An Approach to Requirements Encapsulation with Clustering

Zude Li, Quazi A. Rahman, Nazim H. Madhavji
Computer Science Department, University of Western Omtari
London, Ontario, Canada, N6A 5B7

{zli263,qrahman2,madhayj@csd.uwo.ca

Abstract of dimensiorfor indicating the different impacts of differ-
ent dimensions to clustering, (Bggree of similaritywhich
Requirements encapsulation means organizing softwaredescribes the relationship among subjects, objects and ac-
requirements into a set of requirements clusters with tight tions of different requirements, and (8ggree of associa-
cohesion along with external interfaces such that each-clus tivity which indicates the cohesiveness of requirements on
ter can be ultimately implemented by a functionality mod- functionality, quality, time and location. The requirenn
ule. We propose an approach to encapsulating requirementsclustering algorithm is to derive the set of requirements
which includes two steps: clustering requirements based onclusters with the clustering criterion based on the refegio
the similarity and associativity relations and then encap- among requirements, dimensions, and attributes. Then for
sulating each cluster by defining its external interface as each requirements cluster, we define its external interface
stimulus-response pairs. The potential benefits of encapsuwith stimulus-response pairs. The relationships betweenr
lating requirements are reduced software development andquirements in different clusters are maintained on the-clus
maintenance costs. ter level and those are encapsulated as the associations be-
tween two modules. The ultimate goal of requirements en-
capsulation is to make sure that each encapsulated cluster
1. Introduction can be implemented by a functionality module.
Our requirements clustering criterion is more compre-

Requirements encapsulation has the potential to reducehens"ve than the previous methods [4, 12, 1, 8]. Also, the

. ._external interfaces of requirements clusters may contibu
software development and maintenance cost [8]. Organiz- : . . :
. i) : more to requirements-design-code reuse in practice.
ing requirements into clusters and encapsulating theerisist . ; ; .
. . . I The remainder of the paper is organized as follows: Sec-
with external interfaces can help improve transition fremr . . .
! tion 2 discusses some related work. Section 3 proposes the
guirements engineering to design. In the literature, we find " :
. . _notion requirements dimensions and attributes. Section 4
many approaches for clustering requirements [12, 7, 11, 1]; , .. L L
e defines the similarity degree and associativity degree- Sec
however few specific approaches have been proposed foE.
. : . ~tion 5 depicts the requirements encapsulation approaeh. Fi
encapsulating clusters. In this paper, we propose a require : . !
: - . ~nally Section 6 gives a short conclusion.
ments encapsulation method which involves an extensive
clustering algorithm and a process to create external-inter
faces for those clusters. 2. Related Work
In our approach, we organize requirements into clusters
by decomposing each requirement into seven dimensions Two areas of research related to our work are clustering
with attribute values. A dimension is an information cate- algorithms and the box-structured decomposition method.
gory of requirements (e.g., Functionality, Quality, Subje Below, we discuss the existing literature in these two areas
Object, etc.) within an application environment. An at- The aim of requirement clustering is to organize related
tribute within a dimension indicates the information gran- requirements as clusters for forming the subsystems that ex
ularity of requirements in the dimension. Attributes are or hibit certain desired properties [11, 1]. It is widely used i
ganized hierarchically in each dimension according torthei system decomposition [4, 12], software modularization [1]
granularity on information, and partial order relation gen requirementreuse [7, 2], requirements quality improvetmen
eralization (or specialization) may exist between two re- [7, 3, 13], and software product line [5, 6]. Typical clus-
lated attributes. The factors which compose the clusteringtering criteria are based on the “distance” of requirements
requirements metric include three parts: fitjority rank such assource similarity(number of matching attributes)

[1], external view(usability decomposition) [4, 12], and havior on what resource For example, in requirement

functionality, time, andspac€8]. “User may input client data Useris a subject|nputis an
The box-structured system decomposition method wasaction, andClient-Datais an object. On the other hand, are-

first proposed by Mills [10, 9]. In this method, requirements quirement expresses the functional or nonfunctional antic

are considered as thélack box view of the system, rep-
resented astimulus-responspairs. The system is imple-
mented through stepwise stimuli identification and respons
specification. Freedomis a lightweight and customer-

pation of the emerging system, as well as it indicates some

temporal and location constraints between requirements or

components of a requirement. These are called semantics of
requirements. As a requirement’s semantics directly effec

centric software development methodology originally de- the subsequent design and implementation of this require-
veloped for NASA's Space Station Freedom program [8]. ment, it should be considered during requirements analy-
Freedommethod takes requirements as a part of the soft- sis process, in particular the clustering process in this pa

ware, namely, its external interface, i.e., the black b@awi

per. We define four dimensions to capture the semantics for

of the system with stimulus-response pairs (named as stim-each requiremenfunctionality, quality, time andlocation
ulus set) specified by customers and users. Stimulus set©verall, our dimension set (DS) contains seven dimensions

are organized afunctionality tree which is a schematic
diagram of the external interface of the software system.
The main principle ofFreedomdevelopment process is
the what-is-called Requirement Encapsulation Design Rule
(REDR) [8]: “create one functionality module for each
stimulus set of the functionality trée

It is reported in [8] that based on clustering techniques,
requirements encapsulation can reduce the total costtef sof
ware over its entire life cycle by 16 to 30 percent depending
on the extent to which requirements reuse is employed.

Requirements clustering techniques address the relation-
Requirements clusters con-

ship between requirements.
tribute to requirements reuse, but they are not sufficient fo

design and code reuse, because they do not support either

clusters’ boundary definition or the relationship between

clusters, which are indispensable for design and code mod-

ularization. In today’s software development practice, th

boundaries of clusters and the relationship between clus-

ters are both indispensable for realizing REDR. We have
attempted to address these two issues in our approach.

3. Dimensions and Attributes

A dimensiorof a requirement depicts an information cat-
egory of the requirement’s semantics within the applicatio
environment. For instanc@BJECT and LOCATI ON are
two typical requirements dimension€BJECT addresses
the targetedesourcecategory of requirements in applica-
tions, and_OCATI ON specifies the location constraints im-
plied in requirements.Dimension attributeindicates the
similarity or associativity between requirements on a di-
mension, indicating the extent of cohesion. For instance,
Client-Datais an attribute in dimensio®BJECT.

that are defined below.

SUBJECT (S). It depicts the actors category a require-
ment contains, i.ewha.

e OBJECT (O). It depicts the targeted object category a
requirement contains, i.¢q what resource

ACTI ON (A). It depicts the behavior category a re-
guirement contains, i.edo what

e FUNCTI ONALI TY (F). It depicts the functional fea-
tures category a requirement addresses, foe what

functional goals

e QUALI TY (Q. It depicts the software quality capacity
category a requirement addresses, f@:.,what non-
functional (quality) goals

TI ME (T). It depicts the temporal constraints category
a requirement addresses, iwhen

LOCATI ON (L). It depicts the (spatial) location envi-
ronment category a requirement addresseslteere

In the above S, O, andA are taken as the criteria fac-
tors for clustering scenarios in [1F, T, andL are used as
criteria to distinguish the requirements modules (stiraulu
sets) in theFreedommethod [8]. Qrepresents system-level
constraints, which is expressed or implied in related negui
ments. We bring them together for the purpose of cluster-
ing. In our approach, the way to distinguish two require-
ments in an application is thetfucture similarity degree
and 6emanticsassociativity degreédased on the degree of
similarity of the constituent attributes. The structurelbr
tionship between requirements is addressed bythelar-

Requirements may have more than one dimension, suchty relation, indicating the requirements may have same or

as Subject, Object, etc. [1, 8]. In our experience, require-
ments can be depicted from two perspectiwtgictureand
semantics Each requirement is organized by some fixed
components (elements), typically includisgbject object
andaction, indicatingwho can/may do or expect what be-

similar components such as subjects, objects and actions.
Similarity degreds used in the three structure dimensions,
S, O, andA. The set of these is named &snilarity Dimen-

sion Set(SDS). The semantic relationship between two or
more requirements is captured by thssociativityrelation,

indicating the requirements may have similar functionali-
ties or quality attributes, and associated temporal ottioca
constraints Associativity degre& used in the four seman-
tics dimensionsF, Q T andL. The set of these is named as
Associated Dimension S@DS).

Let us take dimensiofi andQas instances, we can de-
fine an attribute in dimensioh as Simultaneity requiring

that some attributes should be handled at the same time.

There exist many other attributes T such asSequence
Alternative Exclusion etc. [5]. DimensioQincludesReli-
ability, PerformancePortability, etc., which can be further
specialized with respect to the detail application. Difar
applications may emphasize on different quality features.
Example 1: consider requirements R1 and R2:
R1: User may input client data (name, gender, birthdate)
R2: Super-user can input user data (hame, password)
In R1 and R2client dataanduser datacan be considered
as two attributes in dimensio®, written Client-Data
and User-Datg respectively. They can be taken as two
granular specializations of attribuata. Client-Datacan
be further specialized into three more granular attributes
Name Gender andBirthdate User-Datacan be further
specialized intdNameandPassword On dimensiorF, R1
and R2 imply thatnput-Datashould be an attribute iR
andInput-Client-DataandInput-User-Datacan be defined
as the two child attributes dhput-Data On dimension
T andL, it is implied thatName Gender and Birthdate

are required as client data to be input at same time (i.e.,

Simultaneity and in same location (e.g., on same GUI).
Similar situation occurs wittNameand Passwordas user

data. Other dimensions can be similarly explored as above.

Generally, attributes are organized as a hierarchical
structure in each dimension, callesttribute hierarchy
(AH), containing thespecialization(or generalizatioi re-
lations between requirements. We uég<p A; to indi-
cate the specialization relation fraf) to A; in a hierarchy
AHp (D is a dimension,D € DS). The transitive and
reflexive closure of the attribute specialization relatioa
written as=<7,. We call 4; as aparent (respectivelyse-
nior) attribute ofA; (or A; as achild (respectivelyjunior)
attribute of4;) if A; <p (respectively=%,) A; holds.

In AH, an attribute may have more than one child at-
tribute but can have at most one parent attribute. Attribute
with same name but within different dimensions or parents
are different. We define thattribute domain(AD) of at-
tribute A in D, written ADp(A), as the set of all senior
attributes of4, formally, ADp(A) = {A" | A’ <5, A}.

Example 2: AHQ (the hierarchy in dimensio®) on R1
and R2 can be expressed as:

AHp: Data(Client-DatgName, Gender, Birthda}e
User-Data(Name, Passwoil
So, we can derived Dp(Data) = {Data}, AD(Gende) =
{Gender, Client-Data, Dath etc.

Table 1. Experienced dimension prioritization
Dimension Priority Rank
FUNCTI ONALI TY(F)
ACTI ON(A)

OBJECT(O

TI ME (T), LOCATI ON(L)
SUBJECT (S)

QUALI TY (Q

PNWM~OOO

4. Degree of Similarity and Associativity

Dimensions can bprioritized based on the importance
for particular application. Prioritization is critical tthe
ultimate result of requirements clustering, since differe
dimensions affect the result of clustering to different ex-
tents. For instance, software quality is generally corrside
in a global perspective, which is measured in an integrated-
system view. So the impact of dimensiQon requirements
clustering should be much weaker than that of dimenbion
or others, a§ implies, during the design and code phases,
requirements with similar functionalities should be imple
mented in same functional modules.

In real requirements practice, each dimension is assigned
with a numericalpriority rank indicating thesignificance
level of the dimension into which all requirements are cat-
egorized and then modularized, comparing to others. Here
we try to give a rational descending rank order of the above
mentioned dimensions in Table 1.

For a requirement, we usePrp to return the priority
rank on dimensio, and useAtt, (R) to represent the at-
tributes of requirement (set® in dimensionD. Each at-
tribute in a dimension is assigned withwaeight to indi-
cate the similarity or associativity degree on the attebut
We useWtp(A) to represent the similarity or associativity
weightassigned on the attributé in dimensiorD. In prin-
Ciple, if A; jB Aj hO'dS,WtD (Al) < WtD(Aj).

Requirements in different applications are different, but
the requirements dimension set over all applications are
generally same (but just with different attributes inside)
Based on the prioritized dimensions and weighted at-
tributes, we can quantify the similarity degre8Zf) in a
requirement set (RS &, - - -, r, }) by the formula:

SDsps(RS) = > Prpx Wip(Attp(RS)) (1)
DeSDS

Maxz(Wtp(A)), here A €
ADD(ﬂzlzlAtt(Ti))
0, if NP, Att(r;) = 0.
)

Witp(Attp(RS)) =

The associativity degreed(D) for a requirement set can
be quantified similarly to the abowD formula.

ADpDS(RS) = > Prp x Wip(Attp(RS)) (3)
DeADS

We use the formattribute namgweightvalug to ex-
press the attribute (battribute namég and its similarity or
associativity weight (byveightvalug.

Example 3: continuing the above example, we firstly
build the hierarchy in dimensicBon R1 and R2 as

AHg: User(Super-UserNormal-Use)
Then we try to give the weight for each attributeSmndO
with our experience:
AHq: Data[1](Client-Datg2](Namg4], Gendef4],
Birthdatd4]), User-Datd2] (Nam¢3], Password3]));
AHg: Usel[1](Super-Use2], Normal-Usef2]).
We can calculate the related similarity degree§B,R2}:
SDo({R1,R2) =1, as{R1,R2Z share attribut®ata;
SDs({R1,R2) =1, as{R1,RZ share attribut&Jser.

5. Requirements Encapsulation

As mentioned in the introduction, our approach to en-

capsulating requirements includes two steps, first clunger

is 4). Its completehierarchical pathis Data—Client-
Data—{Name, Gender, Birthdaj¢4].

We use hierarchical path to uniquely identify each at-
tribute in a dimension, as there may exist some attributes
with same name in different dimensions. We also record
the hierarchical paths as the elements in the RDA table for
computing convenience in the algorithm.

Requirements Clustering Algorithm
Input: RDA, AHp (D € DS), RS ={r1,--
Output: {C¥},--
Body:

(1) Initialization: k = 1;Vi : C¥ = ry;

(2) Maximal Absorption on RCM

(3) Fori: Build CF ' cF c ekt v ok . CF C O e
4) RCM(CF) > RCM(CJF);
(5) Overlay Adjustment on RCM

(6) If3i,j:CH nCr #£0

° 7Tn}'
-, CEY. %% CF is theith requirements cluster.

(7) FindC/Fticoktl orkticobtt . giktineFtt = ¢
le+l — lk+1 J//k+1_ 7 k+1 ’ k41

® v CCm, O COiT e RCM(CT)+

9) RCM(CZ’k+1) > RCM(CZHk+1) + RCM(CZ{/kJrl);

(10) RebuildCf*! = /M, O = oY

The above algorithm can be similarly implemented with
an undirected requirements gra@gh= (V, £) as in [4, 12].
Here,V is a finite set of vertices such that a vertex is a re-
quirement, andF is a finite set of edges such that an edge

requirements and then encapsulating each cluster by definis a relation between two requirements with the weight of

ing its external interface (a set of stimulus-responsespair

5.1. Clustering

To cluster a set of various entities, a measurement crite-

rion is important. In our approach, we define tequire-
ments clustering metriGRC.M) of a requirement set (RS)
as follows, based on its similarity degré®gpg(R.S) and
associativity degred Daps(R.S).

RCM(RS) = Log(SDsps(RS) x ADADs(RS))C (4)

HereC is anadjustment factoto balance the size aR.S
(|RS|) and the decreasing trend 8D and AD along|RS)|
increasing. For example, le€ be Log(n) or \/n.

Based on theRCM criterion, we propose thee-
quirements clustering algorithnto automatically orga-
nize a set of individual requirements into a set of clus-
ters. Requirements-Dimensions-Attribu{@DA) relations
record the attribute (with its similarity/associativitggree)
of each requirement in each dimension.

Example 4: the attribute set of R1 in dimensi@n
is {Name, Gender, Birthdaje[4] (the similarity degree

1The SDgps(RS) x ADaps(RS) value will surely decrease when
|RS|increases. So we design a factor narG&i avoid two situations, (1)
adding a requirement into a cluster if it makes the valueelsad much,
and (2) not adding a requirement into a cluster if it impaltsvalue little.

RCM on the connected requirements. In comparison with
the requirements clustering algorithms in [4, 12, 1, 8], the
most significant difference with our algorithm is the cluste
ing criterion that relies on the RDA table.

5.2. Encapsulating Clusters

To encapsulate a cluster of requirements, we need to de-
fine the cluster'saxternal interface In our approach, the
termexternal interfacef a requirements cluster can be de-
fined as containing the cluster-level (or inter-clustetate
tions with other clusters (i.e., requirements in other clus
ters) and actors (users, system procedures, etc. which
have relations with the internal requirements), which are
evolved from the relations between requirements during the
clustering phase. Each cluster-level relation is specified
as astimulus-response paio the cluster. The set of all
stimulus-response pairs organizes the external intedbae
requirements cluster, covering tgternal behaviorsf the
cluster during program modularization. The requirements
in a cluster and their internal relations are implemented
as in-module objects and object-level relations. While the
external interface can be implemented as module-level re-
lations through message communication. In our method,
stimulus and response are defined with this format:

stimulus= (sourcerequirement, trigger
responses (targetrequirement, responsieehavio)

Heresource requiremen stimulusrefers to the require- are theoretical formulations of the concepts. The next step
ment that launches treetion(namedrigger) to anotherre- in our research plan is to conduct empirical investigation
guirement (namethrget requirement The possible behav- to measure its impact on the quality software development
ior of target requirements responding to the trigger issthll processes and requirement-design-code reuse.
response behavior

Example 5: let us consider the following requirement: Acknowledgement

R3: Non-medical entries are added to any client record

Suppose R3 and R1 are organized into two clusters by the \we would like to thank all members of the software en-

relation with R1, since any non-medical entries to a client gejence at University of Western Ontario.

record can be added only if the client record has been
created, which is a temporal sequence constraint, reguirin
that R3 can be possibly accomplished only after R1 being
accomplished. We can define the stimulus-response pair on
R1 and R3 as follows:

(R1, record-createdl-(R3,activate-entry-option

References

[1] T. N. Al-Otaiby, M. AlSherif, and W. P. Bond. Toward soft-
ware requirements modularization using hierarchical-clus
tering techniques. IMCM Southeast Regional Conference

Here record-createdis the trigger that may grant R3 the (2) (ACMSE’'05) pages 223-229, Kennesaw, GA, USA,
capability of activating non-medical entries, as the resgo 2005. ACM.
activate-entry-optiofndicated. [2] D.Benavides, A. Ruiz-Co#s, P. Trinidad, and S. Segura. A

survey on the automated analyses of feature modeBD,
Jog Riquelme and Pere Botella (E42006.

[3] A. Davis, S. Overmyer, and etc. Identifying and measgirin
quality in a software requirements specificationPhoc. of

Requirements Clusters Encapsulation Process
(1) Choose a non-encapsulated cluster;
(2) For each requirement in the cluster, define its relattortbe

requirements not in the cluster; then transform each aeisliip to 1st Int'l Software Metrics Symposiupages 141-152, Bal-

a stimulus-response (SR) pair; timore, MD, USA, 1993. IEEE.

(3) Adjust the derived SR pairs, unify the SR pairs with samie s [4] P. Hisa and A. T. Yaung. Another approach to system de-
jects, objects or actions; then if necessary, add one (oe)mer composition. InThe 12th Int'l Conf. on Computer Soft-
quirement used as a unique internal interface (Ull) to hattise ware and Applications Conference (COMPSAC 88ges

75-82, Chicago, IL, USA, 1988. IEEE.

SR pai ith th t | i t hile other irdkere- .
'rE:::esn::lare ae” Z)'(r;gar:s;l(;emtehntks]"sv:lel e.r(;meernlt' e [5] K. Lee and K. C.Kang. Feature dependency analysis for
qui : y W IS requi ’ product line component design. Rroc. of the 8th Int'l

(4) Turn to step (1) if there exists any non-encapsulatestets. Conf. on Software Reuse (ICSR'0B3ges 69-85, 2004.

Y. Lee and W. Zhao. A feature oriented approach to manag-

The above cluster encapsulation process is a semi- [6]))) o
ing domain requirements dependencies in software product

automated process. Two tasks in this process need manual X X)
P P lines. InProc. of the 1st Int’l Multi-Symposiums on Com-

effort. Those "’Tre) dgflnlng stimulus-response palr_$esp puter and Computational Sciences (IMSCCS,@8)06.

cially the naming of trigger and response behavior in each |7 . Lim. Effects of reuse on quality, productivity, andeec

pair (2) building Ull in a cluster which needs the human ex- nomics.|EEE Software11(5):23-30, 1994.

perience to determine its necessity. After stimulus-raspo [8] R.Lutowski. Software Requirements: Encapsulation, Qual-

pairs for each cluster are defined, we can code a module to ity and ReuseAuerbach Publisher, 2005.

directly implement a cluster of requirements (here we omit [°] gt.r E::t '\f:al:jss Ztsm'gsééecf?;?e{:r g{‘é)"ggf'gg'i‘;gg box-
H H H H uctu u £O—300, .

:Zfagngzapnhzzegghe internal requirements attrlbunés.an 43[0] H. D. Mills,)Il? Linger, and A. Hevner. Box structured in-

ptured as packages, classes (or object

! formation systems.IBM Systems Journal6(4):395-413,
and members. The external interface can be addressed as 1987.

(public) access methods to the module. [11] O. L. Villegas, M. Angel Laguna, and F. J. Gdec Reuse
based analysis and clustering of requirements diagrams. In
Proc. of Int'l Workshop Conf. on Requirements Engineering:
Foundation for Software Quality (REFSQ’02002.

[12] A.T. Yaung. Design and implementation of a requireraent

We describe a requirements encapsulation method as a clustering analyzer for software system decomposition. In
means to reduce software development and maintenance ~ ACM/SIGAPP Symposium on Applied Computing: Techno-
costs. The unique features of this method are that each clus- 'gﬁl'Ca’\;gggﬂﬁngeSSAOfltggezli%’Jages 1048-1054, Kansas
ter maintains maximal mdepende’nce from others and this [13] W.yihang, H. Mei, and H. Zhao. Feature-driven require-
metho_d supports defining clusters’ boundaries and the rela- ments dependency analysis and high-level software design.

tionships between clusters. The proposed method needs to Requirements Engineering1:205-220, 2006.

be verified with empirical analysis; what is described here

6. Conclusion

