

Experimenting a Requirements Engineering Process Based on Rational Unified
Process (RUP) Reaching Capability Maturity Model Integration (CMMI)

Maturity Level 3 and Considering the Use of Agile Methods Practices

Caroline Carbonell Cintra B.Sc.
Instituto de Informática

Universidade Federal do Rio Grande do Sul
DBServer Assessoria em Sistemas de Informação

cccintra@inf.ufrgs.br

Roberto Tom Price Eng. M.Sc. D.Phil.
Instituto de Informática

Universidade Federal do Rio Grande do Sul
tomprice@terra.com.br

Abstract

This work has the purpose of describing a software
development process with the following characteristics:
its scope lies within the requirements engineering
activities; it fulfills CMMI requisites for Requirements
Management and Requirements Development process
areas (maturity level 2 and 3, respectively); it is based on
RUP practices and activities where possible practices of
agile methods are employed.

Related work is considered and similarities as well as
differences to the process proposed here are pointed out.
Such process is presented in terms of each of its activity
flows, including mention to the artifacts and roles
involved on the activities. CMMI fulfillment is also
described, followed by the description of the main
contributions achieved by this work and comments on
future development.

1. Introduction

The current spectrum of software development
processes has been characterized by a constant revaluation
of the methodologies used in each organization [3], by the
value perceived in quality and productivity as means to
increase return on investment [22] and by the pursue of
continuous improvement [23] as a way to increase the
usually low rates of success and satisfaction achieved by
software projects [10].

The catalogue of development approaches available to
researchers and practitioners offers a variety of methods
and techniques as well as enables adaptation of these
approaches, according to organization type, project size,
requirements stability, etc. These approaches may be
described as specifications or as process models [30],
[24], [16], [17], may represent a development framework,
composing a generic process that needs to be instantiated

in each project [20], [11], or may be described by a set of
fundamental orientations based on principles and practices
to be followed [5].

In the matter of software development approaches,
special interest has been dedicated to requirements
engineering. Requirements are the starting point of all
software system definition and therefore they are crucial
factors for the success of any software project final
product. Requirements engineering is pointed as a major
risk as well as a major success factor in software projects
[29], [32], [7].

This paper proposes a requirements engineering
process based on the development approaches mentioned
above: a process improvement model, the CMMI,
Capability and Maturity Model Integration [30]; a
process framework, the RUP, Rational Unified Process
[20]; and a set of software development fundamental
principles and practices, represented by the agile methods
[5].

First, related work to the proposed process is
summarized, followed by a brief description of the
development approaches considered during the process
conception: CMMI, RUP and agile methods and the
rationale for their choice. Afterwards, the proposed
requirements engineering process is briefly sketched, by
describing its components, focusing on its activity flows.
Orientations about the usage of agile methods practices
are mentioned and the process compliance to CMMI is
described. Finally, conclusions regarding this study are
presented, commenting on agile principles application,
CMMI compliance, contributions made by this paper and
future work.

2. Related Work

In [8], a method is proposed for the definition of
“development strategies” based on project risk analysis.
The approaches indicated to form development strategies

are: agile methods; plan-driven approaches
(methodologies that emphasize planning); and methods
based on the CMMI. The method proposed by Boehm and
Turner is focused on strategies to solve risks. It is not
dedicated to defining a specific development process,
such as the requirements engineering process proposed in
this paper.

The PMT, Pattern-based Methodology Tailoring
approach, presented in [15], also uses risk analysis criteria
to instantiate software development methodologies. In this
approach, the instantiated development processes are
formed by organizational patterns, recurrent solutions for
human work organization observed in proved success
projects. The specific features and risks associated to each
project are used as inputs to determine of the
organizational patterns that form the project development
process. PMT does not define a specific process to be
followed, focusing more on process patterns
recommendations for a given project than on their
implementation and integration.

Several other studies discuss the integration of the
approaches studied in this paper – CMMI, RUP and agile
methods – in different ways. Several authors study RUP
compliance to CMMI, considering its principles and
practices, and defining possible ways to complement it
[33], [23], [14], [12], [31], [1]. Some studies analyze RUP
and agile methods compliance, their common points and
risk areas, as well as strategies to hybrid development
processes [20], [21], [1], [2], [27], [9]. There are also
studies that state that CMMI and agile methods may be
used together, creating a synergy that makes it possible for
an organization to benefit from both of them [18], [26],
[25].

An approach described in [22] integrates different
methodologies in order to define a development process.
It is based on process frameworks as means to implement
agile values and principles within an organization that has
an institutionalized development process which is in
compliance to RUP and CMMI. Focusing on values,
principles and practices of agile methods, some features of
RUP are explored to increase process productivity. Such
approach is similar to the one used in this paper.

The approach described in [22] focuses on strategies
for building the organization process framework whilst
this paper focuses on the process itself, its activities, roles
and artifacts, as well as its institutionalization within an
organization, limited to requirements engineering.

3. Development Approaches

CMMI defines a set of goals and practices to be
followed and executed during a development project.
CMMI models are organized into process areas that group
related goals to a specific context. An organization must

progressively reach specific process area goals in order to
reach compliance to CMMI. By reaching theses goals, the
organization increases its maturity level, which varies
from 1 to 5.

Two process areas are related to requirements
engineering: Requirements Management, executed by
maturity level 2 organizations, and Requirements
Development, implemented by maturity level 3
organizations. The process defined in this paper intends to
reach the goals of these two process areas.

RUP is a process framework in which the proposed
process elements definition is based. It describes a series
of activities, roles and artifacts that need to be selected
according to each software project.

RUP process elements are organized into disciplines.
The discipline directly related to this paper is the
Requirements discipline, whose elements are partially
included in the process proposed here.

After creating the proposed process using contributions
from CMMI and RUP, an effort was made in order do
include principles and practices from agile methods in the
process. These methods use a lightweight software
development process, without a strict definition of work
products and activities, which values communication and
interpersonal collaboration, the generation of tangible
results and a the capacity to accommodate changes.

4. Requirements Engineering Process

The following sections describe the requirements
engineering process proposed in this paper.

4.1. Overview

The requirements engineering process proposed here

was conceived and institutionalized in a software
development organization. It is part of a global
development process created by this organization with the
objective of significantly improve its development process
productivity and the quality of its software products.

The global process follows the RUP lifecycle,
composed by Inception, Elaboration, Construction and
Transition phases. Each phase executes a set of activity
flows, using RUP-based process components: roles,
artifacts and activities.

The role concept is a description of behavior and
responsibilities of a particular person or group. Behavior
is described by activities associated to the role.
Responsibilities are defined based on artifacts created,
update and/or controlled by the role. An artifact is a
portion of information that is produced, modified or used
during a process. The activities describe orientations
about what should be done by each role, producing the
project artifacts.

The activity flows of the requirements engineering
process are:

1. Define System Scope;
2. Refine Software Requirements;
3. Manage Changes.
Each one of these flows is formed by a set of activities.

Each activity is executed by one or more members of the
team that perform a certain role. Some activities are
present in more than one flow, and are called recurrent
activities.

4.2. Artifacts

The artifacts produced during the process execution

are:
Input Documents: documents related to the project,

possibly produced before the beginning of the process and
often related to requirements.

Requirement Attributes: data gathered during the
requirement analysis process: indicators and registering
information, status and indexes such as importance for the
business, relevance for the architecture, size (or
complexity) estimates and development priority.

Traceability Matrixes: used to document dependency
between requirements. It is possible do document
traceability explicitly using tables, spreadsheets or
requirements management tools, or implicitly, using other
project artifacts.

Glossary: used to document common vocabulary used
in the project, using client’s terms. It is created in the
beginning of the project and it evolves during the system
development.

Vision Document: in this document it is defined the
vision that all people related to the project have about the
product that needs to be delivered, concerning main
needs, features and acceptance criteria.

Software Requirements Specification (SRS): it captures
a global vision of all requirements with a brief description
of each one.

Requirement Functional Specification: it complements
the system Software Requirements Specification (SRS),
giving further information about a specific functionality. It
describes with details the interaction between the actors
(users or external systems) and the system that happens to
fulfill the requirements.

Domain Model: model of the initial objects of the
system or another representation of the essential entities of
the system.

Interface Prototype: description of one or more
interface with the system user; it may be, for example, a
functional prototype, screen sample or even free-hand
drawings.

Change Request: it documents the necessity of a
change (defect, improvement or new requirements),

information about impact, status and reasons for the
decisions taken about implementing the change.

Project Repository: it has all the artifacts used in the
software development process.

Approvals: official communications sent by the client,
stating acceptance of a delivered artifact.

4.3. Recurrent Activities

Activities executed repeatedly during process work

flows: Manage Requirements and Assure a Common
Vision.

Manage Requirements activity contributes to scope
management and change control of the project, and it
involves the maintenance of the requirement attributes,
including requirement development priority and
traceability.

Requirement attributes are information such as size or
complexity, business and system architecture importance,
status and changes history. Traceability relationships
represent dependencies between project requirements and
artifacts, in such a way that a requirement change may
imply on the need to change other related requirements or
artifacts. Development priority is an attribute determined
based on client’s immediate needs, on system architecture
relevance, on project risks, on requirement impact and on
any other goal or restriction that is important for the
project.

Assure a Common Vision activity addresses knowledge
management between each person involved on the
development process. This activity involves group
requirement analysis, artifact revision by team members
and by client, approval gathering and Glossary
maintenance.

4.4. Define System Scope

 It’s goal is to define the problem to be solved by

the system, identifying system needs, features, acceptance
criteria and software requirements.

The activities to be performed are:
Understand Customer Requirements: customer

requirements are stakeholder needs, expectations and
constraints [29]. This activity involves: identifying project
requirement providers; understanding the problem;
defining system limits, identifying what is part of the
system and what is not; identifying stakeholder needs and
constraints and defining system features.

Understand Product Requirements: it means to refine
customer requirements, defining system software
requirements. These requirements may be functional or
non-functional (usability, reliability, performance and
support requirements among others). The suggested

technique to identify and document these requirements is
the one used in RUP: use case modeling [6].

Manage Requirements and Assure a Common Vision
(described under the Recurrent Activities section of this
paper).

4.5. Refine Software Requirements

The goal of this activity workflow is to refine

requirements identified during scope definition. The
workflow activities are:

Specify Software Requirement: to detail the software
requirements found during the system scope definition, to
refine analysis models and to update all other artifacts that
need to be updates. Once more, the suggested technique is
de use case modeling, specifying each use case using its
description, event flows (basic and alternatives), business
rules and user interface prototype.

Model Interface: to create a representation of the
system interface with the user, including screen
prototypes, storyboards, integration tests with interface
tools and any other mechanism that give feedback about
usability and performance of the system, and to validate
the comprehension of its business rules.

Analyze the Domain: to create a domain model that
represents the relation between the business objects of the
system. It contributes with the activities of design and data
modeling.

Manage Requirements and Assure a Common Vision
(described under the Recurrent Activities section of this
paper).

4.6. Manage Changes

Change management aims to register requirement

changes, to analyze their impact and to decide about when
to implement them. The activities considered here are
(Figure 1):

Submit Change Request: it happens when a project
participant, client or team member, notices the need for a
change on system requirements. The reason for this
change may be a problem on requirement analysis or
business comprehension, incompatibility between
requirements or even improvement opportunity. The
perceived requirement change is described and submitted.

Complement Change Request: right after it has been
submitted, a Change Request has only an initial
description of desired changes. The next step is to
complement the request by registering information that
will be used to decide whether the changes shall be
accepted or not. Complementing the Change Request
means revising and further detailing the Change Request
description and recording impact analysis considerations.

Analyze Change Request: after complementing the
Change Request, one must decide whether the change will
be implemented or not, considering project goals and risks
and change impact and benefits. This activity represents
the analysis done in order to take this decision. It includes
registering the decision taken. If the Change Request is
accepted, this activity triggers a project replanning
(outside the scope of the activity).

Fig. 1. Manage Changes

5. Considering Agile Practices

Even though there is a vast catalogue of development
methods, techniques, and strategies proposed by the agile
methods, it has been observed that these resources are
difficult to insert into the requirements engineering
process described in this paper. The reasons for this to
happen may be the following:
1. Agile methods have simplified definitions and they

have promoted project team self-organization.
Therefore these methods do not define a set of
elements specifically dedicated to requirements
engineering. That makes it difficult to clearly identify
how to apply agile methods within the context of a
requirements engineering focused process.

2. Agile methods bring more advantages when their
practices are used in synergy. Executing a software
development process that employs only a portion of
agile methods practices is less productive and more
risky, once several techniques can only be well
succeeded when applied together [13]. Since the
process proposed on this paper is restricted to
requirements engineering discipline, one must not
assume that the techniques used in the other
development process disciplines will follow agile
methods. This context makes it difficult to insert agile
method techniques in the proposed process.

3. This work has been developed within a specific
organization whose typical projects do not include the
characteristics indicated to the use of agile methods.
Some of the characteristics of the projects developed
in this organization are: large and heterogeneous
teams; international customers; customer request for a
certain level of formality in the project
documentation.

Considering the items listed above, but still
acknowledging the benefits that may be reached using
agile methods, the following strategy was adopted: instead
of adopting specific techniques, an approach based in
values, principles and practices of the agile methods is
used. These values, principles and practices may be used
inside the activities of the proposed process.

The major points of agile practices in the development
process activities are described below:

Face-to-face “conversation” and “communication”
[19], [2], [4], “assume simplicity” [2], [4] and “model
with others” [2] are practices that can be used in all
process activities, notably in group requirement analysis
held as part of the Assure a Common Vision activity of
the proposed process.

“Self-organized teams” [28] may also be largely used,
as long as each activity input and output are predefined
and listed as part of process description. The team
autonomy is used to determine techniques used to perform
each activity.

“Active participation of stakeholders” [2] may be used
during the process, and should involve “conversation”
[19] and “use of simple tools” [2].

Agile Modeling practices may be used through the
process, once a large number of those practices are
strongly related to requirements engineering. In fact, it has
been detailed described in [2] how to apply agile
modeling practices and techniques within a project using
unified process.

Finally, Manage Change activity promotes practices
such as “embrace change” [4], [2] and “maximize
stakeholder investment” [2], once stakeholders are part of
the change control board that defines whether changes
will be implemented or not.

6. CMMI Compliance

The table below describes how CMMI goals and
practices associated to Requirements Management and
Requirements Development process areas are reached by
the proposed process activities.

Table 1. Fulfillment of CMMI Goals and Practices
REQM Requirements Management (ML2)
SG1 Manage Requirements
SP.1.1 Obtain an Understanding of

Requirements
Activity Understand Customer Requirements

Understand Product Requirements
Assure a Common Vision

SP.1.2 Obtain Commitment to
Requirements

Activity Manage Requirements
Manage Changes

SP.1.3 Manage Requirements Changes
Activity Manage Changes
SP.1.4 Maintain Bidirectional

Traceability of Requirements.
Activity Manage Requirements
SP.1.5 Identify Inconsistencies

between Project Work and
Requirements

Activity Assure a Common Vision
RD Requirements Development (ML3)
SG1 Develop Customer Requirements
SP.1.1 Elicit Needs
Activity Understand Customer Requirements
SP.1.2 Develop Customer

Requirements
Activity Understand Customer Requirements
SG2 Develop Product Requirements
SP.2.1 Establish Product and Product-

Component Requirements
Activity Understand Product Requirements

Specify Software Requirement
Analyze Domain

SP.2.2 Allocate Product-Component
Requirements

Activity Understand Product Requirements
Specify Software Requirement
Analyze Domain

SP.2.3 Identify Interface Requirements
Activity Specify Software Requirement

Model Interface
SG3 Analyze and Validate Requirements
SP.3.1 Establish Operational Concepts and

Scenarios

Activity Specify Software Requirement
SP.3.2 Establish a Definition of

Required Functionality
Activity Specify Software Requirement
SP.3.3 Analyze Requirements
Activity Manage Requirements

Assure a Common Vision
SP.3.4 Analyze Requirements to Achieve

Balance
Activity Understand Customer Requirements

Assure a Common Vision
SP.3.5 Validate Requirements with

Comprehensive Methods
Activity Assure a Common Vision

7. Conclusions

7.1. Contributions

The main contribution represented by this study is

describing a case study that brings together widely
adopted software process development approaches that
are usually employed separately: CMMI process goals and
practices, RUP-based activity flows, roles and artifacts;
and agile method best practices as part of process
execution guidelines.

This case study might benefit organizations that are
currently defining or improving their development process
and it might be used to: comprehend alternatives to
integrate the used approaches; acquire knowledge about
how to work on development process points that might be
difficult to define and institutionalize, particularly in a
process based on CMMI, RUP and agile methods;
understand how goals, practices and principles from
distinct software development approaches might
contribute to improving the organization adopted process.

The requirements engineering process proposed here
also represents a contribution and might be used by
organizations interested in improving its processes and
results.

7.2. Future Work

Although this work has reached its final goal by
institutionalizing the proposed development process,
activities related to result evaluation and organization
process improvement remain being executed. The process
described in this paper continues to evolve in a controlled
manner, adapting to characteristics of projects developed
within the organization and constantly incrementing its
guidelines and best practices repository.
Some future work opportunities are:

1. Complementing the requirements development
process described here with a detailed requirement
related metrics plan. After defining such a plan, those
metrics must be collected in every project, creating
historical data that will support future decisions
related to the process.

2. Complementing the process by including a detailed
analysis of CMMI generic goals and practices
concerning maturity level 2 and 3. Such goals and
practices were considered during this process
elaboration but should be further explored and
associated to each process activity.

3. Experimenting agile methods principles, practices
and techniques in a variety of projects, using the
proposed process, in order to identify specific process
activities that might leverage such resources and
integrate them into process description.

8. References

[1] AMBLER, S. W. Agile Modeling and the Unified Process.
2001.
http://www.agilemodeling.com/essays/agileModelingRUP.htm
[2] AMBLER, S. W. Agile Modeling: Effective Practices for
Extreme Programming and the Unified Process. New York: John
Wiley & Sons, Inc., 2002.
[3] AVISON, D. E.; FITZGERALD, G. Where Now for
Development Methodologies? Communications of the ACM,
v.46. n.1, p. 79-82, January 2003.
[4] BECK, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley Longman, Inc.: 2000.
[5] BECK, K. et al. Manifesto for Agile Software Development.
Agile Alliance. 2001. http://www.agilemanifesto.org/
[6] BITTNER, K.; SPENCE I. Use Case Modeling. Addison-
Wesley Professional: 2002.
[7] BOEHM, B. Software Risk Management: Principles and
Practices. IEEE Software, v.8, n.1, p.32-41, January 1991.
[8] BOEHM, B.; TURNER, R. Using Risk to Balance Agile and
Plan-Driven Methods. IEEE Computer. v.36, n.6, p. 57-66, June
2003.
[9] BOOCH, Grady.; Martin, Robert C; Newkirk, James. The
Process. Preliminary chapter of Object Oriented Analysis and
Design with Applications. 2d. ed.: Addision Wesley Longman:
1998. http://www.objectmentor.com/publications/RUPvsXP.pdf
[10] CLEGG, C. et al. The Performance of Information
Technology and the Role of Human and Organizational Factors.
tech. report. Economic and Social Reseach Council: UK: 1996.
[11] FIRESMITH, D; HENDSRSON-SELLER, B. The OPEN
Process Framework: An Introduction. Addison-Wesley
Professional, December 2001.
[12] FITZGERALD, B.; RUSSO, N. L.; O’KANE, T. Software
Development Method Tailoring at Motorola. Communications of
the ACM, v.46, n.4, p. 65-70, April 2003.
[13] FOWLER, M. Is Design Dead?. May, 2004.
http://www.martinfowler.com/articles/designDead.html
[14] GALLAGHER, B.; BROWNSWORD, L. The Rational
Unified Process and the Capability Maturity Model – Integrated

Systems/Software Engineering. RUP/CMMI Tutorial : ESEPG:
Carnegie Mellon University: 2001.
[15] HARTMANN, J.; PRICE, R. T. Utilizando padrões
organizacionais e avaliação de risco para adaptar a metodologia
de desenvolvimento de software. Dissertação de Mestrado:
Universidade Federal do Rio Grande do Sul, Instituto de
Informática, Programa de Graduação em Computação: Porto
Alegre: 2004.
[16] ISO 9000-3. ISO 900-3 Guidelines for the Application of
ISO9001 to the Development, Supply, and Maintenance of
Software. Int’l Standards Organization, Geneva, 1991.
[17] ISO/IEC 12207. ISO/IEC 12207 Information Technology –
Software Life-Cycle Processes. Int’l Standards Organization,
Geneva, 1995.
[18] JEFFRIES, R. Extreme Programming and the Capability
Maturity Model. XProgramming.com, XP Magazine: 2000.
http://www.xprogramming.com/xpmag/xp_and_cmm.htm
[19] JEFFRIES, R. Essential XP: Card, Conversation,
Confirmation. 2001.
http://www.xprogramming.com/xpmag/expCardConversationCo
nfirmation.htm.
[20] KRUCHTEN, P. The Rational Unified Process: An
Introduction. 2nd ed. Addison-Wesley: March de 2001.
[21] KRUCHTEN, P. Agility with the RUP. Cutter IT Journal,
The Journal of Information Technology Management. Cutter
Consortium. v.14, n.12, p. 27 – 33, December 2001.
[22] LYCETT, M.; MACREDIE, R. D.; PATEL, C.; PAUL, R.
J. Migrating Agile Methods to Standardized Development
Practice. IEEE Computer. v.36, n.6, p. 79-85, June 2003.
[23] MANZONI, Lisandra; PRICE, Tom. Identifying Extensions
Required by RUP (Rational Unified Process) to Comply with
CMM (Capability Maturity Model) Levels 2 and 3. In IEEE
Transactions on Software Engineering: vol. 29: no. 2: 2003:
pp.181-192.
[24] PAULK, Mark C. et. al. Key Practices of the Capability
Maturity Model, Version 1.1. Technical Report: CMU/SEI-93-
TR-025: 1993.

[25] PAULK, Mark C. Extreme Programming from a CMM
Perspective. IEEE Software: November/December 2001: pp. 19-
26.
http://www.agilealliance.org/articles/articles/XPFromACMMPer
spective-Paulk.pdf
[26] REIFER, D. J. XP and the CMM. IEEE computer.org –
IEEE Computer: 2003.
http://www.computer.org/software/homepage/2003/s3man.htm
[27] SANTOS, J. B. Extraindo o melhor de XP, Agile Modeling
e RUP para melhor produzir software. Vice-Reitoria
Administrativa, PUC-Rio: November 2002.
[28]. SCHWABER, K. The Impact of Agile Processes on
Requirements Engineering. 2002.
http://www.agilealliance.org/articles/schwaberkentheimpacto/vie
w?searchterm=requirements
[29] SEI. Capability Maturity Model Integration (CMMI),
Version 1.1, CMMI for Software Engineering (CMMI-SW,
V1.1), Staged Representation. August 2002.
http://www.sei.cmu.edu/cmmi/models/sw-staged.doc
[30] Software Engineering Institute. Process Maturity Profile,
CMMI v1.1, SCAMPI v1.1 Class A Appraisal Results, 2005
Mid-Year Update. CMMI Appraisal Program. Carnegie Mellon
University, Pittsburgh, PA, USA: September 2005.
[31] SMITH, J. Reaching CMM Levels 2 and 3 with the
Rational Unified Process. White Paper: Cupertino: CA: 2000.
[32] SOMMERVILLE, I. Requirements Engineering, An
Overview. Class Presentation. Lancaster University, UK: 2001.
[33] TYSON, B; BROWNSWORD, L.; BROWNSWORD, R.
Leveraging RUP and CMMI for Real-World Successes. Software
Engineering Institute – Carnegie Mellon University, Number Six
Software: 2004.
http://www.numbersix.com/csdi/documents/ESEPG-
CMMIandRUP-Final.pdf

