

Analyzing Basic Problem Frames in i* Context

Maria Lencastre
1
, Keldjan Alves

1
, Renata Melo

1
, Fernanda Alencar

2

1Department of Computer Systems, Polithecnical School, Pernambuco University

Rua Benfica, 455 Madalena, 50750-410, Recife – PE – Brazil
{mlpm@dsc.upe.br, kao, rpllfm}

2Department of Electronics and Systems, Federal University of Pernambuco

Rua Acadêmico Hélio Ramos s/n, 50740-530, Recife – PE – Brazil
{fmra@ufpe.br}

Abstract

Problem Frames and i* are two broadly used

approaches that require a good background from the

requirements engineering. Both approaches have

typical traits that fit in equivalent. On the other hand,

there are features that do not fit. Thereby, there are

some points which need improvements on both of them.

This work analyzes the five basic problem frames,

defined by Michael Jackson, in the i* context. Our aim

is to identify how can they be represented in i* and

what gains are achieved if problem frames concept can

be applied in i* modeling (like for example simplicity,

completeness and flexibility of the built models).

1. Introduction

The need to address problem structure and

classification, in a more sharply focused and explicit

way, is analyzed by Jackson in [3]. In his works he

regards particular problem classes as characterized by

problem frames. Problem Frames [4] is an approach for

requirements analysis and problem domain

specifications which groups problems by type, and call

them problem frames; they are problem oriented rather

than solution oriented. Problem Frames approach

represents the real problem through several descriptions

about the application domain. There is a repertoire of

recognized problem classes which includes the

associated characteristics, difficulties and solution

methods. With these structures specialization, the

developer can emerge and reach incremental advances

in software development. In this paper we use Problem

Frames, in uppercase, to reference to the approach and

problem frames, in lowercase, to reference problem

classes.

Considering Problem Frames potentiality to describe

problems, in this work we investigate the modeling of

the existing repertoire of basic problem frames [4], also

called elementary frames, through i* diagrams [9]. This

will make possible to evaluate the real improvements in

i* approach, if such classes of problems are available

during i* modeling. Our strategy was to model only

these basic problem frames, because they gather some

important features, such as: they are a representative

variety of different kinds of problems; they have the

advantage of being limited to 5 diagrams; and they

introduce the concept of patterns in the problem space.

This paper is organized in the following way. Section

2 describes problem frames concepts. Section 3 shows

the i* approach. Section 4 describes the five basic

problem frames, from the existing repertoire, and

presents the corresponding i* models; this section also

illustrates the use of both approaches using part of the

car parking example taken from [6]. After, in section 5 a

discussion about the obtained models is done. Finally,

section 6 draws some conclusion and points out

directions for future work.

2. Problem Frames Concepts

A problem frame is a kind of pattern that captures

and defines commonly found classes of simple sub-

problems. It is just a generic problem, but instead of

showing specific domains and requirements, it shows

types of domains and types of phenomena. A problem

frame distinguishes some broad types of domains - used

as domain marks - according to their principal

characteristics. Each type of domain demand different

kinds of description and raise different development

concerns. Domains can be: (i) Causal domain: its

properties include predictable causal relationship among

its causal phenomena, they are referenced as a C in the

right border corner of the domain, see Fig 1, the

Controlled Domain. (ii) Biddable domain: usually

consists of people; it lacks positive predictable

characteristic of a biddable internal causality; they are

referenced by a B, see Fig 5, the Operator Domain. (iii)

Lexical domain: this is a physical representation of data,

that is, of symbolic phenomena. It combines causal and

symbolic phenomena in a special way; they are

referenced by an X, see Fig 13, the Workpieces

Domain. The phenomena, at the interface between

domains, can be classified as: Causal phenomena (C),

which are directly caused or controlled by a domain

(events, roles, or states relating entities), events can also

be identified by (E); and Symbolic phenomena (Y),

which symbolize other phenomena and relationships

among them (values, truths, states relating values).

Each problem frame has a concern that must be

addressed in any problem of the class. The concern

identifies the descriptions one must fit together properly

in a correctness argument: requirement, specification

and domain description. If one tries to fit a problem into

an inappropriate class, the resulting development will

certainly be unsuccessful. A problem of a composite

class is first decomposed into sub-problems

characterized by elementary frames.

Composite frames are essentially parallel

compositions of elementary frames. For some composite

frames it is necessary to introduce additional created

domains that mediate between sub-problems. In general,

the creation of such an additional domain becomes a

sub-problem in its own right, with its own elementary

problem frame. Such an elementary frame is called a

partial elementary frame, because the problems it

characterizes can never be independent problems in

their own right but occur only as sub-problems.

The repertoire of Jackson’s basic problem frames

includes the following: Required Behavior, Commanded

Behavior, Information Display, Simple Workpieces and

Transformation. All of these will be used and described

in our work. Note that, the repertoire of problem frames

is not restricted to elementary and partial elementary

frames it also includes composite frames, but here we

will only focus on the elementary ones.

3. The i* approach

The i* approach [10] can be used for: (i) obtaining a

better understanding of the organizational relationships

among the various organizational agents; (ii)

understanding the rationale of the decisions taken; and

(iii) illustrating the various characteristics found in the

early phases of requirements specification. The

participants of the organizational setting are actors with

intentional properties, such as, goals, beliefs, abilities

and compromises. These actors depend upon each other

in order to fulfill their objectives and have their tasks

performed. The i* approach consists of two models: the

Strategic Dependency Model (SD) and the Strategic

Rationale Model (SR).

The SD model focuses on the intentional

relationships among organizational actors. It includes a

set of nodes and links connecting them, where nodes

represent actors (depender and dependee) and each link

indicates a dependency between two actors (dependum).

An actor can depend on another one to satisfy a goal,

execute a task, provide a resource or satisfy a softgoal.

The SR model is used to: (i) describe the interests,

concerns and motivations of participants’ processes; (ii)

enable the assessment of the possible alternatives in the

definition of the process; and (iii) provide the rationale

behind the dependencies between the various actors. In

this model, two new types of relationships (links) are

incorporated: (i) means-end links, which suggest that

one model element can be offered as a means to achieve

another model element; (ii) task-decomposition links

that describe what should be done in order to perform a

certain task. In order to guarantee consistency among

models, all SD dependencies are preserved in the SR

model.

4. Representing Jackson’s Basic Problem

Frames Using i* Models

In this section we use the i* for modeling each class

of problem introduced in Jackson’s basic repertoire.

The idea is to make available the existing classes of

basic problems for the i* modelers, in a clear and

familiar way, allowing them to apply these classes in

future works.

This section is organized in the following way. Each

basic problem frame in presented in an individually

subsection, and each subsection: first presents the idea

of the problem frame under discussion and the

correspondent diagram, using Problem Frame notation

(taken from [3]); then an application of the problem

frame is illustrated; after each problem frame is

represented using i* model; and, finally, to make it more

understandable, the i* model is illustrated through the

same example.

The example, which will be used here, is the car

parking example taken from [6]: “To use a car parking

system, a client gets a ticket from an entry machine

after pressing a button. Afterwards, the car is allowed

to enter. When s/he wants to leave the parking place,

s/he has to pay the ticket in a paying machine. After

paying, the client can leave by inserting the ticket into

an exit machine. The system has to control car parking

information, validate car entries and exits”. Due to

simplification purpose, in this paper we use only part of

the example, focusing on the “Car Exit Authorization”.

This part represents a system that requires

functionalities such as to: validate user, verify correct

payment, register car exit in the database, and command

the car liberation or not. To help in the modeling of the

basic problem frames in i* we use the relation presented

in [7].

4.1 Required behavior problem frame

The idea of this problem frames is: “There is some

part of the physical world whose behavior is to be

controlled so that it satisfies certain conditions. The

problem is to build a machine that will impose that

control”.

Fig. 1. Required behavior problem frame

Required

Behavior

C3 Control

Machine (CM)

CM!C1

CD!C2

Controlled

Domain (CD)

C

The control machine (CM) is the machine to be built,

Fig. 1. The controlled domain (CD) is the part of the

world to be controlled. The requirement, giving the

condition to be satisfied by the behavior of the

controlled domain, is called the Required Behavior. The

interface of shared phenomena with the machine

consists of: C1, which is controlled by the machine

(CM), and C2, which is controlled by the controlled

domain (CD). The machine affects the behavior of the

controlled domain through the phenomena C1; the

phenomena C2 provides feedback. The requirement is

expressed in terms of C3 phenomena of the controlled

domain. These are the requirement phenomena. In

general, C3 will be different from C1 and C2. This gap

must be bridged by indicative domain properties by the

controlled domain.

Fig. 2. Required behavior problem frame
modeled using i*

In Fig. 2, the corresponding model for the basic

problem frame is modeled. There we can see the

Behavior problem frame modeled using i*. Both of its

domains (CM and CD) where transformed into actors,

following [7]. The machine was represented as an

expanded actor (using the i* SR model), which has a

main task as default. The machine’s requirement is

transformed to a goal, which is a decomposition of the

main task. Note that C1, C2, and C3 are all casual

phenomena, which means events, roles, or states (in

Problem Frames). So the transformation of each of them

is not trivial, because we do not have the same meaning

in i*. Each one of these phenomena is transformed in a

different way in Fig 2. The reason is that: C1 is a

machine command and so it is transformed to a task; C3

is at requirement level (due to its position as a

requirement phenomena), so it is transformed to a goal;

and finally, C2 is a feed back supplied by the Controlled

Domain, and does not necessarily has a correspondence

to a task, this only occurs if C2 is an event (as presented

in Fig. 2). In the model we choose to represent it as a

task, but this is not part of the pattern.

An example of the application of the Required

Behavior frame is presented in Fig. 3. The car Exit

Authorizer represents the machine CM, and the Exit

Machine the controlled domain CD. The required

behavior is the liberation of car exit or not, following

the car parking payment rules. The C1 phenomena is

now represented by the {OpenGate[id,result]}, and the

phenomenon C2 by the phenomenon

{InformOperationResult} and the C3 phenomena which

is at requirement level is represented by the phenomena

{ExitAllowed or ExitNotAllowed}.

Fig. 3. Example of applying required behavior
problem frame

In Fig.4, the application of i* in the car parking

example is illustrated, following the Fig. 3.

Fig. 4. Example of applying required behavior
problem frame modeled using i*

4.2. Commanded behavior problem frame

The idea behind this frame is: “There is some part of

the physical world that has to be controlled, in

accordance with commands issued by an operator. The

problem is to build a machine that will accept the

operator’s commands and impose the control

accordingly”. The control machine and controlled

domain, and their phenomena C1, C2 and C3, are the

same as in the Required Behavior frame (see Fig. 5).

But now, there is also an operator, assumed to be a

biddable domain, as shown by B marking in the lower

right of the rectangle. The operator issues commands

(events E4) which are shared with the machine and

controlled by the operator. The requirement is named

Commanded Behavior. It constraints the behavior of the

controlled domain (CD), as represented by the dashed

arrow, by describing general rules for its behavior and

specific rules for how it must be controlled in response

to the operator’s command E4. The requirement

phenomena of the operator domain are the events E4,

which are also specification phenomena that are shared

with the machine. The operator is autonomously active

(no external stimulus is needed for it to cause the

events).

Exit Machine

(XM)

Car Exit

Liberation Exit Authorizer

(XM)

EA!{OpenGate[id,result]}

XM!{InformOperationResult}
XM!{ExitAllowed,

ExitNotAllowed}

Fig. 5. Commanded behavior problem frame

Fig. 6. Commanded behavior problem frame
modeled using i*

In Fig. 6, the corresponding model for the basic

problem frame is modeled using the i*. As it is very

similar to the previous problem frame (the required

behavior) we will comment only the transformation of

the Operator (which became also an actor) and its

interaction: E4 is converted to a task, as it is an event in

problem frames at specification level; the OP has the

responsibility of executing a task to attend this goal, that

is, of emitting the commands. However, there is no E4

goal, since the E4 phenomenon, represented at

requirement level, is only reference, not a constraint, to

the OP domain. Note that there is no arrow in E4 at this

level.

In Fig. 7 the corresponding model, of the basic

problem frame, is illustrated, but at this time applying it

in the car parking example. The E4 commands are, here,

the commands the driver emits through the machine,

and are represented as {RequestCarLiberation}. The

machine EA will then emit a command to OpenGate

sending a parameter which will guide the appropriate

Exit Machine behavior. The required phenomena,

corresponding to C3 are {exitAllowed or

ExitNotAllowed}.

Fig. 7. Example of applying commanded
behavior problem frame

In Fig. 8 the application of i* model to the example is

presented.

Fig. 8. Example of Commanded Behavior
problem frame modeled using i*

4.3. Information display problem frame

The idea behind this frame is: “There is some part of

the physical world about whose states and behavior

certain information is continually needed. The problem

is to build a machine that will obtain this information

from the world and present it at the required place in the

required form”. The part of the world about which

information is required is called the real world (see Fig.

9). The display is the part of the world where the

information is to be presented. The machine to be built

is called the information machine. The requirement is

called Display ~ RealWorld, suggesting that it stipulates

a correspondence between the symbolic requirement

phenomena Y4 of the display domain and the causal

requirement phenomena C3 – events or states – of the

real world. What shows on the display, interpreted as

information about the real world, must be true. The real

world is active and entirely autonomous. It causes

spontaneous events and state changes, it controls all the

shared phenomena at its interface with the machine, and

the requirement places no constraint on it.

The machine must satisfy the requirement constraint

by diagnosing real world requirement phenomena C3

from C1 phenomenon at its interface. The gap between

C1 and C3 must be bridged by causal domain properties

of the real world. To produce information the machine

must cause changes in the symbolic values and states

Y4 of the display domain by causing events E2 at its

interface with the display. In Fig. 9 the corresponding

model, of the information display problem frame, is

illustrated through an example. Here the involved

domains include the Real World and the Display

Machine. And the requirement is to have a

correspondence between the entry sensors of the real

world and the park Display.

Fig. 9. Information display problem frame

Control Car

Exit

CommandsAccepted
Driver (D)

EA!{OpenGate[id,result]}

XM!{InformOperationResult}

Exit Authorizer

(EA)

Exit Machine

(XM)

XM! {ExitLiberated,

ExitNotLiberated}

OP!E4

Controlled

Domain (CD)
Control Machine

(CM)
Operator

(OP)

CM!C1

CD!C2 C3

E4

C

B

Commanded

Behavior

Information

Machine (IM)

Real World

(RW)

Display

(DP) IM!E2

C3

Y4

C

C

RW!C1

Display ~

Real World

D!{RequestCarLiberation}

In Fig. 10, the corresponding i* model for example

in Fig. 9 is presented. The C3 phenomenon does not

appear because it represents only a reference, not a

constraint, to the involved domain. Note that the Real

World domain was mapped as an actor, although its

intrinsic properties are lost in the transformation.

Fig. 10. Information display problem frame
modeled in i*

Fig. 11 illustrates the application of this basic problem

frame. At this time, the requirement is Display

Information according to the correct user payment.

Fig. 11. Example of applying information
display problem frame

In Fig. 12 the corresponding model (of this basic

problem frame) is illustrated, but at this time applying it

in the car parking example, following the correspondent

application in Fig. 11 (using Problem Frames notation).

Fig. 12. Example of applying information
display problem frame modeled in i*

4.4. Simple workpieces problem frame

The idea behind this problem frame is: “A tool is

needed to allow a user to create and edit a certain class

of computable processable text or graphic objects or

similar structures, so that they can be used subsequently

copied, printed, analyzed or used in other ways. The

problem is to build a machine that can act as this tool”.

This problem frame includes the machine domain

Editing Tool and the problem domains User, which is

biddable, and the Workpieces, which is lexical. At the

interface of shared phenomena we have phenomena

indicating event commands (E1, E3), and other

indicating symbolic phenomena (Y2 and Y4).

Fig. 13. Simple workpieces problem frame

The workpieces is inert domain: it may change its

state in response to an externally controlled event, but

initiates no state changes and no events. The events E3

are controlled by the user: they are the commands issued

by the user to the tool. Some of these commands will

not be obeyed. The requirement is called Command

Effects: it stipulates what effects the commands E3

issued by the user to the editing tool should have on the

symbolic values and state Y4 of the workpieces. The set

of phenomena Y4 may have nothing in common with

the set Y2, or may overlap it in any way at all. But of

course both Y2 and Y4 are symbolic phenomenon of the

Workpieces domain.

In Fig. 14 the corresponding model, of the basic

problem frame above, is modeled using the i*.

Fig. 14. Simple workpieces problem frame
modeled in i*

Fig. 15 illustrates and example of the application of

this basic problem frame. The requirement is

Commanded Effects be controlled.

Fig. 15. Example of applying simple workpieces
problem frame

In Fig. 16 the corresponding model (of this basic

problem frame) is illustrated using i*.

Control Park

Data

PDC!{UpdateCarExit[id]}

CPDB!{ParkExirUpdated}

Commands

CPDB{CarDataBeRegistered}

CarParkDatabase

(CPDB)

CarExitAuthorizer

(CEA)

Editing Tool

(ET)

E3

X

B

Y4

Park Controller

(PC)

(PC)
ParkDisplay

(PD)

Exit Machine (XM)
XM!{InformCarExit}

{CarExitingAfterPaying,

CarExitingWithoutPaying}

Display

Information

PD!{ExitInfornationDisplayed}

Workpieces

(WP)

User (US)

Command Effects

US!E3

ET!E1

WP!Y2

ParkDataController

(PDC)

PC!{InformExit Information}

CEA!{RequestToUpdateCarExit}

Fig. 16. Example of applying simple workpieces
problem frame in i*

4.5. Transformation problem frame

In the Transformation problem frame the idea is:

“There are some given computable readable input files

whose data must be transformed to give a certain

required output files. The output data must be in

particular format and it must be derived from the input

data according to certain rules. The problem is to build

a machine that will produce the required outputs”. The

inputs and the output domains are lexical. The inputs

are given; the outputs are to be made by the machine.

The requirement is called de IO Relation. It stipulates a

relationship between the symbolic phenomenon Y3 –

values and truths and states that relate them – of the

inputs domain and the symbolic phenomenon Y4 of the

output domain. The relationship must be established by

making the outputs appropriately. The inputs are given

and cannot be changed, The machine has access to the

phenomena Y1 of the inputs domain, an can determine

the symbolic phenomena Y2 of the outputs domain. Y1

may or may not be the same as Y3, and Y2 may or may

not be the same as Y4. The machine must lead with

more elementary phenomena (such as characters), while

the requirement refers to larger phenomena such as the

records and fields.

Fig. 17. Transformation problem frame

In Fig. 18 the corresponding model of this basic

problem frame is presented in i*. Note that, in this case,

the interaction between domains was through symbolic

phenomena (Y1, Y2, Y3, Y4). So there was no event

controlled by the machine. So in the transformation to

i*, the main task is created and one resource is created

(the INPUT), as a decomposition link, meaning that the

main task requires it in order to fulfill its work, and an

output resource is also created as a means-end,

representing that it must be generated (as an end) in

order to consider the task concluded.

Fig. 18. Transformation problem frame in i*

Fig. 19 illustrates an example of the application of

this basic problem frame. There, the machine Generator

is the machine that generates information about valid

payment.

Fig. 19. Example of applying transformation
problem frame

Fig. 20 illustrates the problem frame application

using the car parking example, following the

correspondent application in Fig. 19, using Problem

Frames notation.

Fig. 20. Example of applying transformation
problem frame in i*

{ResultofPayment

Verification}

EI!{PaymentData} Payment Data

 (PD)

G!{ResultofPayment

Verification}

Generator (G)
Relate Payment

Info with Correct

 Payment Result

ResultofPayment

Verification (RP)

{DriversPaymentData}

TM!Y2

Transform Machine

(TM)

Outputs (OU)

IO Relation

Y4

IN!Y1 Y3 Inputs (IN)
X

X

5. Discussions

Considering the transformations between both

approaches, presented in the previous section, and the

relationship proposed in [7], we can go a bit deeper in

our analysis and establish a criteria for modeling a

problem frame to a i* model:

1. Each machine is transformed into an expanded

actor, which includes a main task, and a main

goal (taken from the requirement).

2. All involved domains are transformed into

actors. However, attention must be taken to

lexical domains. When they include only

symbolic phenomena they must be represented

as resources, not actors (as exemplified in the

transformation frame).

3. Specification phenomena, at the interface level,

are transformed into dependencies between

actors.

4. Requirement phenomena are transformed to

dependencies involving goals, but only the

ones which are constrained in the Problem

Frame model (the ones that have an arrow).

This criterion makes it possible to follow a simple

way for representing all frames. Table 1 describes the

elements created in the i* model, in order to represent

each of the concepts presented in a problem frame, that

is, in a class of problem.

We have maintained the Problem Frames marks for

phenomena (C-causal, Y-lexical, E-event), as element

names in the i* models, (see Figure 2, 6, 10, 14 and18).

This can be seen as a potentiality to enrich the i*

semantic. However, domain types could not be

expressed in the transformation.

Table 1. Correspondences created in i* to
model a problem frame

Elements present in a

problem frame

Correspondent

element created in i*

Generic Machine Actor and a Main task

(use SR model)

Generic Requirement Main task goal

Problem Domains

(B-bidabble or C-causal)

Actors

Problem Domains

(L-lexical)

Actors or resources

Specification Phenomenon Dependum

(Y� resource, E � task,

C� goal)

Requirement Phenomenon -

constrained

Dependum (Goal)

Requirement Phenomenon –

not constrained

No correspondence

Domain marks (C-causal,

B-bidabble, L-lexical)

No correspondence

Phenomenon marks

(C-causal, E-event,

L-lexical)

Dependum’s name

(Y�resource, E�task,

C�Goal)

We can say that the representation of the basic

repertoire of problem frames was possible using i*,

however there are some important points which are still

not solved, and so there are gaps. Some modeling steps

do not have a so linear correspondence. An example of

this is the main task created, in the i* models, for every

frame; despite of having a well defined goal

(requirement), the creation of this task was only an

artifice to make it possible to represent the involved

subtask, resources and goals; and so has no

correspondence in Problem Frames. The causal

phenomena also do not have an appropriate

correspondence, so we have chosen a generic way for

the conversion. The domain marks are also lost in i*

modeling.

An advantage of having the basic frames in i*, is that

this approach is associated with existing tools [8], [10],

which help the developers in their works. Problem

Frames until now does not have a specific frame for

developing models. So, if stakeholders have in hand

well defined classes of problems, they have a way of

describing them, and so they can also apply them using

i*.

Also, the possibility of representing all problem

frames, that is, classes of problems in i* through a

hybrid notation as presented in the problem frames

modeled using i* (see Fig 2, 4 and 6, for example)

induces us to argue that now we can use i* to represent

other classes of problems. However, the use of patterns,

in complex model, must be considered a future work,

due to the involved complexity to deal with composite

pattern and also many patterns in a model.

Despite of the importance of problem frames, and of

the range of possibilities which can be inherited,

considering the proposed modeling, problem frames

seams to still require further improvements in order to

be viable and useful in complex structures.

Decomposition and further composition of problems,

pattern application and frame variants are still an up

today issue to be solved in the Problem Frame

Approach.

6. Conclusions

In this paper we investigated the possibility and gains

of modeling problem patterns in i*, following Michael

Jackson approach. To do so we used the Jackson’s

repertoire of 5 basic problem frames. For each of them

we proposed an equivalent model in i* and then, to

consolidate and make clear each of them (basic problem

frame and correspondent i* model), we made an

illustrative example applying each problem frame in

both approaches. This makes possible the analysis the

representation of them in i* and also to elaborate some

conclusions about the gains of making available such

basic repertoire for i* developers.

There are some related works which explore patterns

in i* and propose some architectural styles using i*

approach. In [2] is offered a set of information system

architectural styles which are motivated by

organizational theory. Their perspective complements

well, but also subsumes, proposals for multi-agent

architectures. In [1] the SIRA framework is proposed to

identify and map key architectural elements and the

dependencies among these elements, based on the stated

system requirements and organizational concepts.

In future works, we aim to make more complex and

detailed examples in order to obtain a more refined

analysis in the real improvements, that is, in terms of

quality attributes such as: simplicity, reuse,

completeness and flexibility in the built models. Other

future work is to propose a more formalized way of

leading with patterns in problems space considering the

i*. This work is also a substep towards a detailed

mapping between i* and Problem Frames and vice-

versa, which in turn will contributes for the definition of

a hybrid approach [2], [5], [7] which aim is to take the

benefit of i* , Problem Frames and other approaches

such as early aspects.

12. References

[1] L. Bastos, J. Castro, “Organizational Model to Derive

Multi-Agent Architecture from Requirements”, CAiSE'05

FORUM, 17th Conference on Advanced Information

Systems, 2005.

[2] J. Castro, “Integração de Técnicas de Requisitos com

Aspectos: O Caso TROPOS”, Projeto CGCI/CAPES/MEC

N.129/05, Programs of International Cooperation

Brazil/Portugal, 2005.

[3] M. Jackson, Problem Frames: Analyzing and Structuring

Software Development Problems, Addison-Wesley, 2001.

[4] M. Jackson, “Problem Analysis Using Small Problem

Frames”, South African Computer Journal 22, Special Issue

on WOFACS’98, 1999, pp 47-60.

[5] M. Lencastre, J. Araújo, A. Moreira, J. Castro, “Analyzing

Crosscutting in the Problem Frames Approach”, In: 2nd

International Workshop on Applications and Advances in

Problem Frames, ICSE’06, Shangai, China, 2006.

[6] M. Lencastre, J. Botelho, P. Clericuzzi, J. Araújo, “A

Meta-model for the Problem Frames Approach”, WiSME: 4th

Workshop in Software Model Engineering, Jamaica, 2005.

[7] M. Lencastre, F. Alencar, J. Castro, “Relating i* with the

Problem Frames Approach”, IDEAS’06, La Plata, Argentina,

2006.

[8] TAOM4E - Tool for Agent Oriented visual Modeling for

the Eclipse Platform, http://sra.itc.it/tools/taom4e/.

[9] E. Yu, “Modeling Strategic Relationships for Processing

Reengineering.”, PhD Thesis in Informatics, Department of

Computer Science, University of Toronto, Toronto, 1995.

[10] Yu, E. and Liu, L. (2005) “OME (Organization

Modeling Environment)”. Project homepage available at:

http://www.cs.toronto.edu/km/ome.

