
Analyzing Problem Frames together with Solution Patterns

Ellen Souza, Maria Lencastre, Renata Melo, Lilian Ramires, and Keldjan Alves

Departamento de Computação, Universidade de Pernambuco

Rua Benfica, 455 Madalena, 50750-410, Recife – PE, Brazil

{eprs, maria, rpllfm, lor, kao}@dsc.upe.br

Abstract

The Problem Frames approach defines identifiable

problem classes based on, among other things, their

context and the characteristics of their domains,

interfaces and requirements, without going deeply into

the solution. Other software engineering approaches

deal with the concept of patterns that present well-

known solutions, such as archetype, analysis and

design patterns. We can say, for instance, that patterns

are about solutions and problem frames are about

problems. This paper attempts to make an analysis of

the integration of problem classes, that is problem

frames, and solutions, by analyzing a set of different

kinds of patterns together within problem frames. The

relationship, between these approaches, seems to have

a good chance of improving software development.

1. Introduction

The Problem Frame approach [7] gathers system

requirements focusing on the problem, that is, it

describes the operational context in which the system

has to be developed. This approach has been regarded

a good way to investigate identifiable problem classes

based on, among other things, their context and the

characteristics of their domains, interfaces and

requirements, without going deeply into the solution.

On the other hand, patterns [5] describe solutions, at

different levels of abstraction, for problems based on

one’s experience. A pattern is a way of describing best

practices, good designs, and of capturing experience in

such a way that it is possible for others to reuse the

solution.

During the software development process, the use of

problem frames can help in the identification of well-

known classes of problems and their main

characteristics. In addition, the use of patterns can

improve software quality, as the proposed solution has

already been tested and proved. These approaches can

also decrease the product’s time-to-market, by reusing

problem and its solutions, without the need to think

about how the problem can be completely solved.

The connection between PF and patterns is a good

way to help refine the phases of problem solving by

starting with an instantiation of problem domains

considering appropriate problem class, that come from

well structured archetype and analysis patterns, going

further to available problem solutions at and design

levels.

It is important to notice that we use Problem Frames

(PF), in upper case, to refer to the approach and

problem frames, and in lower case, to refer to the basic

problem classes.

This paper is organized in the following way:

Section 2 presents the background to clarify the main

concepts involved in this work; Section 3 explains the

association proposed between solution patterns and PF;

Section 4 describes the case study, taken from [4], and

shows the associations identified; Section 5, presents

some related work; finally, Section 6 draws some

conclusions and points the way to further studies. An

Appendix containing the pattern models used in this

paper is provided on the last page.

2. Background

In software engineering, a pattern is a general

repeatable solution to a commonly occurring problem

in software design, analysis or any other software

development phase [2]. Its main purpose, within the

software community, is to create a body of literature to

help software developers and analysts to solve

recurring problems encountered throughout the

software life cycle. Patterns at business and analysis

levels can be employed at early development phases,

while design patterns are related to the design phase,

giving support to implementation.

The objective of this section is to clarify a number

of concepts that will be used later in this paper, i.e.,

problem frames, archetype, analysis and design

patterns. We also try to identify the underlying

objective of each of these concepts.

2.1. Problem Frames

The main concept of the PF approach is the problem

frame concept, since it represents a kind of pattern that

captures and defines a commonly found class of simple

subproblems [7]. In Figure 1, an example of a problem

frame is presented. It involves a machine to be built in

order to meet a requirement, and a set of domains and

their interactions.

In Problem Frames notation, see Figure 1, the

domains are represented by rectangles; the one with

double stripes on the left is the machine. The other

domains are identified by a letter in their lower right

corner, describing the kind of each domain: “C” is

causal, which means its properties are predictable. “B”

is biddable, that is, its main characteristic is the lack of

predictable behavior, and usually consists of people;

and “X” is lexical, which means is a physical

representation of data. The dashed oval is the

requirement. The lines connecting the domains are the

interfaces of shared phenomena. The CM!C1 notation

signifies that the phenomenon C1 is controlled by the

CM - Control Machine domain.

Jackson [3] supplies a repertoire of recognized

problem classes - problem frames - with associated

characteristics, difficulties and solution methods. It

includes the following problem frames: Required

Behavior, Commanded Behavior, Information Display,

Workpieces and Transformation.

As shown in Figure 1, each problem frame has a

concern that must be addressed. The concern identifies

the descriptions one must fit together properly in a

correctness argument: requirement, specification and

domain description. Each description, explained in

notes format (from 1 to 5), has a defined order in the

central frame concern [9]; for example in Figure 1 the

first step of the frame concern is “When the operation

issues that command…”. In conjunction with the

characteristics of problem domains, the frame concern

gives rise to the particular concerns that distinguish the

problem classes. If one tries to fit a problem into an

inappropriate class, the resulting development will

probably be unsuccessful.

Examples of PF concepts and diagrams can be seen

in Section 4, where this approach is used to model the

case study.

Figure 1. The Commanded Behavior problem

frame concerns.

2.2. Archetype Patterns

An archetype is a primordial thing or circumstance

that recurs consistently and is thought to be a universal

concept or situation [3]. Because archetypes are a basic

human mechanism for organizing, summarizing, and

generalizing information about the world, they can

reasonably have applications in the field of software

development. Some examples of archetype patterns are:

Party, Product, Inventory, Order, Money, etc.

The Party archetype pattern shown in Figure 2

describes how to represent essential information about

people and organizations. As a general rule, Parties

have no interesting behavior - they simply hold

information [3]. This archetype itself is a very abstract

thing, with only the most rudimentary semantics and,

even when variations occur, the principal concept still

holds. It only unifies the way to represent people.

Other archetype patterns models used in this paper

are shown in the Appendix.

2.3. Analysis Patterns

The term analysis pattern represents patterns which

capture conceptual models in an application domain in

order to allow reuse across systems [2]. Analysis

patterns focus on organizational, social and economical

aspects of a system, since these aspects are central for

the requirements analysis and the acceptance and

usability of the final system.

Figure 2. Party archetype pattern

Figure 3. Party analysis pattern

As archetypes, analysis patterns speed up the

development of abstract analysis models that capture

the main requirements of the concrete problem. Figure

3 shows the analysis pattern representing Parties. As an

archetype, it is also called Party and holds information

about people and organizations such as address,

telephone number and so on.

Notice that archetype patterns have many unique

features that make them more understandable than

analysis patterns because they support, among other

things, Unified Modeling Language (UML) profiles,

variability of model elements, pleomorphism [3].

2.4. Design Patterns

A design pattern is a description or template for

solving a problem that can be used in many different

situations. It is therefore not a finished design that can

be transformed directly into code.

Reusing design patterns helps to prevent subtle issues

that can cause major problems and to improve code

readability for developers and architects familiar with

the patterns. Effective software design requires a

consideration issues that may not become visible until

later in the implementation.

Figure 4 shows the Composite design pattern. It

composes objects into tree structures to represent part-

whole hierarchies. This pattern lets clients treat

individual objects and compositions of objects

uniformly [1]. The Composite design pattern can be

applied, for example, to represent simple and

compound organizations in the Party archetype pattern.

Figure 4. Composite design pattern

The design part of an analysis or archetype pattern

contains a description of a possible realization with one

or several design patterns.

3. Associating Problem Frames with

Solution Patterns

In order to help identifying and understanding the

correlation between the 4 approaches (problem frames,

archetype, analyze and design patterns), their main

objectives and concepts are summarize in Table 1.

We can observe that the involved approaches deal

with two different levels: the problem space and

solution space. On the problem space, we have

basically the Problem Frame approach, where problem

frames describe classes of problems identifying,

requirements, domains, phenomena, and concerns. On

the solution space, the focus is on the different

abstraction levels of patterns. Patterns supply a full

problem description, together with known uses,

motivation and, of course, the solution to the problem

in different levels of abstraction.

Table 1. Concepts and Objectives

Approach Main Objective Concepts Applied

Problem frames Define known classes of problems for

reuse

Domain types, interaction phenomena types, requirement

and concerns

Archetype patterns Define universal concepts, organizing

general information about the world.

Problem, solution, consequence, variations

Analysis patterns Define conceptual models, that deal with

business aspects

Intent, motivation, forces, solution, consequence, design,

known uses.

Design patterns Define solution to recurring problems Problem description, solution, consequences, related

patterns, known uses,

So, in the pattern space, the problem and its context

is still present, but is not so emphasized as the solution.

Also the involved forces, in the solution patterns, have

focus on requirements, relevant to the problem being

solved.

We can observe that, the solution space leads with

the reuse of classes and their interaction, while problem

frames leads with the reuse of problem knowledge,

including requirements, domains, and interaction

phenomena

3.1 Understanding Problem Space and

Solution Space

As we try to make use of different levels of

abstraction, from problem space to solution space, we

establish a first proposal of a process to integrate them,

see Figure 5. On the left-hand side of the figure we

have the problem space, and on the right-hand side the

solution space.

Figure 5. From problem to solution space

The process starts with a problem, which is further

detailed using the PF approach. Then it goes on to the

patterns, starting with the more abstract levels,

presenting the correspondence of the problem domains

with archetype and analysis patterns. Finally, we end

with the less abstract descriptions of design patterns,

that is, design problems, and how a general

arrangement of elements solves them.

Archetype and analysis patterns, can improve the

existing details, once a person wants to instantiate a

problem frame, since they give support to universal

concepts, and business domains in a generic sense.

Also proposed problem frames can match many parts

of behavior present in patterns at solution space.

3.2 Steps to handle solution patterns in the

context of PF

The main steps needed to handle solution patterns in

the context of PF are described below:

1. The first step consists in understanding the

concrete problem to be solved by discovering

the system main requirements.

2. After, we concentrate on drawing the PF

Context diagram, in order to determine where

the problem is located, and what parts of the

world it concerns (see Figure 7).

3. From this point, we are already able to

identify solution patterns at the analysis level

that matches the existing domains. This is

interesting because this association can

provide more details on the problem domains.

4. From the PF Context diagram, problem

diagrams are derived, and the involved

requirements are more detailed. Depending on

the granularity of these diagrams, basic/

available problem frames are identified and

instantiated and, again, solution patterns may

be employed to complete the problem domain

characteristics.

5. Continuing through the solution space, after

connections at the analysis level, we are able

to transform those identified patterns to

object-oriented design patterns, which provide

a structured view of the whole system and

helps, particularly, in the definition and

validation of architecture.

In this way some existing concepts, such as the

universal concept form archetype patterns, can be used

to improve the description of a problem frame domain,

which means the description of a domain pertaining to

a problem class.

In section 4 we provide associations between PF

domains and patterns and between the entire problem

frame and patterns.

4. Case Study

This section uses the POS case study taken from [4]

to illustrate the association between PF and patterns,

according to the proposed sequence of levels explained

in the previous section. It also delimits the context

diagram, decomposes the problem into subproblems

and identifies problem frames, which match some of

the identified subproblems. Patterns are subsequently

associated with the domain types, problem diagrams

and problem frames.

4.1. Concrete Problem

A POS system is a computerized application used in

part to record sales and handle payments; it is typically

used in a retail store. It includes hardware components

such as a computer and bar code scanner, and software

to run the system. It has interfaces to various service

applications, such as a third-party tax calculator and

inventory control.

The system has to support multiple and varied

client-side terminals and interfaces. These include a

thin-client Web browser terminal, a regular personal

computer with something like a Java Swing graphical

user interface, touch screen input, wireless PDAs

(Personal Digital Assistant), and so forth. The POS

system is a well-known case study and it is fully

documented in [4].

In Figure 6, an example of the levels of problem and

solution spaces is shown for the POS system case

study, explained above in Section 3.

Notice that, in Figure 6, the concrete problem is

represented by the POS system description, together

with its requirements. The PF identification step

consists in delimiting the problem boundaries, defining

the subproblem partitioning and identifying matching

problem frames. The subproblems used as examples in

this paper are the processSale, makePayment and

printBalance. These last two problems represent

instances of Commanded Behavior and Transformation

problem frames, respectively.

Figure 6. Example of the levels of problem and

solution spaces

Patterns associated at analysis level are, for

example, Party, StandardConvesrion, Order and so on;

At design level, AbtractFactory, Iterator, Composite,

Strategy, among others.

4.2. PF Identification

The concrete problem described in the previous

subsection will now be analyzed and PF diagrams

presented in order to understand and delimit the

problem to be solved.

4.2.1. Defining the problem boundaries

The context diagram structures and delimits the

problem by identifying its domains (Database, Third-

part Services, POS Client, and User), together with the

machine to be built (POS Server Machine). It also

shows how these domains interact with each other and

with the machine through the interface of shared

phenomena [10], such as the ones presented in Figure

7.

For simplification, the POS Client domain encloses

the three different interface types: Computer, PDA and

Web Browser. Also, the third-party services domain

represents for example tax calculator and inventory

control.

Figure 7. POS system context diagram

a: recordSales and handlePayments;

b: purchaseItems and makePayments.

c: taxCalculator and inventoryControl;

d: returnProduct and returnClient information;

4.2.2. Decomposing the problem into subproblems

In [9], the authors identify many problems and

requirements. Here we illustrate the Process sale,

whose main flow is as follows:

1. Customer arrives at POS checkout with goods

and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item

description, price, and running total. Price

calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for

payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and

payment information to the external Accounting

system (for accounting and commissions) and

Inventory system (to update inventory).

9. System presents receipt. Customer leaves with

receipt and goods (if any).

Figure 8 presents the problem diagram for the

Process sale, as explained previously. It shows that the

Customer interacts with the POS Client informing the

purchased products and payment type. The POS Client

collects the prices, calculates taxes, and updates the

inventory and account information. Interface

phenomena were not explicit in the diagram, for

simplification purposes.

Figure 8. Process sale problem diagram

Analyzing the processSale problem diagram and the

involved requirements, following subproblems are

identified: (1) makeNewSale – starts a new sale; (2)

enterItem – repeats while there are items being sold;

(3) endSale – calculates taxes, total and payment

required and print balance; and (4) makePayment –

receives payment. In this paper we will focus only on

two of them: makePayment, which falls into the

Commanded Behavior, and printBalance, a

subproblem of endSale, which falls into the

Transformation problem frame.

4.2.3. Problem frame identification

The identification of problems that match existing

problem frames is an important step, since it facilitates

the understanding and identification of previous

identified classes of problems, with associated

characteristics, difficulties and solution methods.

Figure 9. The Commanded Behavior problem

frame

Figure 9 shows the Commanded Behavior problem

frame. It represents the idea that there is some part of

the physical world whose behavior is to be controlled

so that it satisfies certain conditions. Thus, the problem

is to build a machine that will impose such a control.

Figure 10 presents a problem diagram for the

makePayment requirement explained in steps 6 and 7

from the Process sale main flow. This is an example of

the Commanded Behavior problem frame. The

Customer purchases an item and informs its

identification and the payment type. The POS Client

machine is responsible for effecting the payment and

issuing the paper receipt. The Customer is a biddable

domain while the Payment system and POS Client

machine are causal.

Figure 10. makePayment diagram.

Figure 11 shows the Transformation problem frame

diagram. Like Commanded Behavior, it has a Machine

domain, other domains, a requirement and shared

phenomena. The Input is a given domain, which is

informed by the user, while the Output is to be

processed by the Machine. Both domains are lexical.

Figure 11. The Transformation problem frame

The Transformation problem frame can be used to

print the sale balance, as shown in Figure 12. In the

POS example, the Printer Machine domain is

responsible for the transformation of the sale’s line data

into a printed receipt containing a description of the

items and total.

Figure 12. printBalance diagram

Next, object-oriented solutions, based on patterns,

are proposed for the identified problem diagrams

presented in this section. The Customer/User domains

from Figures 7, 8 and 10 are associated with the Party

archetype patterns explained in Section 2.

We also present patterns which deal with

conversions that are specializations of the

Transformation problem frame.

For the problem diagram shown in Figure 8, several

patterns can be associated. We chose the Product,

Inventory and Order archetype patterns as they

represent important causal domains of the POS system

and they also have a closed relationship.

4.3. Pattern association at Analysis level

The archetypes were chosen for the associations

rather than analysis patterns because they produce a

more detailed model and can be easily adjusted to the

system requirements. Therefore, in this paper, we also

consider the analysis patterns as they represent another

important level of abstraction.

4.3.1. Party archetype pattern

Almost every business is concerned to some degree

with maintaining information about parties and the

roles these parties play in the various relationships

between them [3].

An example of the Party archetype pattern can

represent a Biddable domain at a business level. This

relationship was very intuitive, even obvious. The

Biddable domain can be an Operator, a User, a

Customer, and the connection still holds true. They all

have unpredictable behavior even when having a

procedure to follow. As a general rule, Parties have no

interesting behavior - they simply hold information.

Figure 9 shows an example of the Operator domain in

the Commanded Behavior problem frame and Figure 2

presents the Party archetype model composition.

The corresponding pattern in the analysis phase is

also called the Party analysis pattern. It is more

simplified than the archetype, as shown in Figure 4.

The main advantage of the use of the Party

archetype pattern is that it has a unified way of

representing information about parties and eliminates

redundancy in systems, poor data quality, lost business

opportunities and other problems [3].

4.3.2. StandardConversion and UnitConverter

archetype pattern

Conversion operations are available in many

different types of software. The StandardConversion

archetype defines a conversionFactor that can be used

to convert a Quantity from a source Unit (Input

domain) into a Quantity from a target Unit (Output

domain).

Also, the UnitConverter archetype is responsible for

converting a Quantity from a source Unit (Input

domain) into a Quantity from a target Unit (Output

domain) [3]. Both patterns are shown in Figure 13.

Figure 13. StandardConversion and
UnitConverter archetype patterns

Conversions themselves are transformations and

their behavior can be represented by the

Transformation problem frames, whose machine

domain type is causal. They receive computer-readable

input files whose data have to be transformed to

produce certain required output files. Figure 11 shows

the Transformation problem frame. Both Input and

Output domains are lexical, which means they have a

physical representation of data.

At level of analysis, quantity conversion can be

represented by an example of the ConversionRatio

analysis pattern that formally converts quantities from

one unit to another, as shown in Figure 14.

4.3.3. Product archetype patterns

The Product archetype pattern provides a general

abstraction for representing information about a

company's goods and services from a selling

perspective. It contains a complete model that will lead

to flexible business systems that are easy to adapt to

new business opportunities.

The pattern model shows how to represent types of

products; the Figure 15 in the appendix section shows

the Product archetype patterns and the involved

subpatterns.

In Figure 8 the Product and Price domains were

identified within the problem description. The first one

of these contains information about the products that

can be sold in the POS system and the second contains

all the pricing rules for the products.

For these two domains, the Product archetype

patterns can be used to identify the information

necessary for the solution to and understanding of the

problem and also to give a more precise specification

of the problem.

The generalized Product archetype pattern provides

a flexible model, and is what we expect to be used in

most cases. Whith simple modifications, the Product

archetype pattern represents the POS product types

very well.

4.3.4. Order archetype patterns

When a customer decides to purchase a product, we

need to have some way of recording exactly what is

required. This is known as an order. It is a request

made by a customer to deliver some goods or services.

In return the seller normally receives some payment or

other compensation.

Figure 16 shows the Order archetype patterns

together with parties, products and services provided.

The Order archetype provides a complete model for

the action executed by the POS Client Machine for the

processSale requirement, as shown in Figure 8. It

includes information about taxes, discounts, payment

strategies, customers, products and so on.

4.3.5. Inventory archetype patterns

An inventory is a store of goods, but it can also be

used to manage the delivery of services.

Even having the Inventory as a third-party system,

as shown in Figures 7 and 8, the pattern model helps

one to understand and identify the information needed

for storage and it also helps to define a common

interface between the POS and third-party systems .

Figure 17, in the Appendix, presents the Inventory

pattern and its relationships with other patterns.

4.4. Transformation to patterns at design level

Considering the transformations presented in [8],

the following examples of object-oriented design

patterns can be used for the Party archetype and

analysis patterns, enriching the whole transition

process:

• For the creation of Person and Organization

classes the Abstract Factory design pattern is

suitable as it provides a common interface.

• The Composite design pattern can be applied to

represent simple and complex organizations. It

is used to represent part-whole hierarchies of

objects where clients treat individual objects

and compositions of objects uniformly [1]. It is

presented in Figure 4.

• If Persons and Organizations share the same

storage data structure, the Iterator design

pattern provides a uniform interface for

traversing different aggregate structures [1].

A design pattern solution for conversions from one

unit to another combining archetype and analysis is

shown in Figure 13 and explained bellow:

• SystemOfUnit represents a set of units and is

unique for all conversion operations. The same

applies to Metrics. Thus, for both classes the

Singleton design pattern is appropriate. It

ensures a class has only one instance, and

provides a global point of access to it.

• Rounding operations have different strategies

according to specific quantities. The Strategy

design pattern lets the algorithm vary in

respective of the clients that use it [2].

4.5. Discussion

In PF there are several problem frames which use

biddable domains, so we believe that archetype patterns

are good candidates to specialize the biddable domains

in problem frame context. So, they can be applied to

give support to problem frames instantiation, and

domain descriptions. The person archetype pattern and

analysis pattern are examples of this.

Table 2. Instantiation of several patterns

PF concepts Archetype

pattern

Analysis

pattern

Design

pattern

Biddable

Domain

Person Person Abstract

Factory,

Composite,

Iterator

Lexical

Domain

Quantities in

different units

Quantities in

different units

Causal

Domain

Unit Converter

Order, Product

Inventory

Conversion

Ratio

Basic

Problem

Frame

Standard

Convertion

Conversion

Ratio

Singleton,

Strategy

More over, we can also see a similar situation in

case of lexical and causal domains. In the

Transformation problem frame, proposed by Jackson,

the Transformation Machine is a causal domain and

both Input and Output domains are lexical.

Associations with Lexical and causal domains have

also been proposed lie for example the quantities, in

case of lexical domains, and Unit converter in case of

causal domains. Table 2 presents the different instances

of solution patterns.

A major advantage of all the patterns presented in

this paper is the level of abstraction provided by each

approach, in this case Archetype and Analysis, and also

the reuse supported by the object-oriented approach.

However the use of patterns can affect the flexibility

and reusability of the resulting system. Notice that

building too much flexibility into a system can also

make it too complex. Engineering demands a trade-off

between the cost of building and maintaining artifacts

and the feature it will provide [2].

In conclusion we can state that, for the illustrated

example, the integration between patterns and PF

permits a deeper analysis of the problem and a more

complete solution.

5. Related Work

After considerable research, we found no papers

relating PF to archetype, analysis or even design

patterns. However, we did find some papers proposing

approaches or other patterns for problem frame-

oriented software development. In [12] the authors

propose software architectural patterns corresponding

to the basic problem frames that may serve as a starting

point for the construction of the software solving the

given problem. Also in [13][14][15] an ad hoc UML-

based development method for some of the most

relevant problem frames is provided showing how

problem frames may be used upstream of a

development method. In [10] the crosscutting nature of

some properties of a problem is explored to analyze the

impact on the modularization of concepts and,

therefore, the evolution of the system.

In [8] a study on the use of patterns within the RUP

software development process is presented. Through

the study of design patterns, analysis patterns and

archetype patterns the author makes a transition

between models. A model that describes a problem

solution using archetype patterns, for example, is

described using analysis patterns and design patterns.

6. Conclusion and Future Work

Our analysis shows that studies involving an

integrated approach, using PF and other patterns, are

promising. Their conceptual resemblances allow

associations at different levels, as explained in Section

3. Some of the associations were proposed for problem

frames; the association, at this level of abstraction, that

is not considering an instantiation, is very helpful for

binding the specification and design phases.

In this paper, we presented an overview of the

transitions, which starts with PF diagrams, passing

through archetype, analysis and, finally design patterns.

However, we did not going deeply into any of them.

We consider the whole process a big step, which must

be further explored. In future studies, we will consider:

(1) making other case studies, in order to refine and

validate the proposed integrated process; (2) exploring

the transition of basic problem frames deeply; (3)

analyzing other PF concepts which may be associated

with patterns, such as the phenomena concept, in order

to formalize the study; (4) defining specific archetype

patterns that represent in a complete and suitable

fashion the existing PF domain types.

As the idea of software patterns is not restricted to

the object-oriented community, we will also consider

including other kinds of patterns, maintaining a

flexibility of approach, to the development process.

7. References

[1] Gamma, Erich, et. al. Design Patterns – Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

[2] Fowler, Martin. Analysis Patterns – Reusable Object

Models. Addison-Wesley, 1997.

[3] Arlow, Jim; Neustad, Ila. Enterprise Patterns and MDA –

Building Better Software with Archetype Patterns and UML.

Addison-Wesley, 2003.

[4] Larman, Craig. Applying UML and Patterns – An

Introduction to Object-Oriented Analysis and Design and

Iterative Development. Prentice Hall PTR, 2005.

[6] Geyer-Schulz, Andreas; Hahsler, Michael – Software

Engineering with Analysis Patterns. Wien, 1991.

[7] Jackson, Michael; Problem Frames: Analyzing and

structuring software development problems. Addison-

Wesley, 2001.

[8] Moraes, Tiago; Aplicação de padrões ao processo de

desenvolvimento de software RUP. UPE, 2006.

[9] M. Lencastre, J Botelho, P. Clericuzzi, J. Araújo, A

Meta-model for the Problem Frames Approach, Workshop in

Software Model Engineering, at Models, Jamaica, 2005.

[10] M. Lencastre, J. Araujo, A. Moreira, J. Castro,

Analyzing Crosscutting in Problem Frames Approach.

Proceedings of 2nd International Workshop on Advances and

Applications of Problem Frames - IWAAPF´06, Shanghai,

China, 2006, ACM Press, pp 59-64.

[11] Jackson, M. A.: Problem Analysis Using Small Problem

Frames, Proceedings of the South African Computer Journal

22; Special Issue on WOFACS’98 (1999) pp 47-60.

[12] C. Choppy, D. Hatebur and M. Heisel: Architectural

patterns for problem frames; IEE Proc.-Softw., 2005, Vol.

152, No. 4.

[13] Choppy, C., Reggio, G.: A UML-Based method for the

commanded behavior frame. In: IWAAPF’04, Karl Cox and

Jon G. Hall and Lucia Rapanotti Eds., 2004, IEE pp. 27-34.

[14] Choppy, C., Reggio, G.: A UML-Based approach for

Problem Frame oriented software development. In: Elsevier

eds, Information and software technology 47, 2005, pp 929-

954.

[15] Lavazza, L., Del Bianco V.: Combining Problem

Frames and UML in the description of software

requirements. Fundamental Approaches to Software

Engineering (FASE06), Vienna, Austria, 2006.

[16] J.G. Hall and L. Rapanotti, Towards a Semantics of

Problem Frames, Technical Report 2003/05, Department of

Computing, The Open University, Milton Keynes UK.

Appendix

The patterns presented in this paper are detailed in

this appendix, with the aim of clarifying and facilitate

their understanding. They include the ConversionRatio

and Measurement analysis patterns and the Product,

Order and Inventory archetype patterns.

The Measurement analysis pattern considers various

things that can be measured as objects and introduces

the object type Phenomenon Type as shown in Figure

14. The Phenomenon Types are things that can be

measured [2].

Figure 14. ConversionRatio and Measurement

analysis patterns

Figure 15. Product archetype patterns

The Product pattern model shows how to represent

types of products, product specification, persistent

storage of product information, amount of money that

must be paid in order to purchase good or services,

products sold by measure and so on. Figure 15 shows

the Product archetype patterns and the sub patterns

involved.

Figure 16 shows the Order archetype patterns

together with parties, products and services provided.

The pattern is made up of other important patterns

such as Party and Product required for implementing

an Order.

Figure 17 shows the Inventory archetype patterns,

which require a prior understanding of the Product

archetype. Inventory always tends to be handled in a

similar way - a stock of items is created and maintained

at an appropriate level or, in the case of services, the

capacity to deliver the service is maintained [3].

Figure 16. Order archetype patterns

Figure 17. Inventory archetype patterns

