithm proposed in [21]. Our choice was based on 
the ability to identify structural similarities between trees in reasonable computing 
time.  

The goal of the TreeDiff algorithm is to identify the largest common substructure 
between trees, described using the DOM (Document Object Model) model. This 
algorithm was first proposed to help detect the needed steps, including renaming, 
removing and addition of tree nodes that were necessary to migrate one tree to 
another one (both trees are the inputs to the algorithm). We used the implementation 
of the TreeDiff algorithm in [21], which focuses on scenario evolution. With few 
modifications to the original implementation it was possible to configure the editing 
operations to rename only (not anymore insertion and removal operations). Those 
modifications in the algorithm were needed because, in our case, one ontology is not 



the evolution of a second, but separate artifacts that need to be compared in order to 
identify shared conceptualizations. 

Our first idea was to adapt the algorithm to accept entries in the OWL file format. 
Today's DOM parser implementation accepts only the specific Document Object 
Model provided by the XML format. Because at this stage we use only the 
taxonomical structure of the ontology, it is acceptable to use XML.  This approach 
would not be acceptable if additional information, e.g., concept restrictions or axioms 
were needed, because they are lost in the conversion process. Figure 2 illustrates the 
TreeDiff algorithm with its entries and exits. 

 

 
Fig. 2. The TreeDiff algorithm’s entries and exits [21] 

4.2.1 Equivalence Information 
Before the transformation of the OWL ontologies to a hierarchical model 

representation, it was necessary to choose the names or synonyms of equivalent 
concepts that were going to be used by the comparison process. The structural 
comparison process is based in lexical equality (identified in the previous step); 
synonyms are no longer used in this step. The equivalence information is linked to the 
concepts of both ontologies, as described in section 4.1. One of the concepts has to be 
chosen as preferred label and the substitution in the other ontology is made.  

There is, however, the possibility that the substitution will incur in the addition of a 
label that is already in use by another concept in the ontology, probably with another 
meaning. This would be an inconsistency (the pair name and namespace has to be 
unique) so the substitution process is aborted and the information of the equivalence 
pair is left out of the structural comparison process.  

4.2.2 Equivalence Groups 
We make use of equivalence groups, as proposed by [19], during structural 
comparison. Equivalence groups are identified both by lexical and structural 
comparison. First concepts with identical labels are identified and, then, we compare 
their structure, i.e., number of sons and number of equivalent concepts in those. 



Another factor that is taken into account is the order in which the descendants of 
equivalent concepts appear. 

We implemented two different modules. One that contains the files for structural 
comparison alphabetically ordered and the other in the original order of appearance of 
the concepts and sub concepts in the ontology. For ontologies that make use of 
identical labels, the use of the alphabetically ordered structural comparison files 
brought significantly better results. This was due to the fact that after the alphabetical 
sort, the concepts present in an equivalence group will be closely located in the 
structure. However, ontologies that make use of identical labels are rarely the case in 
practice. We tested the performance of both files on ontologies that had few 
identically labeled concepts. The ordered file did not bring differences in the results 
and there were some cases when it made the results worse than using the unordered 
file. 

4.3 Third Step: Use of Similarity Measurements for Fine Adjustments 
The third and last step is the use of similarity measurements. Concepts are rated as 
very similar or little similar based on pre defined similarity thresholds. We only align 
concepts that were both identified as equivalent, in the previous step, and rated very 
similar. Thus the similarity measurement is the deciding factor responsible for fine 
tuning our strategy.  

We adopt the similarity measurement strategy proposed in [21]. Experimentation 
showed that it provided good results, when compared to manual concept alignment.  

Our similarity threshold was empirically defined. We are currently working with 
75% threshold, i.e., concepts whose similarity rate is equal or over 75% are very 
similar whereas those with less than 75% similarity are rated little similar and 
therefore not aligned (despite the fact that they may have been identified as equivalent 
to some other concept in the first step of the strategy). 

If new equivalences are detected during this step, those are annotated in the 
corresponding ontology model.  

5 Case Study 
Two independent ontologies, created by different groups, were chosen for the case 
study that will be presented.  The first group chosen is one the responsible for the 
project Agent Transaction Language for Advertising Services (ATLAS) [22] from the 
Carnegie Mellon University [23]. Their ontology called CMU RI Publications [24] is 
the first ontology chosen3. The second group chosen is represented by the French 
company Mondeca SA [25], one of the companies of the W3C Web-Ontology’s work 
group [26]. Their ontology called General University Ontology [27] is the second 
ontology chosen. 

The two chosen ontologies have differences in their taxonomic organization and in 
the number of their terms. Figure 3 shows the compared ontologies’ hierarchy, with 
O1 as an abbreviation for the first ontology described and O2 as an abbreviation for 

                                                            
3 As CATO receives ontologies written in the OWL language and the ontology chosen is written in DAML 

language, the transformation from OWL to DAML is needed. An ontology editor can do that, like the 
OilEd [28] editor used. 



the second one. The first ontology has 25 concepts and the another one has 225 
concepts, in total. 

From all the concepts of the compared ontologies just 8 from each one can be 
aligned. The arrows in the Figure 4 point to the concepts that can be aligned in the 
compared ontologies, with the thicker arrows meaning concepts that will be aligned 
by CATO. 

 

O1 

O1 O2

 
Fig. 3. The compared ontologies’ hierarchy of the case study presented 

O1 O2O1 O2

 
Fig. 4. Concepts that can be aligned in the compared ontologies 

5.1 First Step 
This step of the strategy compares concepts from ontologies lexically, also using 
synonymous. In the beginning, the data base used to store the synonymous is empty. 



Because of that, for this example, the following information were registered there: 
“TechReport” as synonymous of “TechnicalReport”, “TechnicalReport” as 
synonymous of “TechReport”, “PhdThesis” as synonymous of “DoctoralThesis” and 
“DoctoralThesis” as synonymous of “PhdThesis”. 

CATO executes and recognizes the concepts with identical labels in both 
ontologies (“Conference”, “MastersThesis”, “Book”, “Manual”, “Article”, 
“Proceedings”) and the ones with their synonymous but, as none of them satisfy the 
trimming condition of this step of the strategy because those concepts have different 
labels for their super-concepts, they will not be aligned. 

At the end of this step, the ontologies’ hierarchy are represented in XML files, with 
the exactly organization of the ontologies’ concepts and their sub-concepts. That is 
because the next step of the strategy just compares the ontologies’ hierarchy, i.e., how 
the concepts are organized in the compared ontologies. Figure 5 shows part of the 
representation in XML of the ontologies’ hierarchy. Those XML files will be the 
entry for the next step of the strategy. 

5.2 Second Step 
This step of the strategy compares the ontologies structures. Figure 5 shows the 
ontologies’ hierarchy compared and the identified equivalence group, described in 
section 4.2.2, represented by circles in the figure. 
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Fig. 5. Part of the ontologies’ hierarchy represented in XML files 

 



The first equivalence group, represented by the superior circles, is formed because 
of the lexical equality between the concepts named “Proceedings” in the two 
compared ontologies and the structural similarity between their super-concepts. After 
the equivalence group is formed, all of the concepts inside it will be compared, 
looking for concepts that have lexical equality and structural similarity. With these 
requirements, the concepts named “Book” and “Manual” from the compared 
ontologies will be recognized as equivalents. 

Because of the structure similarity (a single concept, i.e., a concept without sub-
concepts, in O1 and a single sub-concept in O2) and the lexical equivalence between 
the concepts named “Conference”, the second equivalence group, represented by the 
inferior circles in the figure, is formed. 

However, others concepts with identical labels, like those named “MastersThesis” 
and “Article” in both ontologies, will not be recognized as equivalent because their 
structures have differences. At the end of this step, the equivalent concepts 
“Proceedings”, “Book”, “Manual” and “Conference”, from the compared ontologies, 
were recognized as equivalent concepts.  

5.3 Third Step 
This step classifies the equivalent concepts, recognized in the previous step, as very or 
little similar according to a pre defined similarity measurements, in order to determine 
whether they can be aligned or not. CATO will align only the very similar concepts. It 
will happen with the concepts “Conference”, “Proceedings”, “Book” and “Manual”, 
from both ontologies. Those concepts are presented inside the identified equivalence 
groups, written with same names and with similar hierarchical structure. 

Figure 6 shows the calculated percentages of similarity of the equivalent concepts 
recognized. 

 

 
Fig. 6. Percentages of similarity calculated by CATO 

In the end of this step, the equivalent concepts “Proceedings”, “Book”, “Manual” 
and “Conference”, from the compared ontologies, were recognized as very similar 
concepts (similarity rate over than 75%) and are aligned by CATO.  

6 Conclusion 
In this paper we discussed the implementation of a software component responsible 
for the automatic taxonomical alignment of ontologies. Our strategy is based on the 
sequential application of well known software engineering strategies, such as lexical 
analysis, tree comparison and the use of similarity measurements to the problem of 
ontology alignment.  

For the sake of speed, we are only taking in consideration taxonomical 
relationships in the proposed alignment strategy. However, this limitation of the 



strategy can be overcome by the adaptation of the second step to take into 
consideration other ontology primitives, such as properties (the strategy could work 
with graphs instead of trees) and axioms. For sure this adaptation will increase the 
total computation time because of the added complexity.  

The worst case scenario in terms of completeness is not being able to align any 
concept. This happens when the input ontologies are from disjoint domains. The 
worst case scenario in terms of inconsistency is aligning two concepts that have 
identical labels, but are semantically different. This would only happen if, and only if, 
both share identical labels and possess structural similarity (equivalent concepts must 
be present in the descendants and the number of descendants must also be 
compatible). This case is very unlikely to happen, if the ontologies were created using 
some conceptual modeling. 

We believe that addition of new functionalities to the current implementation will 
result in more precision in the results. The use of thesauri and reference ontologies, 
for example, will enhance the identification of semantically similar concepts that use 
different labels.  

The TreeDiff algorithm is unidirectional in the sense that its goal is to determine 
the transformation needed to go from the first input tree to the second input tree. We 
are currently experimenting with double runs of the algorithm in which we invert the 
order of the input (today we are using the biggest ontology as the first input). When 
compared, the results present some differences. We believe we can refine the results 
from this algorithm by providing the combination of the two runs. Future plans 
include continuing validation of the approach by experimentation and the elaboration 
of more case studies. 
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