
Extended Disambiguation Rules for Requirements Specifications

Sri Fatimah Tjong1, Michael Hartley1, Daniel M. Berry2

1Faculty of Engineering and Computer Science,
University of Nottingham Malaysia Campus,

Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

2Cheriton School of Computer Science, University of Waterloo,
200 University Ave. West, Waterloo, Ontario, Canada N2L 3G1

{kcx4sfj,Michael.Hartley}@nottingham.edu.my, dberry@uwaterloo.ca

Abstract

This paper extends earlier work by the authors in identi-
fying guiding rules for natural language (NL) requirements
specifications (RSs) by analysing a few sets of requirements
documents from different domains. It presents guiding rules
that help reduce ambiguities and imprecision in NL RSs. It
validates these rules by applying them to sentences in sev-
eral industrial strength NL RSs.

1 Introduction

In industrial requirements engineering (RE), regardless
of the availability of various notations such as diagrams, for-
mal notations, or even pseudo-code, natural language (NL)
is still the most frequently used representation in which to
state requirements that are to be met by information technol-
ogy (IT) products or services. It is widely known that NL
is inherently ambiguous and imprecise and so are require-
ments specifications (RSs) written in NL. As described in
Section 2, several researchers have proposed several meth-
ods for reducing the ambiguity and imprecision of NL RSs.

This work is an extension of work by the first author [20,
21] describing rules that guide a RS writer in writing less
ambiguous and more precise RSs. A thorough discussion
of these rules can be found in the first author’s technical
report on the subject [19]. This paper describes additional
guiding rules. The old rules and the new rules are derived
from an analysis of different RSs [16, 6, 11, 7]. Some of
the rules are derived from Denger’s rules [4]. Still others
are derived from confusions about RS statements that the
authors have observed. It is important to provide rules for

the kinds of ambiguities and imprecisions that exist in the
real world.

Even though ambiguity and imprecision are different
phenomena [1], this paper collapses both phenomena into
one term, “ambiguity”, since the distinction between the
two do not effect the nature of the guiding rules.

Guiding rules aim to reduce ambiguity in writing a RS.
Therefore, it is suggested that a RS writer consider these
rules when writing any NL RS. Other, perhapsmorebene-
ficial, uses of the rules are in inspecting

• client-supplied pre-analysis requirements documents
and

• post-analysis SRSs (software RSs)

for ambiguities. In the first case, a detected ambiguity
should trigger a question to be asked of the client, particu-
larly to avoid the natural subconscious disambiguation [10]
that occurs when one reads a document and thinks that she
understands it because there appears to be nothing ambigu-
ous about the document.

Section 2 reviews the past work. Section 3 describes the
full set of guiding rules and suggested possible rewritings
of potentially ambiguous requirements statements (RStats).
Section 4 describes the validation of the guiding rules on
Rstats in several industrial strength RSs. Finally, Section 5
summarises the paper and suggests future work.

2 Past Work

RE, being the core of software development, is con-
cerned with identifying the purpose of a software system

and the contexts in which it will be used. It facilitates effec-
tive communication of the requirements among different de-
velopers, users, and clients. However, there are times when
these requirements are not properly communicated and doc-
umented, which results in incorrectness, inconsistency, in-
completeness, and even misinterpretation.

To overcome this problem, some have defined rules to
limit the level of freedom in writing NL RSs. Rupp and
Götz [17] develop a set of rules that detect defects, ambigu-
ities, and weak phrases in RSs. They distinguish three main
language transformations, deletion, generalisation, and dis-
tortion, that help expose defects in RSs.

Juristoet al. [13] classify each requirement as static or
dynamic. They show how to recast any static requirements
into the structure of the Static Utility Language (SUL) and
how to recast any dynamic requirements into the structure
of Dynamic Utility Language (DUL). Each of SUL and
DUL is specified by a formal grammar and is composed
of several natural language structures each of which can be
translated into predicate logic. Therefore every utterance in
either language is not ambiguous.

Macias and Pulman [15] apply domain-independent Nat-
ural Language Processing (NLP) techniques to control the
production of NL requirements. Their study shows how
NLP techniques can help in the design of subgrammar of
an English grammar to limit the generation of ambiguous
NL Rstats.

Fuchs, Schwitter, and Schwertel [9, 18], describe a re-
strictive approach in their definition of a restricted NL
called Attempto Controlled English (ACE). ACE uses a
sublanguage of English that is simple enough to avoid am-
biguities, yet allows a domain specialist to define require-
ments in NL with the rigour possible with a formal specifi-
cation language.

Works summarised by Denger, Jörg, and Kamsties [5]
identify language indicators, sentence structures, and rules
that assist the RS reader in detecting ambiguous RStats in
NL RSs. The focus of their rules is RSs in the automotive
domain.

Another approach is to provide guidelines for writing
good RSs. Hooks [12] describes common problems found
RSs and suggests guidelines that help avoid them. Simi-
larly, Firesmith [8] describes both characteristics of a good
RS and potential problems that occur in writing a RS.

3 Guiding Rules

The guiding rules aim to avoid the introduction of ambi-
guities when writing any RStat. These rules are intended to
be used along with language patterns [4, 20, 21] in order to
reduce ambiguities in the writing of any RStat. In addition,
the guiding rules can also be used to help find ambiguities
in an existing RS.

In the rules and in examples, text from a RStat is typeset
in a sansserif typeface. A constant is such text is typeset in
an upright sansserif typeface, and a variable in such text to
be replaced by constant text of the variable’s type is typeset
in an oblique (a.k.a. slanted) sansserif typeface. The reader
should pay attention to the typeface of any punctuation at
the end of any such sansserif snippet to determine if the
punctuation is part of the snippet or part of the surrounding
explanatory text. When there are two adjacent punctuation
symbols, usually, the first belongs to the snippet ending with
the symbols and the second belongs to the explanatory text
surrounding the snippet.

We try to obey our own rules but cannot completely, be-
cause these rules cannot be blindly enforced. Theyshould
be followed, but there exists many a circumstance in which
a rule cannot and should not be followed. Describing these
exceptional circumstances systematically is extremely diffi-
cult, if not impossible, and is a research topic all its own.

The unit of application of each of most rules is a single
RstatS. Each rule that says to avoid a construction offers an
alternative construction for saying the same thing less am-
biguously; the alternative construction is signalled by “In-
stead,”.

3.1 Old Rules

The first fifteen rules are from the first author’s early
work [20, 21]. They are numbered as before even though
the ordering has been changed, and one rule has been split
into three to bring out its special cases. Since these rules are
motivated and described in detail elsewhere, they are mostly
only listed here. An example is given only if the rule would
be incomprehensible without an example.

Rule 1: S should be written as a simple affirmative declar-
ative sentence that has only one main verb.

Rule 2: Avoid writing S in passive voice, especially in
which no doer of the action is specified. Instead, write
S in active voice, with the doer of the action as the
subject ofS.

Rule 3: Avoid writing S of the formThere is X in Y. or
X exists in Y.. Instead, writeY has X..

Rule 4: Avoid writing S containing a subjective option in-
troduced by a keyword such aseither, whether, oth-
erwise, etc. An example isThe user shall either be
trusted or not trusted.. Instead, specify under what
condition each option happens.

Rule 5: Avoid writing S containing an indefinite timing in-
troduced by the keywordeventually, at last, velc.1 In-

1“velc.” (“vel cetera”) is to “or” as “etc.” (“et cetera”) is to “and”.

stead, specify strict sequencing of events with no tim-
ing or specify timing with tolerances, both in measur-
able units.

Rule 6a: Avoid writing S containing a noun phrase con-
taining maximum or minimum as an adjective mod-
ifying the main noun, e.g.,The system shall return
maximum results. Instead, replace the adjective with
a more detailed, complete characterisation of the noun.

Rule 6b: Avoid writing S containing the phraseas much
as possible or as little as possible. Instead, replace
the phrase with a more detailed, complete characteri-
sation of what is as much or as little as possible.

Rule 7: Avoid writing S containingboth X and Y . In-
stead, write onlyX and Y .

Rule 8: Avoid writing S containing X but Y . Instead,
write X and Y .

Rule 10: Avoid writing S containingX and/or Y . Instead,
write X, Y, or both.2

Rule 9: Avoid writing S containingX /Y . Instead, writeX
or Y .

Rule 11: Avoid writing S containing anyand equivalent,
e.g.,not only, but also, as well as, etc., that provides
additional commentary. Instead write simplyand.

Rule 12a: Avoid writing S containing any pair of parenthe-
ses, braces, or brackets, i.e.,(), { }, or [], that encloses
unnecessary text. Instead, remove the unnecessary text
and the enclosing pair of parentheses, braces, or brack-
ets.

Rule 12b: Avoid writing S containing any pair of paren-
theses, braces, or brackets, i.e.,(), { }, or [], that
encloses necessary text. Instead, move the necessary
text to its own Rstat, and remove pair of parentheses,
braces, or brackets.

Rule 12c: Avoid writing S containing any pair of parenthe-
ses, braces, or brackets, i.e.,(), { }, or [], in which the
purpose of the pair of parentheses, braces, or brackets
is to causeS to mean two or more Rstats, e.g.,Turn-
ing the switch down (up) turns the light on (off).
Instead, rewriteS as a sequence of as many Rstats that
S means.

Rule 13: Provide a glossary to explain each domain-
specific term or nominalisation, velc. that appears in
the RS.

2This use ofboth is not excluded by Rule 7, which suggests avoiding
both when it is combined with a followingand.

Rule 14: Provide an acronym list to explain each acronym
that appears in the RS.

Rule 15: Provide an abbreviation list to explain each ab-
breviation that appears in the RS.

Note that Rule 10 should be applied before Rule 9.
Because in some cases, what results after rewriting a

Rstat is not what the writer intended, the stakeholder who
owns a rewritten Rstat must be asked if the new Rstat is
what she intended. For example, even though “/” means
or, an occasional writer or reader believes that “/” means
and, and she would be surprised when presented with a “/”
replaced by anor.

3.2 New Rules

The following new rules are from the first author’s latest
work.

Rule 16: Avoid writing S containing all, any, or both
modifying a direct object when the intent ofS is to
describe what happens to each instance of the set that
is described by the modified direct object, e.g.:

E1: The operator log will record all
warning messages prompted by the
system.

or

E2: The operator log will record any
warning messages prompted by the
system.

The use ofall or both is confusing because it is hard to
distinguish whether the action happens to the whole set
or to each element of the set. See Rule 25 for a similar
difficulty. The use ofany is confusing, becauseany
can be interpreted as an existential quantifier instead of
the desired universal quantifier. Instead, writeeach3

in place ofall, any, or both e.g.:

E3: The operator log will record each
warning message prompted by the sys-
tem.

However, not every instance ofall or both should be
replaced byeach. When the intent ofS is to describe
something that happens to the entire set which is the
direct object, useall or both, e.g.:

3Some have wondered whetherevery should or could be used instead
of each. When either is used as an adjective of a noun,each andevery
appear to interchangeable, as each is singular. However, there is evidence
that each andevery differ in meaning [14]. Resolution of this issue is
among our future work.

E4: The system must put all displayed
text into one file, in order to facilitate
software maintenance for developers
and to ease future translations to local
languages.

Rule 17: Avoid writing S containingsome, many, few,
for example, e.g., velc. to describe a set of objects by
example rather than by describing the set itself, e.g.:4

E5: Some of the software packages
(e.g., each HLT algorithm, the selection
control, the data access) shall be doc-
umented for both the user, developer,
and maintainer.

Instead, specify the specific instances that are sup-
posed to be in the set, e.g.:

E6: Each HLT algorithm, the selec-
tion control, and the data access shall
be documented for the user, developer,
and maintainer.

E5 violates also some other rules, i.e., Rules 7 and 12b.
Therefore, the modification of E5 to get E6 took into
account also the recommendations of these other rules.

Note that neitherthat is nor i.e. is among the items to
be avoided;i.e. meansthat is, and each implies that
what follows it is acompletelist and not just a list of
examples, as implied byfor example or e.g.. We even
suggest replacinge.g. by for example and replacing
i.e. by that is, because we have discovered that some
readers and writers—certainly not those readingthis
paper (:-))—confuse the two. The replacement serves
to remind the writer what he wrote.

Rule 18: Avoid writing S containing meanwhile,
whereas, on the other hand, velc. Each such phrase
is usually used to combine two or more related Rstats.
Each should be avoided as unnecessarily complicating
or lengthening the containing RS without providing
any essential information.

E7: Each officer can print the report
by selecting an associate. Meanwhile,
an associate can only view the report
which contains the payment details en-
tered by the associate himself.

4The authors realise the irony of a rule specifying by example that one
should not specify by example. Indeed, when we go to implement this
Rule in the proposed tool, we shall have the difficulty that the rule helps to
avoid, namely that the implementer will have to complete the specification
of the requirements before she can complete the implementation.

Instead, rewriteS without themeanwhile, whereas,
on the other hand, velc., e.g.:

E8: Each officer can print the report by
selecting an associate.

An associate can view only the re-
port that contains the payment details
entered by the associate himself.

E7 has also a misplacedonly that is moved to the cor-
rect place in E8 according to Rule 27. Moreover, the
which is changed tothat in accordance with English
rules.

Rule 19: Avoid writing S containing a vague adjective
such asprompt, fast, routine, etc. to describe the tim-
ing of a process, e.g.:

E9: The Science Analysis Software
performs prompt processing of Level 0
data to produce Level 1 event data.

Instead, replace the vague adjective with an actual
amount of time in a measurable time unit, e.g.:

E10: The Science Analysis Software
performs within 0.1 seconds the pro-
cessing of Level 0 data to produce
Level 1 event data.

Rule 20: When between or among is used inS to dif-
ferentiate one action or process from another action or
process described in the same RS, thenS should not
be changed by any of the other rules. For example,

E11: Restrictions between different
types of data access, either logical or
physical, made at LVL2 must be valid if
the data passed on to the online envi-
ronment are stored and retrieved in the
offline environment.

E11 is a long and complicated RStat that contains vi-
olations of Rules 1, 2, 4, and 16. The reference to
logical or physical access is not clear, because there is
insufficient information to tell whether logical access
and physical access are the only two kinds of accesses.
There is no explanation of who passes the data, of the
kinds of data that can be passed, and of when the data
are to be passed. The author of the Rstat would have to
be asked to supply this additional information. Since
we do not have access to the author, we took some
guesses and rewrote E11 as E12 according to the rec-
ommendations of the violated rules.

E12: Restrictions between logical or
physical data access made at LVL2
must be valid when observational data
that the server passes to the online en-
vironment are stored and retrieved in
the offline environment.

Rewriting E11 as E12 may have obscured the relation-
ships that exist between type of data access other than
logical and physical. Rule 20 prevents this possibly
obscurring rewriting.

Another example is E13.

E13: The system must prohibit direct
public access between external net-
works and any system component that
stores cardholder information.

E13 violates Rule 16. The use ofbetween indicates
that there is a relationship between external networks
and cardholder information. Rule 16 suggests rewrit-
ing E13 as E14.

E14: The system must prohibit direct
public access between each external
network and each system component
that stores cardholder information.

Rewriting E13 as E14 may have obscured the rela-
tionships between heretofore unidentified external net-
works and system components and thus may have
modified the meaning of the original Rstat. Rule
20 prevents these obscuring changes that upset rela-
tionships that exist between the arguments of thebe-
tween.

Rule 21: Avoid writing S containing any vague adjective
such asancillary, relevant, routine, etc. that requires
the reader to do her own requirements analysis to make
S a complete Rstat, e.g.:

E15: In support of high-level process-
ing, the SAS extracts from the LAT
and SC Level 0 data ancillary infor-
mation relevant to event reconstruction
and classification.

Instead, the adjective should be replaced by a complete
description of whatever is ancillary, relevant, routine,
velc., e.g.:

E16: In support of high-level process-
ing, the SAS extracts the Ground Ob-
servational Data from the LAT and SC
Level 0.

Determination of the complete description may require
consulting the client or other stakeholders. Finally, ob-
serve that the wordroutine is a signal for two different
rules, Rules 19 and 21; vagueness has multiple uses.

Rule 22: Avoid writing S containing the ambiguous identi-
fier common, generic, customary, velc. Each of E17
and E18 has an instance ofcommon, but the scopes of
the twocommons differ.

E17: The simulation shall use instru-
ment geometry that is defined and is
common to all analysis modules.

E18: All output messages shall be cat-
egorised (e.g., error, warning, debug)
and reported via a common mecha-
nism.

In E17, it is difficult to know if the instrument geome-
try is that which is known world wide in any analysis
module or is that which is assumed in the specific anal-
ysis modules appearing in the system being specified
by the containing RS. Furthermore, E17 contains a vi-
olation of Rule 16. The suggested rewriting of E17 is
E19.

E19: The simulation shall use instru-
ment geometry that is defined and con-
forms to each analysis module.

Elimination of the vagueness ofanalysis module re-
quires asking the RStat’s author what he means. In
E18, common is ambiguous, because it can mean
same or everyday. In the absence of access to E18’s
author, we assume that the intended meaning issame.
E18 violates also Rule 12b or 17. Hence, E18 can be
rewritten as E20.

E20: Each error, warning, and debug
message shall be categorised and re-
ported via the same mechanism.

In general, each ofcommon, generic, customary,
velc. has more than one scope. To remedy the ambi-
guity, it is necessary to describe the scope of the com-
monality, genericity, customariness, velc.

Rule 23: Dependent Rstats should be grouped together,
e.g.:

E21: The SDP shall provide the Level 1
data to the P1 sites. The Level 1 data
shall arrive at the sites no later than 24
hours after completion of processing in

the SDP. Then, the SDP shall provide
the Level 0 data to the P1 sites.

We understand that each Rstat shall be uniquely iden-
tifiable. Rule 23 suggests grouping together several
dependent RStats into one, contradicting the idea that
each Rstat be separately identifiable. However, the
idea behind Rule 23 is to make sure that Rstats that
have some relationship or dependency, temporal or
not, with each other are grouped together. Otherwise,
it may be difficult for the reader to detect the relation-
ship or dependency. Blindly rewriting E21 into 3 sep-
arately identifiable Rstats:

E22: The SDP shall provide the Level 1
data to the P1 sites.

E23: The Level 1 data shall arrive at the
sites no later than 24 hours after com-
pletion of processing in the SDP.

E24: Then, the SDP shall provide the
Level 0 data to the P1 sites.

without insertingP1 beforesites in E23 will causethe
sites to become vague. Moreover, the temporal order
bond between E22, E23, and E24 has been broken. It
is not possible to know that the processes described by
E22, E23, and E24 must be done in the order written.
On the other hand, if separation of individual Rstats
is required, then each separated Rstat must have ad-
ditional text to describe its context. For example, in
E23, the sites must be changed tothe P1 sites and
the fact that E23 temporally follows E22 and precedes
E24 must be described.

Rule 24: Avoid writing S containingshould and similar
words, except as an expression of a preference that is
not a requirement. IfS is supposed to be a require-
ment, then rewriteS usingshall.

Rule 25: Avoid writing S containing a plural subject [18],
e.g.:

E25: All persons in the room lift a table.

With such a sentence, it is difficult to determine how
many predicate or object instance is related to each
subject instance. In E25, it cannot be determined if
each person in the room lifts his or her own table or if
the all the people in the room as a group lift one table.
Instead, try to use only a singular subject, e.g:

E26: Each person in the room lifts his
or her own table.

and

E27: The set of all person in the room
lifts one table.

If you must use a plural subject, then reserve it for
describing properties of the entire set of subject in-
stances, e.g.:

E28: All persons in the room together
lift one table.

Rule 26: Avoid writing S containingA unless B. Instead,
useif not(B), then A, wherenot(B) means the logical
negation ofB. which usually contains somewhere the
word not. Doing the replacement makes it clear what
A unless B means. The suggested rewriting of E29 is
E30 and of E31 is E32.

E29: Unless the user has the adminis-
trator’s authorisation, the user will not
be able to access the database.

E30: If the user does not have the ad-
ministrator’s authorisation, the user will
not be able to access the database.

E31: The system will display registra-
tion alert unless the user has regis-
tered.

E32: The system will display registra-
tion alert if the user has not registered.

Strictly speaking,A unless B says nothing about what
happens ifB is true. Therefore, if it is desired to spec-
ify that C happens ifB is true, an explicit Rstat,if B,
then C, must be given. For E29 and E31, the cor-
responding additional specifications are E33 and E34,
respectively.

E33: If the user has the administrator’s
authorisation, then the user will be able
to access the database.

and

E34: The system will not display regis-
tration alert if the user has registered.

The reason that Rule 26 is necessary is that we have
evidence that an occasional person usesA unless B as
not(B) if and only if A. Perhaps such a person is wor-
ried about what happens during the unspecified situa-
tion of A unless B whenB is true. RewritingA un-
less B asif not(B), then A drives home the point that

thatA unless B is not the same asnot (B) if and only
if A.

Compounding this ambiguity is the fact that for some,
A unless B has a temporal interpretation, in whichA
is true initially and it continues to be true until such
time asB happens to be true [3].

Rule 27: Move anyonly, also, or other limiting word to
before the phrase theonly, also, or other limiting word
is intended to limit. For example, any one who says

E35: An associate can only view the re-
port which contains the payment details
entered by the associate himself.

probably means

E36: An associate can view only the re-
port which contains the payment details
entered by the associate himself..

It seems common in English to placeonly or also al-
ways immediately before the main verb of the contain-
ing sentence no matter which word is limited by the
only or also. This common practice leaves the reader
uncertain about what word is really limited by theonly
or also.

We expect the guiding rules to assist a requirements en-
gineer in inspecting and in writing a NL RS.

4 Validation: Analysis and Rewriting of RSs

We validated the guiding rules by rewriting existing and
ambiguous RSs [16, 6, 11, 7] using recommendations from
the guiding rules. Before we rewrote any RS, each RStat in
the RS was examined with the help of the guiding rules in
order to identify possible ambiguities in the RStat. When-
ever a RStat violated one or more rules, we looked carefully
at the Rstat in order to determine if it was indeed ambigu-
ous. If a Rstat was judged to be ambiguous, the suggestions
of the violated rules were followed to guide the rewriting of
Rstat.

Space permits showing only a few of the ambiguous
Rstats that we found. However, note that most of the exam-
ples cited in the explanations of the guiding rules are from
the examined RSs.

In E37,meanwhile combines two Rstats into one long
Rstat, in violation of Rule 18. Even though the second Rstat
has a plural subject and usesall in apparent violation of Rule
25, the Rstat is describing a property of the entire set of
payments, that they are grouped together into one payment.

E37: If the payment is with payee’s details,
then the system will treat each payment sep-
arately meanwhile if users choose “No”, all
the payment records will be grouped together
to become one cheque.

Therefore, the suggested change of only Rule 18 is applied
to split E37 into two Rstats, E38 and E39.

E38: If the payment is with the payee’s de-
tail, then the system will treat each payment
separately.

E39: If the user chooses “No”, all the pay-
ment records will be grouped together to be-
come one cheque.

However, just splitting E37 into E38 and E39 does not make
E38 and E39 into independent Rstats, because they never-
theless have a temporal relationship; E39 follows E38. Rule
23 suggests grouping together requirements that show any
such temporal dependency. Once joined into one RStat, E38
and E39 regain the lost temporal context.

E40 and E41 show the ambiguity resulting from the use
of all in writing a plural subject, in violation of Rule 25.
Note that E40 has also (1) a violation of Rule 12b, against
the use of a pair of parentheses to enclose essential informa-
tion and (2) a violation of Rule 17, against the use ofe.g.
to describe example elements of a set of objects instead of
describing the set.

E40: All login attempts shall be done so in a
secure manner (e.g., encrypted passwords).

E41: All pipeline products shall contain key-
words, which describe the pipeline modules
used to create them.

The violated rules suggest rewriting E40 and E41 into E42
and E43, respectively.

E42: Every login attempt shall be done with
an encrypted password.

E43: Every pipeline product shall contain
keywords that describe the pipeline modules
used to create the pipeline product.

The change embodied in E43 assumes that each pipeline
product is built from several pipeline modules. If each
pipeline product is built from exactly one pipeline module,
then E41 should be changed to E44.

E44: Every pipeline product shall contain the
keyword that describes the pipeline module
used to create the pipeline product.

E45 contains a violation of each of Rule 16, Rule 25, Rule
12a, and Rule 17.

E45: All mission elements shall withstand all
environments (e.g., EMI, shock, and thermal)
to be encountered from component fabrica-
tion.

If EMI, shock, and thermal are only some of the possible en-
vironments that can be encountered during component fab-
rication, then a suggested rewriting of E45 is E46.

E46: Each mission element shall withstand
each environment that can be encountered
during component fabrication.

If, on the other hand, EMI, shock, and thermal are all of the
possible environments that can be encountered during com-
ponent fabrication, then an alternative suggested rewriting
of E45 is E47.

E47: Each mission element shall withstand
EMI, shock, and thermal environments.

E48 contains violations of Rule 12b and Rule 17 or a viola-
tion of Rule12a.

E48: All users of the system shall login us-
ing some form of unique identification (e.g.,
username and password).

If the purpose of the information in the pair of parentheses
is to give the only form of unique identification possible,
then a suggested rewriting is E49.

E49: Each user of the system shall login by
using his username and his password.

If the purpose of the information in the pair of parentheses
is to give one possible form of unique identification, and it
is truly the case thatany form of unique identification is to
be used for login, then a suggested rewriting is E50.

E50: Each user of the system shall login by
using some form of unique identification.

E51 violates Rule 21 because the wordroutine requires the
reader to do requirements analysis to determine what sort of
processing is really intended. Moreover, it is not clear if the
missing information is timing or functional information.

E51: The SAS is responsible for routine Level
2 processing of the LAT data.

If the missing information is about the timing of the pro-
cessing, then a suggested rewriting is E52.

E52: The SAS is responsible for daily Level 2
processing of the LAT data.

If the missing information is about the function of the pro-
cessing, then a suggested rewriting is E53.

E53: The SAS is responsible for the Level 2
processing of the LAT data that computes the
maximum, minimum, and average values.

E54 gives example Rstats that together fall under the
province of Rule 23 and should be grouped together.

E54: The system shall be designed to ac-
commodate the addition of a propulsion sub-
system. The propulsion subsystem shall be
capable of transferring the system from the
circular parking orbit to the operational orbit.

E55 contains violations of Rules 18 and 24 by its use of
should and ofwhereas.

E55: The user manual should document the
expected results whereas the user interface
should provide information or warning indi-
cating what changes will occur when a user
changes the regional setting.

The violated rules suggest rewriting E55 as E56 and E57.

E56: The user manual shall document the ex-
pected results.

E57: The user interface shall provide infor-
mation or a warning indicating what changes
will occur when a user changes the regional
setting.

These examples of identifying which rules apply to a
given Rstat and rewriting the Rstat according to the sug-
gestions of the rules serve as a partial validation of the use-
fulness of the rules.

The main lesson to learn from these examples is that
while guiding rules help identify which Rstats are poten-
tially ambiguous, only a human being can determineif any
Rstat is really ambiguous, and only astakeholder human
beingcan explain the intended meaning of an ambiguous
Rstat so that the Rstat can be rewritten correctly. This les-
son is particularly apparent in the deliberations over E55, in
which ambiguity arises from a lack of context.

5 Conclusion and Future Work

This paper describes the latest guiding rules for avoid-
ing ambiguities in NL RSs that we have found based on
examination of several industrial strength RSs. As a partial
validation of the new rules, the paper gives some examples
of ambiguous sentences from the RSs and their rewritten,
less ambiguous forms.

We expect to continue to examine industrial strength RSs
to find additional rules. In addition, the first author is de-
veloping a Systemised Requirements Engineering Environ-
ment (SREE) that searches for potentially ambiguous Rstats
and offers suggestions for rewriting each potentially am-
biguous Rstat it finds. The effectiveness of SREE will be
validated by applying it to industrial strength RSs.

The lack of uniformity and the hit-and-miss nature of
the guiding rules are a bit disconcerting. However, these
guiding rules cover the kinds of ambiguities we have found
in actual industrial RSs. Of course, the method by which
the guiding rules are found makes it difficult to assess when
enough rules have been found. Probably, there is no limit on
the number of rules. However, we expect that at some point,
the rate of addition of new rules will drop off considerably,
just because we will eventually begin not to find new kinds
of ambiguities. Thus, the work described in this paper is
complementary to all the other work cited in Section 2 that
attempts to find systematic ways of detecting or avoiding
ambiguities.

An anonymous reviewer of the previous version of this
paper suggested evaluating the rules presented in this paper
by comparing their ambiguity detection power with that of
other sets of rules found in the literature [e.g., 12, 22, 17, 5,
8, 2].

Another disconcerting property of these rules is the diffi-
culty of finding a pattern for each of these ambiguities. For
any rule, there is no guarantee that every Rstat meeting the
pattern of the rule is an instance of the kind of ambiguity
that is intended to be described by the rule; and conversely,
there is no guarantee that the rule describes every instance
of the kind of ambiguity that is intended to be described by
the rule. As SREE is developed, and we see its recall and
precision in identifying potentially ambiguous RStats, we
will be able to refine the patterns.

Recall that almost every rule is described by example,
using such terms ase.g., etc., velc., etc. These rule de-
scriptions are thus highly ambiguous. Therefore the rules
will have to be refined with as full a list of examples as is
possible during the development of SREE. Even then, it is
expected that more examples for each rule will be found and
SREE will have to be updated.

Perhaps the most valuable use of the rules and of SREE
to inspect a RS is that they identify questions that should
be asked of the client of the RS. Any time a Rstat is deter-
mined to be ambiguous, the requirements analyst must ask
the client what she means by the Rstat. The kind of ambigu-
ity found in Rstat shows the question that should be asked.
A suggested resolution given with any rule is only a sug-
gestion. Only the client can say what the resolution of an
ambiguous Rstat should be.

Acknowledgements

The authors thank the anonymous reviewers of the pre-
vious version of this paper for their comments and sugges-
tions.

Daniel Berry’s work is sponsored in part by Grant
(Canada) NSERC-RGPIN227055-00.

References

[1] K. Bach. Ambiguity. In E. Craig and L. Floridi, editors,
Routledge Encyclopedia of Philosophy, London, UK, 1998.
Routledge.

[2] A. Bucchiarone, S. Gnesi, and P. Pierini. Quality analysis
of NL requirements: An industrial case study. InProceed-
ings of the Thirteenth IEEE International Conference on Re-
quirements Engineering (RE’05), pp. 390–394, 29 August–2
September 2005.

[3] M. Chandler. The logic of ‘unless’.Philosophical Studies,
41(3):383–405, May 1982.

[4] C. Denger. High quality requirements specifications for em-
bedded systems through authoring rules and language pat-
terns. Technical Report M. Sc. Thesis, Fachbereich Infor-
matik, Universiẗat Kaiserslautern, 2002.

[5] C. Denger, D. J̈org, and E. Kamsties.QUASAR: A Survey on
Approaches for Writing Precise Natural Language Require-
ments. IESE Fraunhofer, Kaiserslautern, DE, 2001.

[6] R. Dubois. Large area telescope (lat) science analysis
software specification. Technical report, GE-0000X-DO,
2000. http://www-glast.slac.stanford.edu/
IntegrationTest/DataHandling/docs/LA%
T-SS-00020-06.pdf .

[7] C. S. Eng. Batch poster system, detailed business require-
ments. Technical report, EDS MySC, Malaysia, 2005.

[8] D. Firesmith. Specifying good requirements.Journal of
Object Technology, 2(4):53–64, July-August 2003.

[9] N. E. Fuchs and R. Schwitter. Specifying logic programs
in controlled natural language. InCLNLP’95, Workshop
on Computational Logic for Natural language Processing,
1995.

[10] D. C. Gause.User DRIVEN Design—The Luxury that has
Become a Necessity, A Workshop in Full Life-Cycle Require-
ments Management. ICRE 2000 Tutorial T7, Schaumberg,
IL, USA, 23 June 2000.

[11] S. George. PESA high-level trigger selection soft-
ware requirements. Technical report, Centre for
Particle Physics at Royal Holloway University, 2001.
http://www.pp.rhul.ac.uk/atlas/newsw/
requirements/1.0.2/ .

[12] I. Hooks. Writing good requirements. InProceedings of the
Fourth International Symposium of the NCOSE, volume 2,
pp. 197–203, 1994.

[13] N. Juristo, A. M. Moreno, and M. Lopez. How to use lin-
guistic instruments for object-oriented analysis.IEEE Soft-
ware, 17(3):80–89, May/Jun 1997.

[14] J. Lawler. Post subject: Re: difference between “each”
and “every”, Sun October 23 2005. http://www.
vocaboly.com/forums/ftopic9080.html .

[15] B. Macias and S. Pulman. Natural language processing for
requirements specifications. In F. Redmill and T. Anderson,
editors,Safety-critical systems: Current issues, techniques
and standards, pp. 67–89, London, UK, 1993. Chapman &
Hall.

[16] R. Moeser and P. Perley. EVLA operations in-
terface, software requirements. Technical re-
port, EVLA-SW-003 Revision: 2.5, 2003.
http://www.aoc.nrao.edu/evla/techdocs/
computer/workdocs/array-sw-rqmts.%pdf .

[17] C. Rupp and R. Goetz. Linguistic methods of requirements-
engineering (NLP). InProceedings of the European Soft-
ware Process Improvement Conference (EuroSPI), Novem-
ber 2000.http://www.iscn.com/publications/
#eurospi2000 .

[18] U. Schwertel. Controlling plural ambiguities in Attempto
Controlled English. InProceedings of the Third In-
ternaltional Workshop on Controlled Language Applica-
tions (CLAW), Seattle, WA, USA, 2000.

[19] S. F. Tjong. Elaborated natural language patterns for re-
quirements specifications. Technical report, Faculty of Engi-
neering and Computer Sciences, University of Nottingham,
August 2006. http://sepang.nottingham.edu.
my/˜kcx4sfj/ .

[20] S. F. Tjong. Improving the quality of natural language
requirements specifications through natural language re-
quirements patterns. Technical report, Faculty of Engi-
neering and Computer Sciences, University of Nottingham,
March 2006. http://sepang.nottingham.edu.
my/˜kcx4sfj/ .

[21] S. F. Tjong. Improving the quality of natural language re-
quirements specifications through natural language require-
ments patterns. InIEEE International Conference on Com-
puter and Information Technology, September 2006.

[22] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated
analysis of requirement specifications. InProceedings of
the Nineteenth International Conferences on Software En-
gineering (ICSE-97), pp. 161–171, New York, NY, USA,
17–23 May 1997. ACM Press.

