

A Process for Requirement Traceability in Agent
Oriented Development

Rosa Candida Pinto, Carla Silva and Jaelson Castro

Universidade Federal de Pernambuco – Centro de Informática
Recife (PE) – Brazil - 50732-970

{rccp, ctlls, jbc}@cin.ufpe.br

Abstract. Requirement traceability is intended to ensure continued alignment
between stakeholders’ requirements and various outputs of the system
development process. Therefore a process for requirement traceability is a
significant factor on efficient software project management. Failure to do so
will imply in higher costs for maintaining software systems. Methodologies
supporting requirement traceability can develop higher quality software with
fewer costs. This paper presents an innovative research that aims to support
traceability through requirements specifications, system architecture models,
static and dynamic software design models and implementation artifacts of
agent-oriented software systems. In this work we outline a process that can be
used to extend Tropos to support traceability. An e-commerce example is used
to demonstrate the applicability of the proposed approach.

1 The Introduction

Researchers and stakeholders agree about the importance of the requirements
traceability. In complex systems there are quite complex web of relationships, hence
requirement tracing is inevitable [1]. In the last years, a large number of approaches
and techniques to address various aspects of traceability have being developed for the
software and systems engineering.

Requirement Traceability refers to the ability to describe and follow the life of a
requirement, in both a forward and backward direction (i.e. from its origins, through
its development and specification, to its subsequent deployment and use, and through
all periods of on-going refinement and iteration in any of these phases) [2].
Traceability improves quality of software system. It facilitates the verification and
validation analysis, control of changes, as well as reuse of software systems
components, and so on.

This paper presents an innovative research that aims to support traceability through
requirements specifications, system architecture models, static and dynamic software
design models and implementation artifacts of agent-oriented software systems. In
particular we present a general framework [3] applied in the context of agent-oriented
development [4]. We sketch the approach to enhance the Tropos1 framework [5, 6, 7]

1 For further detail and information about Tropos project, see http://www.troposproject.org

to support traceability. Tropos is a requirements-driven framework in the sense that it
proposes to use the concepts used during early requirements analysis at various stages
of the software development lifecycle. Tropos [6, 7] spans four phases, as follows:

− Early requirements: concerned with the understanding of a problem by studying
an organizational setting.

− Late requirements: where the system-to-be is described within its operational
environment, along with relevant functions and qualities.

− Architectural design: where the system’s global architecture is defined in terms
of subsystems, interconnected through data, control and other dependencies.

− Detailed design: where the behavior of each architectural component is further
refined.

The structure of this paper is follows: Section 2 presents the meta-models that are
required to support traceability. In Section 3, we define a process that can be used to
derive traceability information in the context of the Tropos approach. In Section 4, we
apply Tropos to a case study and show all phases of the proposed requirement
traceability process. Section 5 describes related work and finally Section 6 concludes
the paper.

2 Requirements traceability Meta-Model

The requirement engineering process supports the understanding of the stakeholders’
goals, as well as the refinement of these goals into requirements. An important task of
this process is keeping track of bi-directional relationships between requirements and
stakeholders’ motivations as well as between requirements and development process
artifacts in order to facilitate the maintenance and verification of the system [9, 2].

As a consequence of these different uses and perspectives on traceability, there are
wide variations on the format and content of traceability information across different
system development efforts. Thus, a reference model is needed to facilitate the
construction of a requirement traceability scheme [3].

In this paper, requirement traceability is defined as the ability to describe and
follow the life of a requirement, in both forward and backward direction. The
reference model used in our approach is based on Toranzo [3]. It defines classes that
represent the information to be traced. These classes are related to each other by
means of associations named satisfy, resource, responsibility and represents. The
matricial representation of an association is a tuple whose structure varies according
to the association type [3]. For instance, the association resource has two components
(<DepDegree; Tree>). The first component, DepDegree, express the degree of
dependency in a qualitative way (e.g. <H: High, M: Medium or L: Low> or <S:
sufficient or P: partial>) or quantitative way (values between 1 and 10). The second
component, Tree, represents the type of the logic tree which will relate the elements
into a decomposition. This component can assume the values <A> (read A as AND)
or <O> (read O as OR). The notation used to represent the proposed associations is
based on UML (Unified Modeling Language) stereotypes. Moreover, the reference
model is divided into two sub-models for clarity.

Requirement Management sub-model (Figure 1) helps requirements understanding,
capture, tracking, validation and verification.

Figure 1. Requirements Management Sub-model

Design sub-model is used to refer to any activity that creates artifacts, including
implementation (Figure 2).

Figure 2. Design Sub-model

In addition to these sub-models, Toranzo [3] presents a Rational model for
identification and structure of the problems and decisions made (reasoning) during the
software development (Figure 3).

Figure 3. The Rational model

<<resource>>

<<resource>>

1

0..n

0..n

0..n 0..n

<<resource>>
0..n 1..n

<<satisfy>> 0..n

0..n 1

0..n

0..n

<<resource>>

0..n

<<responsability>>

0..n 1

1..n <<resource>>

0..n

0..n

0..n 1

0..n

1..n

0..n

0..n

<<satisfy>>

<<resource>>
1..n

0..n

0..n <<responsability>>

0..n

0..n

<<resource>>

0..n

0..n <<resource>>

EXTERNAL C O N S T R A I N T

CHANGE PURPOSE

ORGANIZATIONAL OBJECTIVES

S T A K E H O L D E R

<<resource>>
0..n

I N F O R M A T I O N

0..n

0..n

R E Q U I R E M E N T

SYSTEM OBJECTIVES

T A S K

<<resource>>

0..n

0..n

0..n

0..n

0..n

0..n

1..n

0..n
<<satisfy>>

<<resource>>

0..n

0..n

<<allocated_to>>

D I A G R A M

CHANGE PURPOSE

DESIGN ELEMENT

P R O G R A M

S U B S Y S T E M

T E S T

 R EQ U I R E M E N T
T A S K

S T A K H O L D E R
0..n 0..n

<<resource>>

 I N F O R M A T I O N
0..n <<responsability>>

0..n
<<resource>>

0..n

<<represents>>

0..n

<<resource>>
0..n

0..n

Contradict

1..n

<<resource>>

<<resource>>

<<responsability>>

0..n

1..n

1..n

0..n

<<resource>>

0..n

0..n

<<resource>>

0..n 0..n

<<resource>>

0..n 0..n

S U B J E C T

C O N S T R A I N T A S S U M P T I O N

P O S I T I O N

S T A K E H O L D E R

 A R G U M E N T

D E C I S I O N

SYSTEM OBJECTIVES

<<resource>

ORGANIZATIONAL OBJECTIVES

0..n

0..n

D O C U M E N T

<<resource>>

1..n

Support

0..n <<resource>> 0..n <<resource>>

0..n

<<resource>

0..n

1..n
<<resource>>

0..n <<responsibility>
0..n

0..n

0..n <<resource>>

1..n

0..n

0..n

<<resource>>

0..n

0..n 0..n

1..n

As emphasized before, the traceability reference model is a general purpose one. If
we aim to use it in connection with a certain software development approach, e.g.
Tropos, we must then describe a process for guiding the creation of the traceability
matrixes. This process is described in the next section.

3 The Requirements Traceability Process

The main contribution of this paper is to define a process to the following Tropos
phases: late requirements and architectural design.
In this section we sketch a process which includes three stages as follows:

1. Information Gathering (IG): we identify the information to be traced.
2. Information Structuring (ST): consists of three activities. First, we remove the
instances that represent irrelevant information, as well as delete the instances with
the same meaning. Then, we determine the association among the instances, as
well as their values.
3. Definition of the Traceability Matrixes (TM): Last but not least, we define the
matrixes that capture and store the relationships among the instances of the
classes.

In the sequel, nine guidelines are defined. The first four ones (IG1-IG4) are related
to information gathering. The proper structuring of this collected information is
achieved by means of guidelines ST1 and ST2. The set of valid values for association
instances are defined in ST3. The construction of the appropriate traceability matrixes
is guided by TM1 and TM2.

In this work, we consider that the organizational setting was understood, during the
early requirements phase and that it was decides to develop a software system. In late
requirements phase we extend the conceptual model developed during early
requirements to include the system-to-be. The system is described within its
operational environment, along with relevant functions and qualities. The artifacts
produced by this phase are the Strategic Dependency (SD) and Strategic Rationale
(SR) models for the actor representing the system. During architectural design phase
the system’s global architecture is defined in terms of subsystems, interconnected
through data, control and other dependencies. The artifact produced by this phase is
the architectural design model.

As Tropos is still evolving its detailed design phase, in this paper we do not apply
the new requirement traceability process to this phase. It is expected that new
guidelines are to be included when the Detailed Design phase is properly addressed.
Now, we can introduce the traceability guidelines in detail:

Guideline IG1. Appropriate for finding the instances of the Requirements
Management sub-model classes (Figure 1) from the SD diagram of the actor
representing the system. We have the following rules: (1) The actor which has some
dependency relationship with the actor representing the system represents an instance
of the ��������	�
 class; (2) If the actor representing the system is the dependee of a
softgoal, resource or task dependency, the dependum is an instance of the

�� �

�� �� � class; (3) If the actor representing the system is the dependee of a goal
dependency of the actor representing the organization, then the goal is an instance of

the �
� ��
� ��
�� ����� � �� �
� �� class; (4) If the actor representing the system is the
depender of a goal dependency of the actor does not represent the organization, then
the goal is an instance of the �� ���� �� � �� �
� �� class; (5) If the actor representing
the system is the depender of a (goal, softgoal, resource or task) dependency, the
dependum is an instance of the �� ��
� �� class.

Guideline IG2. Appropriate for finding the instances of the Requirements
Management sub-model classes (Figure1) from the SR diagram of the actor
representing the system. During the means-ends analysis of the actor representing the
system, the following rules apply: (1) Each goal depicted represents an instance of the
�� ���� �� � �� �
� �� class; (2) Each task depicted represents an instance of the

�� �

�� �� � class; (3) Each softgoal depicted is a non-functional requirement and
therefore represents an instance of the
�� �

�� �� � class; (4) Each resource depicted
is the result of some functionality associated to a functional requirement which
represents an instance of the
�� �

�� �� � class.

Guideline IG3. Appropriate for finding the instances of the Rational model classes
(Figure 3) from the process for selecting the proper architectural style. We have the
following rules: (1) An instance of the �� � � �� � class represents an issue on which a
decision must be taken; (2) Instances of the � ��
�
�� class represent the alternative
solutions for the �� � � �� �; (3) An instance of the �
� � � �� � class represents some
criteria used for choosing the proper solution; (4) Instances of the ���� � � �
�� class
represent facts that must be taken into account for choosing the proper solution; (5)
Instances of the � �� ��
�
� � class represent limitations/restrictions that must be taken
into account for deciding the proper solution; (6) An instance of the 	�� � � �� � class
represents some information used as reference for choosing the proper solution.

Guideline IG4. Appropriate for finding the instances of the Design sub-model
classes (Figure 2) from the architectural design model of the system under
development. We have the following rules: (1) Each architectural component
represents an instance of the �� � �� ���� class.

Having gathered the relevant information, we can now proceed to the next stage of
the requirement traceability process which has to do with structuring the information
(ST):

Guideline ST1. Given a set of instantiated classes of the reference model, we have
to structure them. Hence, we can remove those unnecessary ones. Instances with the
same meaning can also be deleted.

Guideline ST2. For each pair of associated classes in the reference model, we have
to instantiate the association to be later used in the correspondent traceability matrix.
For example if we want to create a traceability matrix to relate
�� �

�� �� ��instances
with� �
� ��
� ��
�� �� �� � �� �
� �� instances we have to instantiate the <<resource>>
association between them�(Figure 1).

Guideline ST3. For each instance created in the ST2, we define the set of values
assigned to it. For example, the dependency degree between organizational
information and functional requirements can be evaluated as <H> (High), <M>
(Medium) or <L> (Low). �

The last stage of the requirement traceability process is the definition of the
traceability matrixes (TM).

Guideline TM1. For each pair of instantiated classes which are associated in a
reference model, we can create a traceability matrix.

Guideline TM2. For each created matrix, we have to analyze the system artifacts
which are related to the matrix and fill the association which has been instantiated in a
previous stage of the process.

In the sequel we outline the Tropos’ phases through an e-commerce example.

4 Case Study

Media Shop is a store selling and shipping different kinds of media items such as
books, newspapers, magazines, audio CDs, videotapes, and the like. Media Shop
customers (on-site or remote) can use a periodically updated catalogue describing
available media items to specify their order. To increase market share, Media Shop
has decided to open up a B2C retail sales front on the Internet. The system has been
Medi@ and is available on the world-wide-web using communication facilities
provided by Telecom Cpy. It also uses financial services supplied by Bank Cpy. The
basic objective for the new system is to allow an on-line customer to examine the
items in the Medi@ Internet catalogue, and place orders.

On the next sections we describe how the requirement traceability process
previously outlined can be used in conjunction with the Tropos phases. After applying
the proposed process to this example, we will be able to justify the existence of each
requirement, the change impact assessment in the Medi@ system, as well as, to
determine the requirements which satisfy a specific softgoal required for the Medi@
system. We could also trace the means-ends analysis used in the Tropos methodology.

4.1 Applying guidelines for Information Gathering (IG)
The description provided previously is sufficient for producing a model of an

organizational environment. For details, see [7]. Having understood the organizational
setting, one can now decide to develop a software system to support it (Figure 4). In
late requirements phase we extend the conceptual model developed during early
requirements to include the system-to-be, i.e., the Media@.

As late requirements analysis proceeds, Medi@ is given additional responsibilities,
and ends up as the dependee of several dependencies including Availability, Security
and Adaptability softgoals (Figure 4). For more details see [7].

According to the guidelines presented in previous section, we begin to perform the
traceability process from the late requirements phase. Applying Guideline IG1, we
conclude that all the actors depending on (or depended upon) the actor representing
the system (Medi@ actor in Figure 4) corresponds to stakeholders, information to be
regarded in the traceability process, since they will use the system and/or be used by
the system. Thus, Media Shop, Customer Media Supplier, Telecom Cpy and Bank Cpy
are instances of the ��������	�
�� �� � � . This association is extremely important in the
requirement traceability process because it stores information about the stakeholders
and their contributions to the system. When a change is required, the correspondent
stakeholders can be questioned about possible doubts as well as conflicts can be
resolved. The incoming softgoal, resource or task dependencies of the actor
representing the system (Medi@ actor in Figure 4) correspond to requirements, i.e.

they are needs/requests to the system. Thus, Availability, Adaptability and Security
softgoals, Browse Catalogue, Keyword Search and Place Order tasks (Figure 6) are
instances of the
�� �

�� �� � class.

Increase
Market Share

Buy Media
Items

Browse
Catalogue

Telecom
Cpy

Media
Supplier

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Adaptability

Availability

Continuing
Supply

Figure 4. Strategic Dependency
Diagram for Medi@ System

Internet

Available

Process

++

Place

Availability

-

++

Form

+

Media

Order

On-line
Money

Transactions

Process

Get

Buy

Secure

-

-
Search

Keyword

Catalogue

Consulting

+

Browse

Media

+

-

+

Cpy
Telecom

Detail

Order

++

Market Share
Cpy
Bank

Media
Shop

Orders

Items

Supplier

Catalogue

Secure

Catalogue

Identification

Customer
Attract New

Customer
Produce
Statistics

Update

Services

Shop

Internet
Handled

Adaptation

Increase

Item

Internet

Managed

Security
Adaptability

Medi@

Find User
New Needs

Internet

Orders
Handled

Internet

Handled
Searching

Order

MonitoringSystem

Available Non Available
Pre-Order

Item

System
Database

Communication

Shopping
Cart

Querying

Classic

Evolution

Item

Order

Form

Fax

Pick

Phone

Check Out

Order

Adaptable

Standard

Handled

Add ItemSelect Item

Update GUI

Figure 5. Strategic Rationale diagram for

Medi@

The incoming goal dependencies of the actor representing the system (Medi@
actor in Figure 4) from the actor representing the organization (Media actor in Figure
4) correspond to organization objectives, i.e. they are needs/requests to the system.
Thus, Process Internet Orders (Figure 4) is an instance of the �
� ��
� ��
�� �

�� � �� �
� � class. The incoming goal dependencies of the actor representing the system
(Medi@ actor in Figure 4) from the actor not representing the organization (Media
Supplier actor in Figure 4) correspond to system objectives, they are needs/requests to
the system. Thus, Find New User Needs goal (Figure 4) is an instance of the �� ���� �

�� � �� �
� ��class.
All the outcoming dependencies of the actor representing the system (Medi@ actor

in Figure 4) correspond to external information, i.e. they are needs/requests from the
system to the environment. Thus, Internet Services and Process On-line Money
Transactions are instances of the �� ��
� �� class.

After a means-ends analysis of the Medi@ actor, we define the Strategic Rationale
(SR) model (Figure 5). Now, we introduce softgoal contributions to model
sufficient/partial positive (respectively ++ and +) or negative (respectively -- and -)
support to Security, Availability, Adaptability, Attract New Customers and Increase
Market Share softgoals.

Applying Guideline IG2 of the proposed process, we find that all the goals
resulting from means-ends analysis of the Medi@ actor (Figure5) correspond to

system goals, i.e. they are the state of affairs the system aims to achieve through its
functionalities. Thus, Internet Orders Handled, Item Searching handled, Classic
Communication Handled and Internet Handled goals (Figure 5) are instances of the
�� ���� �� � �� �
� �� class. All softgoals resulting from means-ends analysis of the
Medi@ actor (Figure 5) correspond to requirements, they are non-functional
requirements that the system must to satisfy. Thus, Adaptable, Attract New Customer,
Available and Secure softgoals (Figure 5) are instances of the
�� �

�� �� � class. All
the tasks resulting from means-ends analysis of the Medi@ actor (Figure5)
correspond to requirements, they are operations that the system should able to
perform. Thus, Update Catalogue, Produce Statistics, Internet Shop Managed,
Database Querying, Catalogue Consulting, Secure Form Order, Standard Form
Order, Get Identification Detail, Check Out, Add Item, Select Item, Adaptation,
System Evolution, Monitoring System, Update GUI, Shopping Cart, Phone Order,
Fax Order and Pre-Order Non Available Item tasks (Figure 5) are instances of the

�� �

�� �� � class�

Now we can design the proper system architecture aiming to meet the non-
functional requirements previously defined. Hence, we can apply the requirement
traceability process to the Tropos architectural design phase in order to show how the
design information and management decisions can be traced. The Rational model
(Figure 3) captures this information. However, the use of guideline IG3 is not shown
in this work. An interested reader can find an example of its use in [4].

After selecting the proper architectural style, we can apply it to the system and find
the system architectural model (See [5], for further details). For the sake of space, we
will not apply the proposed process to perform traceability in architectural design
phase. We could, for example, create a traceability matrix between
�� �

�� �� � and
�� � �� ���� instances.

Next section shows how the information gathered can be structured, as well as how
the relationships between them can be instantiated.

4.2 Applying guidelines for Information Structuring (ST)
Having gathered all the relevant information, we can now structure it according to the
second stage of the requirement traceability process. For simplicity we will not
explicitly show the deletion or revision of gathered instances performed according to
Guideline ST1. For the sake of space, we could only show the creation of the
traceability matrix capturing the mean-ends analysis of Medi@ system depicted in
Figure 5.

In this paper, we highlight the traceability of means-ends analysis of the system
actor Medi@ (Figure 5). Applying Guideline ST2, we can, for example, define the
instances of the <<resource>> relationship between
�� �

�� �� � and �� ����
�� � �� �
� �� classes and between
�� �

�� �� � and � ��� � �� � �
� ���� � �� � � � � in the
Requirements Management model (Figure 1) and call them 	� � ! " � #$# % & ' (and
	� " � %) & % respectively. We can also define several instances of the <<resource>>
association between instances of the
�� �

�� �� � class and call them
� � �#* �) & ' + ,
	� � ! " � #$# % & ,� - , �. " " ,$& ' + and � % $,�) #� $& ' + . One instance of the <<resource>>
association between
�� �

�� �� �� and �� ���� � �� � �� �
� ��� � �� � � � � can be called
	� � ! " � #$# % & ' (is needed. Similarly an instance of the <<allocated_to>> association

between
�� �

�� �� � and �� � �� ���� classes in the Design sub-model can be
defined (see Figure 2).

Applying Guideline ST3 to each instance defined in ST2, we can define the
correspondent set of valid values. The influence between system objectives and
functional requirements can be evaluated as <H> (High), <M> (Medium) or <L>
(Low) and corresponds to the first component of the tuple which composes the
association 	� � ! " � #$# % & ' (. The second component of the tuple is always <A> (read
A as AND). The means-ends analysis could be mapped using
� � �#* �) & ' + ,
	� � ! " � #$# % & ' (, 	� � ! " � #$# % & ,� - , �. " " ,$& ' + and � % $,�) #� $& ' + relationship. For
example, the task decomposition link can be instantiated as <A> (read A as AND),
while the means-ends link can be instantiated as <O> (read O as OR) corresponding
to the second component of the tuple which composes the association. The first
component of the tuple is always H (High). The relationship used in the NFR
framework (++, +, --, -) can be mapped in the following away, the positive and
negative influence can be mapped to the �. " " ,$& ' + and � % $,�) #� $& ' + association
respectively. The non-functional requirement is supported or contradicted in a
sufficient (S) or partial (P) way which are the values of the first component of the
association tuple. The second component is <A> (read A as AND) for all the
instances.

5.3 Applying guidelines for defining the Traceability Matrixes (TM)
Having structured all the gathered information, we can now create traceability
matrixes according to the third stage of the requirement traceability process. Applying
the Guidelines TM1 and TM2, we can, for example, create a traceability matrix to
the instances of the <<resource>> association between
�� �

�� �� �� called

� � �#* �) & ' + , 	� � ! " � #$# % & ,� - , �. " " ,$& ' + and � % $,�) #� $& ' + (Table 2, 3, 4, and 5). An other
example is to create a traceability matrix between instances of the
�� �

�� �� � and
�� ���� � �� � �� �
� � classes, called 	� � ! " � #$# % & ' ((Table 6), of the Requirement
Management sub-model (Figure 1).

The SR model describes the intentional relationships that are “internal” to actors,
such as means-ends relationship and task decomposition [8]. The components that
participated in the means-ends relationship and task decomposition are mapped as
follows: the tasks and softgoals elements in the�	� � ! " � #$# % & ,� - matrix (Table 3) and
the tasks and goals elements in the 	� � ! " � #$# % & ' (matrix (Table 6).

For example, Table 2 indicates that the placement of an order (RF03) requires the
use (realized by) of a Shopping Cart (RF13). According to Table 3 the shopping cart
involves (i.e. it is AND decomposed into) the selection of item (RF14), its addition to
the cart (RF15), proceeding to check it out (RF16) and providing the relevant
identification details (RF17). In turn, Table 6, indicates that there are two means (OR
- alternatives) of getting the identification information (RF17), either using the
internet (SO06) or using classic means such as sending a fax (SO05).

The matrixes are also useful to find which functional requirements are related some
non-functional requirement. For this purpose, we use �. " " ,$& ' + and � % $,�) #� $& ' + �

matrixes�� Table 4 shows that the security non-functional requirement (RN07) is
partially supported by the use of monitoring systems (RF18) and secure forms
(RF18). Unfortunately this security constraint may partially hinder System Evolution

(RF08). Moreover, the use of Standard Form is (RF19) is not adequate (RF19) as far
as security is concerned. The matrixes could also be used to estimate the impact of a
change. For example, suppose that the following request is made: the customer may
wish to be informed of items which might be related to the ones he has ordered (see
Table 7). After we find the initial requirements, we use the
� � �#* �) & ' + � link to follow
the trace of the other requirements that could be influenced by this change. Hence we
use the 	� � ! " � #$# % & ' (and 	� � ! " � #$# % & ,� - �matrixes to find the requirements that are
part of the decompositions created during the means-ends analysis.

Table 2. Realized_by Matrix

� � �#* �) & ' + �
<<resource>>

����
 [R

F0
1]

 B
ro

w
se

C

at
al

og
ue

[R
F0

3]
 P

la
ce

O

rd
er

[R
N

02
] S

ec
ur

ity

[RF12]
Catalogue
Consulting

<H,A>

[RF13] Shopping
Cart <H,A>

[RN07] Secure <H,A>

Table 3. Decomposition_req Matrix

	� � ! " � #$# % & ,� - �

<<resource>>
����

[R
F1

3]
 S

ho
pp

in
g

C
ar

t

[R
F1

4]
 S

el
ec

t I
te

m

[R
F0

5]
 In

te
rn

et
 S

ho
p

M

an
ag

ed

[RF13] Shopping
Cart

[RF14] Select Item <H,A
>

[RF15] Add Item <H,A
>

[RF16] Check Out <H,A
>

[RF17] Get
Identification Detail

<H,A
>

[RF20] Pick
Available Item <H,A

>

[RF21] Pre-order
Non Available Item <H,A

>

[RF06] Produce
Statistics <H,A

>

[RF07] Adaptation <H,A
>

Table 4. Support_by Matrix

�. " " ,$& ' + �
<<resource>>

����

[RN07]
Secure

[RF09] Monitoring System <P,A>

[RF18] Secure Form Order <P,A>

Table 5. Contradict_by Matrix

� % $,�) #� $& ' + �
<<resource>>

����

[RN07]
Secure

[RF08] System Evolution <P,A>

[RF19] Standard Form Order <P,A>

Table 6. Decomposition_obj Matrix

	� � ! " � #$# % & ' (
<<resource>>

����

[R
F0

5]
 In

te
rn

et
 S

ho
p

M

an
ag

ed

[R
F1

7]
 G

et

Id
en

tif
ic

at
io

n
D

et
ai

l

[SO03] Internet Orders
Handled

<H,A>

[SO04] Item Searching
Handled

<H,A>

[SO05] Classic
communication Handled <H,O>

[SO06] Internet Handled <H,O>

Table 7. Depend_on Matrix

	� " � %) & /�
<<resource>>

����

[CP01] The system should
suggest items which might
be related to the ones the
customer has ordered.

[RF01] Browse
Catalogue

<H,A>

[RF03] Place
Order

<H,A>

In the sequel we present some related work as well as a comparison with our
approach.

6 Related Work

Ramesh [9] introduces the reference model to trace requirements. This model enables
the user to extract and adapt their elements to construct his/her own requirement
model for a specific project. Our work includes new concepts and relationships types,
such as the task concept and the resource relationship, improving the semantic of the
reference model. It also considers the rationale model. Gotel in [2] presents one result
of the empiric work related with the identification and understanding of the problems
and practices associated with the requirements traceability. She divided the traditional
requirement into pre-requirement and pos-requirement traceability. Our proposal
explicitly addresses external and organizational aspects, as well as the system ones.
Toranzo in [3] introduces a set of types of relationships and structure the traceable
information in levels (external, organizational and management) to improve the
semantic of requirement traceability. Our work extends Toranzo’s work but includes a
process to be followed during the development of the traceability model. Cysneiro
[10] presents an approach that can be used to generate traceability relations between
organizational models specified in i* and software systems models represented in
UML. Our work considers a reference model which supports building traceability
matrixes for agent based systems. Haumer [11] extends the type of pre-requirements
traceability defined by Gotel [2]. He, for instance, uses goal attainment and failure
pre-traceability relations between goal-oriented requirement models and collections of
observed cases of system usage encoded in multimedia (e.g., video and audio), in
order to inform review activities which are concerned with the assessment of
adequacy of these models, and he also provides method and tool support to use them
in a reference base to support explanation, review, and negotiation of the conceptual
models. Our proposal, beyond consider a requirements elicitation and validation
phase, it encloses other phases of software development lifecycle, such as early
requirements and architectural design phases.

All the works above contributed to improve the requirements traceability in some
aspects. Our proposal outlines a process to help the software engineer to find and
structure the necessary information to perform traceability in a specific project using
the Tropos methodology. By using this process, we can register the whole “history” of
a requirement in an agent-oriented system, from the motivations for the requirement
existence until its implementation and test routines.

7 Conclusions

Requirement traceability has been recognized by many as an important pre-requisite
for developing and maintaining high quality software. In this work, we outline a
process that can be used to extend Tropos to address requirements traceability.

We intend to develop a complete and usable requirement traceability process for
Tropos aiming to ensure the quality improvement of both the methodology and the
software developed with it.

The benefits of requirements traceability are manifold: software quality can be
improved since we can check if all stakeholders’ requirements are addressed by the
system. Similarly, an impact analysis can also be performed before the
implementation of a requested change. This is possible because the requirements
impacted by the change can be detected since the links between these requirements
and other system’s artifacts, such as design and implementation ones, can be traced.
Hence, estimating change and effort become more accurate and consequently we can
minimize the time and cost of software maintenance.

Our requirement traceability process is still evolving and further guidelines for
instantiating all the classes of the three reference models (Requirement Management
and Design sub-models and Rational model) for each phase of Tropos may be
required. In particular, we need to support both the detailed design and
implementation phases. Proper tool supporting this requirement traceability process is
also another topic that needs to be addressed.

8 References

1. Pinheiro, F. A. C. (2003) “Requirements Traceability”, Chapter of the Book Perspectives On Software
Requirements. Kluwer Academic Publishers.

2. Gotel, O. (1996) “Contribution Structures for Requirements Engineering”. PhD Thesis. Department of
Computing, Imperial College of Science, Technology, and Medicine, London, U.K.3. Zisman, A.,
Spanoudakis, G., Pérez-Miñana, E. and Krause, P. (2003) “Tracing Software Requirements Artefacts”,
in The 2003 International Conference on Software Engineering Research and Practice (SERP 2003) in
conjunction with The International Multiconference in Computer Science and Computer Engineering,
Las Vegas, June 2003

3. Toranzo, M. (2002) “A Framework to Improve Requirements Traceability” (in Portuguese: Um
Framework para Melhorar o Rastreamento de Requisitos). Ph.D thesis, Universidade Federal de
Pernambuco, Centro de Informática, Brazil, December 2002.Ramesh, B. and Jarke, M. (2001)
“Towards Reference Models For Requirements Traceability”. IEEE Transactions on Software
Engineering, vol. 27, pp. 58-93, January 2001.

4. Castor, A., Pinto, R., Castro, J. and Silva, C. (2004) “Towards Requirement Traceability in TROPOS”,
in Proc. of the VII Workshop on Requirements Engineering (WER’04), Tandil, Argentina.

5. Castro, J., Kolp, M. and Mylopoulos, J. (2002) “Towards Requirements-Driven Information Systems
Engineering: The Tropos Project”. Information Systems Journal, Elsevier, Vol 27, pp. 365-89.

6. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A. (2004) “Tropos: An Agent -
Oriented Software Development Methodology'”, in Autonomous Agents and Multi –Agent Systems 8
(3): 203-236, May 2004.

7. Giorgini, P., Kolp, M., Mylopoulos, J. and Castro, J. (2005) Tropos: “A Requirements-Driven
Methodology for Agent-Oriented Software”. Book Chapter. In Agent-Oriented Methodologies. ed. :
Idea Group, , p. 20-45.

8. Yu, E. (1995) “Modelling Strategic Relationships for Process Reengineering”. Ph.D thesis, University of
Toronto, Department of Computer Science.

9. Ramesh, B. and Jarke, M. (2001) “Towards Reference Models For Requirements Traceability”. IEEE
Transactions on Software Engineering, vol. 27, pp. 5-93, January 2001.

10. Cysneiros Filho, G., Zisman, A. and Spanoudakis, G. (2003) “Traceability Approach for I* and UML
Models”, in Proceedings of 2nd International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (SELMAS’03), Portland, May 2003.

11. Haumer, P. (2000) A Framework to Improve Requirements Traceability. Ph.D thesis, Informatik V.
RWTH Auchen, Auchen, Germanyl, Octuber 2000.

