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Abstract

Requirements encapsulation means organizing software
requirements into a set of requirements clusters with tight
cohesion along with external interfaces such that each clus-
ter can be ultimately implemented by a functionality mod-
ule. We propose an approach to encapsulating requirements
which includes two steps: clustering requirements based on
the similarity and associativity relations and then encap-
sulating each cluster by defining its external interface as
stimulus-response pairs. The potential benefits of encapsu-
lating requirements are reduced software development and
maintenance costs.

1. Introduction

Requirements encapsulation has the potential to reduce
software development and maintenance cost [8]. Organiz-
ing requirements into clusters and encapsulating the clusters
with external interfaces can help improve transition from re-
quirements engineering to design. In the literature, we find
many approaches for clustering requirements [12, 7, 11, 1];
however few specific approaches have been proposed for
encapsulating clusters. In this paper, we propose a require-
ments encapsulation method which involves an extensive
clustering algorithm and a process to create external inter-
faces for those clusters.

In our approach, we organize requirements into clusters
by decomposing each requirement into seven dimensions
with attribute values. A dimension is an information cate-
gory of requirements (e.g., Functionality, Quality, Subject,
Object, etc.) within an application environment. An at-
tribute within a dimension indicates the information gran-
ularity of requirements in the dimension. Attributes are or-
ganized hierarchically in each dimension according to their
granularity on information, and partial order relation gen-
eralization (or specialization) may exist between two re-
lated attributes. The factors which compose the clustering
requirements metric include three parts: (1)priority rank

of dimensionfor indicating the different impacts of differ-
ent dimensions to clustering, (2)degree of similaritywhich
describes the relationship among subjects, objects and ac-
tions of different requirements, and (3)degree of associa-
tivity which indicates the cohesiveness of requirements on
functionality, quality, time and location. The requirements
clustering algorithm is to derive the set of requirements
clusters with the clustering criterion based on the relations
among requirements, dimensions, and attributes. Then for
each requirements cluster, we define its external interface
with stimulus-response pairs. The relationships between re-
quirements in different clusters are maintained on the clus-
ter level and those are encapsulated as the associations be-
tween two modules. The ultimate goal of requirements en-
capsulation is to make sure that each encapsulated cluster
can be implemented by a functionality module.

Our requirements clustering criterion is more compre-
hensive than the previous methods [4, 12, 1, 8]. Also, the
external interfaces of requirements clusters may contribute
more to requirements-design-code reuse in practice.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses some related work. Section 3 proposes the
notion requirements dimensions and attributes. Section 4
defines the similarity degree and associativity degree. Sec-
tion 5 depicts the requirements encapsulation approach. Fi-
nally Section 6 gives a short conclusion.

2. Related Work

Two areas of research related to our work are clustering
algorithms and the box-structured decomposition method.
Below, we discuss the existing literature in these two areas.

The aim of requirement clustering is to organize related
requirements as clusters for forming the subsystems that ex-
hibit certain desired properties [11, 1]. It is widely used in
system decomposition [4, 12], software modularization [1],
requirement reuse [7, 2], requirements quality improvement
[7, 3, 13], and software product line [5, 6]. Typical clus-
tering criteria are based on the “distance” of requirements,
such assource similarity(number of matching attributes)



[1], external view(usability decomposition) [4, 12], and
functionality, time, andspace[8].

The box-structured system decomposition method was
first proposed by Mills [10, 9]. In this method, requirements
are considered as the “black box view” of the system, rep-
resented asstimulus-responsepairs. The system is imple-
mented through stepwise stimuli identification and response
specification. Freedom is a lightweight and customer-
centric software development methodology originally de-
veloped for NASA’s Space Station Freedom program [8].
Freedommethod takes requirements as a part of the soft-
ware, namely, its external interface, i.e., the black box view
of the system with stimulus-response pairs (named as stim-
ulus set) specified by customers and users. Stimulus sets
are organized asfunctionality tree, which is a schematic
diagram of the external interface of the software system.
The main principle ofFreedomdevelopment process is
the what-is-called Requirement Encapsulation Design Rule
(REDR) [8]: “create one functionality module for each
stimulus set of the functionality tree.”

It is reported in [8] that based on clustering techniques,
requirements encapsulation can reduce the total cost of soft-
ware over its entire life cycle by 16 to 30 percent depending
on the extent to which requirements reuse is employed.

Requirements clustering techniques address the relation-
ship between requirements. Requirements clusters con-
tribute to requirements reuse, but they are not sufficient for
design and code reuse, because they do not support either
clusters’ boundary definition or the relationship between
clusters, which are indispensable for design and code mod-
ularization. In today’s software development practice, the
boundaries of clusters and the relationship between clus-
ters are both indispensable for realizing REDR. We have
attempted to address these two issues in our approach.

3. Dimensions and Attributes

A dimensionof a requirement depicts an information cat-
egory of the requirement’s semantics within the application
environment. For instance,OBJECT andLOCATION are
two typical requirements dimensions.OBJECT addresses
the targetedresourcecategory of requirements in applica-
tions, andLOCATION specifies the location constraints im-
plied in requirements.Dimension attributeindicates the
similarity or associativity between requirements on a di-
mension, indicating the extent of cohesion. For instance,
Client-Datais an attribute in dimensionOBJECT.

Requirements may have more than one dimension, such
as Subject, Object, etc. [1, 8]. In our experience, require-
ments can be depicted from two perspectives:structureand
semantics. Each requirement is organized by some fixed
components (elements), typically includingsubject, object
andaction, indicatingwho can/may do or expect what be-

havior on what resource. For example, in requirement
“User may input client data”, User is a subject,Input is an
action, andClient-Datais an object. On the other hand, a re-
quirement expresses the functional or nonfunctional antici-
pation of the emerging system, as well as it indicates some
temporal and location constraints between requirements or
components of a requirement. These are called semantics of
requirements. As a requirement’s semantics directly affects
the subsequent design and implementation of this require-
ment, it should be considered during requirements analy-
sis process, in particular the clustering process in this pa-
per. We define four dimensions to capture the semantics for
each requirement:functionality, quality, timeandlocation.
Overall, our dimension set (DS) contains seven dimensions
that are defined below.

• SUBJECT (S). It depicts the actors category a require-
ment contains, i.e.,who.

• OBJECT (O). It depicts the targeted object category a
requirement contains, i.e.,to what resource.

• ACTION (A). It depicts the behavior category a re-
quirement contains, i.e.,do what.

• FUNCTIONALITY (F). It depicts the functional fea-
tures category a requirement addresses, i.e.,for what
functional goals.

• QUALITY (Q). It depicts the software quality capacity
category a requirement addresses, i.e.,for what non-
functional (quality) goals.

• TIME (T). It depicts the temporal constraints category
a requirement addresses, i.e.,when.

• LOCATION (L). It depicts the (spatial) location envi-
ronment category a requirement addresses, i.e.,where.

In the above,S, O, andA are taken as the criteria fac-
tors for clustering scenarios in [1].F, T, andL are used as
criteria to distinguish the requirements modules (stimulus
sets) in theFreedommethod [8].Q represents system-level
constraints, which is expressed or implied in related require-
ments. We bring them together for the purpose of cluster-
ing. In our approach, the way to distinguish two require-
ments in an application is the (structure) similarity degree
and (semantics) associativity degree, based on the degree of
similarity of the constituent attributes. The structural rela-
tionship between requirements is addressed by theSimilar-
ity relation, indicating the requirements may have same or
similar components such as subjects, objects and actions.
Similarity degreeis used in the three structure dimensions,
S, O, andA. The set of these is named asSimilarity Dimen-
sion Set(SDS). The semantic relationship between two or
more requirements is captured by theAssociativityrelation,



indicating the requirements may have similar functionali-
ties or quality attributes, and associated temporal or location
constraints.Associativity degreeis used in the four seman-
tics dimensions:F, Q, T andL. The set of these is named as
Associated Dimension Set(ADS).

Let us take dimensionT andQ as instances, we can de-
fine an attribute in dimensionT asSimultaneity, requiring
that some attributes should be handled at the same time.
There exist many other attributes inT, such asSequence,
Alternative, Exclusion, etc. [5]. DimensionQ includesReli-
ability, Performance, Portability, etc., which can be further
specialized with respect to the detail application. Different
applications may emphasize on different quality features.

Example 1: consider requirements R1 and R2:
R1: User may input client data (name, gender, birthdate);
R2: Super-user can input user data (name, password).

In R1 and R2,client dataanduser datacan be considered
as two attributes in dimensionO, written Client-Data
and User-Data, respectively. They can be taken as two
granular specializations of attributeData. Client-Datacan
be further specialized into three more granular attributes:
Name, Gender, andBirthdate. User-Datacan be further
specialized intoNameandPassword. On dimensionF, R1
and R2 imply thatInput-Datashould be an attribute inF
andInput-Client-DataandInput-User-Datacan be defined
as the two child attributes ofInput-Data. On dimension
T andL, it is implied thatName, Gender, and Birthdate
are required as client data to be input at same time (i.e.,
Simultaneity) and in same location (e.g., on same GUI).
Similar situation occurs withNameandPasswordas user
data. Other dimensions can be similarly explored as above.

Generally, attributes are organized as a hierarchical
structure in each dimension, calledattribute hierarchy
(AH), containing thespecialization(or generalization) re-
lations between requirements. We useAi �D Aj to indi-
cate the specialization relation fromAi to Aj in a hierarchy
AHD (D is a dimension,D ∈ DS). The transitive and
reflexive closure of the attribute specialization relationare
written as�∗

D. We call Ai as aparent (respectively,se-
nior) attribute ofAj (or Aj as achild (respectively,junior)
attribute ofAi) if Ai �D (respectively,�∗

D) Aj holds.
In AH, an attribute may have more than one child at-

tribute but can have at most one parent attribute. Attributes
with same name but within different dimensions or parents
are different. We define theattribute domain(AD) of at-
tribute A in D, written ADD(A), as the set of all senior
attributes ofA, formally,ADD(A) = {A′ | A′ �∗

D A}.
Example 2:AHO (the hierarchy in dimensionO) on R1

and R2 can be expressed as:
AHO: Data(Client-Data(Name, Gender, Birthdate),

User-Data(Name, Password))
So, we can derive:ADO(Data) = {Data}, ADO(Gender) =
{Gender, Client-Data, Data}, etc.

Table 1. Experienced dimension prioritization
Dimension Priority Rank
FUNCTIONALITY(F) 6
ACTION (A) 5
OBJECT(O) 4
TIME (T), LOCATION (L) 3
SUBJECT (S) 2
QUALITY (Q) 1

4. Degree of Similarity and Associativity

Dimensions can beprioritized based on the importance
for particular application. Prioritization is critical tothe
ultimate result of requirements clustering, since different
dimensions affect the result of clustering to different ex-
tents. For instance, software quality is generally considered
in a global perspective, which is measured in an integrated-
system view. So the impact of dimensionQ on requirements
clustering should be much weaker than that of dimensionF
or others, asF implies, during the design and code phases,
requirements with similar functionalities should be imple-
mented in same functional modules.

In real requirements practice, each dimension is assigned
with a numericalpriority rank indicating thesignificance
levelof the dimension into which all requirements are cat-
egorized and then modularized, comparing to others. Here
we try to give a rational descending rank order of the above
mentioned dimensions in Table 1.

For a requirementr, we usePrD to return the priority
rank on dimensionD, and useAttD(R) to represent the at-
tributes of requirement (set)R in dimensionD. Each at-
tribute in a dimension is assigned with aweight to indi-
cate the similarity or associativity degree on the attribute.
We useWtD(A) to represent the similarity or associativity
weightassigned on the attributeA in dimensionD. In prin-
ciple, if Ai �∗

D Aj holds,WtD(Ai) ≤ WtD(Aj).
Requirements in different applications are different, but

the requirements dimension set over all applications are
generally same (but just with different attributes inside).
Based on the prioritized dimensions and weighted at-
tributes, we can quantify the similarity degree (SD) in a
requirement set (RS ={r1, · · · , rn}) by the formula:

SDSDS(RS) =
∑

D∈SDS

PrD × WtD(AttD(RS)) (1)

WtD(AttD(RS)) =







Max(WtD(A)), here A ∈
ADD(∩n

i=1
Att(ri))

0, if ∩n
i=1

Att(ri) = ∅.
(2)



The associativity degree (AD) for a requirement set can
be quantified similarly to the aboveSD formula.

ADADS(RS) =
∑

D∈ADS

PrD × WtD(AttD(RS)) (3)

We use the formattribute name[weightvalue] to ex-
press the attribute (byattribute name) and its similarity or
associativity weight (byweightvalue).

Example 3: continuing the above example, we firstly
build the hierarchy in dimensionS on R1 and R2 as

AHS: User(Super-User, Normal-User)
Then we try to give the weight for each attribute inS andO
with our experience:
AHO: Data[1](Client-Data[2](Name[4], Gender[4],
Birthdate[4]), User-Data[2] (Name[3], Password[3]));
AHS: User[1](Super-User[2], Normal-User[2]).

We can calculate the related similarity degrees on{R1,R2}:
SDO({R1,R2}) = 1, as{R1,R2} share attributeData;
SDS({R1,R2}) = 1, as{R1,R2} share attributeUser.

5. Requirements Encapsulation

As mentioned in the introduction, our approach to en-
capsulating requirements includes two steps, first clustering
requirements and then encapsulating each cluster by defin-
ing its external interface (a set of stimulus-response pairs).

5.1. Clustering

To cluster a set of various entities, a measurement crite-
rion is important. In our approach, we define therequire-
ments clustering metric(RCM) of a requirement set (RS)
as follows, based on its similarity degreeSDSDS(RS) and
associativity degreeADADS(RS).

RCM(RS) = Log(SDSDS(RS)×ADADS(RS))C (4)

HereC is anadjustment factorto balance the size ofRS

(|RS|) and the decreasing trend ofSD andAD along|RS|
increasing1. For example, letC beLog(n) or

√
n.

Based on theRCM criterion, we propose there-
quirements clustering algorithmto automatically orga-
nize a set of individual requirements into a set of clus-
ters. Requirements-Dimensions-Attributes(RDA) relations
record the attribute (with its similarity/associativity degree)
of each requirement in each dimension.

Example 4: the attribute set of R1 in dimensionO
is {Name, Gender, Birthdate} [4] (the similarity degree

1TheSDSDS(RS) ×ADADS(RS) value will surely decrease when
|RS| increases. So we design a factor namedC to avoid two situations, (1)
adding a requirement into a cluster if it makes the value decreased much,
and (2) not adding a requirement into a cluster if it impacts the value little.

is 4). Its completehierarchical path is Data−Client-
Data−{Name, Gender, Birthdate}[4].

We use hierarchical path to uniquely identify each at-
tribute in a dimension, as there may exist some attributes
with same name in different dimensions. We also record
the hierarchical paths as the elements in the RDA table for
computing convenience in the algorithm.

Requirements Clustering Algorithm
Input: RDA, AHD (D ∈ DS), RS ={r1, · · · , rn}.
Output: {Ck

1 , · · · , Ck
n}. %%Ck

i is theith requirements cluster.
Body:
(1) Initialization: k = 1; ∀i : Ck

i = ri;
(2) Maximal Absorption on RCM

(3) Fori: Build Ck+1

i : Ck
i ⊆ Ck+1

i , ∀ C′k
i : Ck

i ⊆ C′k
i •

(4) RCM(Ck+1

i ) ≥ RCM(C′k
i );

(5) Overlay Adjustment on RCM

(6) If ∃i, j : Ck+1

i ∩ Ck+1

j 6= ∅

(7) FindC′k+1

i ⊆Ck+1

i , C′k+1

j ⊆Ck+1

j : C′k+1

i ∩C′k+1

j = ∅

(8) ∀ C′′k+1

i ⊆ Ck+1

i , C′′k+1

j ⊆ Ck+1

j • RCM(C′k+1

i )+

(9) RCM(C′k+1

i ) ≥ RCM(C′′k+1

i ) + RCM(C′′k+1

i );
(10) RebuildCk+1

i = C′k+1

i , Ck+1

j = C′k+1

j .

The above algorithm can be similarly implemented with
an undirected requirements graphG = (V, E) as in [4, 12].
Here,V is a finite set of vertices such that a vertex is a re-
quirement, andE is a finite set of edges such that an edge
is a relation between two requirements with the weight of
RCM on the connected requirements. In comparison with
the requirements clustering algorithms in [4, 12, 1, 8], the
most significant difference with our algorithm is the cluster-
ing criterion that relies on the RDA table.

5.2. Encapsulating Clusters

To encapsulate a cluster of requirements, we need to de-
fine the cluster’sexternal interface. In our approach, the
termexternal interfaceof a requirements cluster can be de-
fined as containing the cluster-level (or inter-cluster) rela-
tions with other clusters (i.e., requirements in other clus-
ters) and actors (users, system procedures, etc. which
have relations with the internal requirements), which are
evolved from the relations between requirements during the
clustering phase. Each cluster-level relation is specified
as astimulus-response pairto the cluster. The set of all
stimulus-response pairs organizes the external interfaceof a
requirements cluster, covering theexternal behaviorsof the
cluster during program modularization. The requirements
in a cluster and their internal relations are implemented
as in-module objects and object-level relations. While the
external interface can be implemented as module-level re-
lations through message communication. In our method,
stimulus and response are defined with this format:

stimulus= (sourcerequirement, trigger)
response= (target requirement, responsebehavior)



Heresource requirementin stimulusrefers to the require-
ment that launches theaction(namedtrigger) to another re-
quirement (namedtarget requirement). The possible behav-
ior of target requirements responding to the trigger is called
response behavior.

Example 5: let us consider the following requirement:
R3: Non-medical entries are added to any client record;

Suppose R3 and R1 are organized into two clusters by the
above algorithm. In this situation, R3 has a cluster-level
relation with R1, since any non-medical entries to a client
record can be added only if the client record has been
created, which is a temporal sequence constraint, requiring
that R3 can be possibly accomplished only after R1 being
accomplished. We can define the stimulus-response pair on
R1 and R3 as follows:

(R1, record-created)−(R3,activate-entry-option)
Here record-createdis the trigger that may grant R3 the
capability of activating non-medical entries, as the response
activate-entry-optionindicated.

Requirements Clusters Encapsulation Process
(1) Choose a non-encapsulated cluster;
(2) For each requirement in the cluster, define its relationsto the
requirements not in the cluster; then transform each relationship to
a stimulus-response (SR) pair;
(3) Adjust the derived SR pairs, unify the SR pairs with same sub-
jects, objects or actions; then if necessary, add one (or more) re-
quirement used as a unique internal interface (UII) to handle these
SR pairs with the external requirements, while other internal re-
quirements are all directly related with this requirement;
(4) Turn to step (1) if there exists any non-encapsulated clusters.

The above cluster encapsulation process is a semi-
automated process. Two tasks in this process need manual
effort. Those are (1) defining stimulus-response pairs, espe-
cially the naming of trigger and response behavior in each
pair (2) building UII in a cluster which needs the human ex-
perience to determine its necessity. After stimulus-response
pairs for each cluster are defined, we can code a module to
directly implement a cluster of requirements (here we omit
the design phase). The internal requirements attributes and
relations can be captured as packages, classes (or objects)
and members. The external interface can be addressed as
(public) access methods to the module.

6. Conclusion

We describe a requirements encapsulation method as a
means to reduce software development and maintenance
costs. The unique features of this method are that each clus-
ter maintains maximal independence from others and this
method supports defining clusters’ boundaries and the rela-
tionships between clusters. The proposed method needs to
be verified with empirical analysis; what is described here

are theoretical formulations of the concepts. The next step
in our research plan is to conduct empirical investigation
to measure its impact on the quality software development
processes and requirement-design-code reuse.
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