
A Language-Based Approach to Variability Analysis

Bruno Santana da Silva, Simone Diniz Junqueira Barbosa, Julio Cesar Sampaio do Prado Leite

Departamento de Informática, PUC-Rio

R. Marquês de São Vicente, 225

Gávea, Rio de Janeiro, RJ, Brasil, 22451-900

{brunosantana, simone, julio}@inf.puc-rio.br

Abstract

Ways to deal with differences among users and

hardware platforms have been investigated by several

subareas in Computer Science. Despite these research

efforts, even today we lack a systematic approach to

deal with variations that reflect differences in user

goals, needs, preferences, and strategies to achieve

goals. In this paper, we explore the variability of the

user’s domain language to promote the requirements

engineers’ reflection on the need to deal with

variations and what strategies are adequate to deal

with them further in system design, as it will be

reflected in the user interface language. In the

proposed approach, we take into account concerns

involved in different contexts of use to better

understand the dynamic of user goals variability

during system usage, before considering how to

achieve the user goals on user interface language.

1. Introduction

If we change our focus from a software system and

its internal functionalities to a broader view of context

of use, one may realize that: (a) a system is used by

different users with different needs; (b) a system is

used by users with changing needs; (c) users work in

changing environments; and (d) users work in different

system environments (i.e. platform and infrastructure)

[1]. There are different strategies to deal with these

differences and variations, both during system design

and usage. Common strategies to deal with variations

during system design are:

§ regarding the range of goals that are supported by

the system:

a) to design an “all-in-one” system, which aims

to support most sets of user goals, needs and

preferences; for instance, Microsoft Word

with its hundreds of features. This strategy is

to develop a single system for “anybody” in

“any situation”. However, the user interface

usually becomes “bloated”, confusing and

being in the way of a single user with a

specific goal in a specific situation [2]; and

b) to design a product family of systems, which

support different sets of user needs and

preferences; for instance, (suites or)

complementary applications by Corel and

Adobe to work with images [3].

§ regarding the variations in strategies to achieve

each goal supported by the system:

c) to design a system that allows for a single

strategy to achieve each supported user goal,

i.e., to reduce the variations into a strategy

deemed as more common and suitable for

most;

d) to design a system which offers flexible

support to the users` needs and preferences

(i.e. the user can do the same thing in different

ways); for instance, in many applications the

user can copy something using any one of

three different strategies: by typing Ctrl+C, by

clicking on a menu item or by clicking on a

toolbar button. It gives to user the freedom to

choose how to obtain the desired results in a

specific situation [4].

Common design strategies to help users deal with

variations during system usage are related to the

amount of control users have over the variations:

a) to design an adaptive system, i.e., a system

able to automatically adapt its user interface

and functionalities to specific user and

situation; for instance, the personalized

recommendations of Amazon.com. An

adaptive system can offer a specific user

interface and selected functionalities targeted

11th. Workshop on Requirements Engineering

179

at a specific user and situation with little or no

effort by the user. However, the automatic

adaptations may challenge the users`

comprehension of the process and

consequences of change, and reduce the user’s

control of the system [5]; and

b) to design an adaptable system, i.e., a system

which lets the user modify the user interface

and, in some cases, the system functionalities.

For instance, the user can choose if Firefox

will open or not pop-up windows, and where

new pages will be opened – in new tab or new

window. This strategy keeps user in control of

the user interface and system functionality

changes, so the user is better equipped to

comprehend the process and consequences of

each change. On the other hand, the user

needs to learn how to interact with the system

to adapt it and may need to do substantial

work to achieve an adaptation [6].

It is important to note that the aforementioned

strategies, either during system design or usage, are not

mutually exclusive. In most systems, they are

conjugated and some of them complement others very

well. We can find many applications nowadays which

apply one or more of these strategies. However, the

design and development processes typically deal with

variations in an ad hoc manner, i.e., they lack a

systematic approach to deal with variations.

The problem in dealing with differences and

variations in user needs and preferences has been

investigated by several subareas in Computer Science.

In particular, we are interested in research in both

Requirements Engineering (RE) and Human Computer-

Interaction (HCI).

In RE, variability has been investigated by the

identification of alternative ways (sequences of actions)

to achieve user goals
1
 [7-10]. Each way to achieve a

user’s goal is usually associated with one or more

softgoals. A softgoal describes a non-functional

requirement which helps or hurts each possible strategy

of achieving a user’s goal [7]. In general, in RE the

chosen way to achieve a user’s goal is decided during

system design, supported or not by computer tools (or

algorithms), according to the prioritized softgoals in

that moment. In addition, it is still not clear what

concerns should be considered in this decision process,

beyond the concern on “how to achieve a goal”.

Traditionally, research in HCI pays attention to

1
Using requirements engineering terminology, "user goals" refer to

the stakeholders goals. In this paper we focus the attention on

stakeholders that will interact with the system, as such the term user

is utilized.

variability of users, goals, tasks and context of use

[11,12]. This interest by variability has motivated the

development and improvement of techniques to deal

with variability, following strategies applied during

system design [2, 4] and usage [5, 6], as discussed

above. Nevertheless, there is still a gap between

identifying variability and deciding how to deal with it.

In this paper, we argue that it is necessary to take

into account other concerns beyond “how to achieve a

goal”, to better understand the dynamics of variability

during system usage. We, thus, explore the variability

of these additional concerns on the goal-directed user

requests in terms of the user’s domain language.

During interaction, users should be able to express

these goal-directed user requests (and possibly some

variations as well) through the user interface language

(UIL) [13,14]. The UIL is the language through which

the user and the system interact with each other. It is

represented by the static and interactive user interface

elements (widgets), interaction patterns and strategies,

help and any other information made available to the

users about the user interface and its usage. The

concept of UIL has a precise meaning within semiotic

engineering [13] and should not be confused with

interaction or interface modeling languages or

notations, such as, UsiXML (www.usixml.org) and

other user interface description languages.

In our language-based variability analysis approach,

the language we refer to is the user’s natural language.

During the analysis, we do not aim to define the

application’s UIL, because this would be premature at

this stage, nor to define an artificial language designed

to analyze variability. Instead, we investigate the user’s

language when users talk about the domain to analyze

possible variations in the language and its use that will

need to be accommodated in the UIL, elaborated later

in the design stages.

With information about anticipated variability at

hand, we promote the requirements engineers’

reflection to help them to decide which strategy should

be used to deal with this variability during the UIL

design. As a running example, we apply the proposed

approach in the variability analysis of a media player

system.

In the next section, we describe the motivations and

causes for variability in systems design. The third

section describes the seven activities of the proposed

approach, from eliciting information relevant to the

variability analysis to the analysis itself. In section 4 we

briefly present some design concerns related to the

variations identified previously, and section 5

concludes the paper.

11th. Workshop on Requirements Engineering

180

2. Which Concerns Are Involved In System

Variability Motivated by Use?

Before understanding which concerns are involved

in variability, we need to understand what goes on

during the use of a system. As illustrated by Figure 1,

the use of a system occurs when a user is engaged in an

interaction process with the user interface to achieve

some goal within a context of use [12,13].

User

System

User Interface

Context of use

Goal

Includes location, time, and physical, social and cultural environment

interaction

process

Figure 1. The process of use of system.

From the user’s point of view, the system is the user

interface, because the user interface is the only part of

the system the user is in contact with (e.g., the user

cannot access any system functionality if not via the

user interface). The context of use includes the

location, time, and physical, social and cultural

environments where the interaction takes place. All

these elements (and not only user goals) can influence

the variability of system. Therefore, we need to

investigate how these concerns (and their variations)

are related with the variability of the user interface and

the system functionalities. To elicit these concerns, we

can use the following questions [15]:

Who participates in the interaction process?

Examining the interaction process, we realize that both

user and system (or the designer’s deputy, in semiotic

engineering terms [13]) participate in it. Regarding the

users, we need to elicit information about their skills

and preferences [8], as well as any constraints and

special needs they may have. Regarding the system, we

need to elicit information about the available hardware

platforms (desktop, laptop, PDA, cell phone, etc.),

input and output devices (mouse, keyboard, pen, touch

screen, etc.), and infrastructure (network and internet

access, disk space, etc.) in different contexts of use. At

this stage, we are not making design or implementation

decisions. We are just eliciting possibilities that will

help anticipate variations. Only later should these

aspects drive design decisions. For instance, it is not

possible to download a file if there is no disk space

available or if the network connection is down.

One should note that the system is not equivalent to

users. It does not have its own intentions or free will.

Instead, it behaves only as designed.

What are the participants’ goals? The users’

goals (i.e. the expected result of their interaction with

the system) are traditionally investigated by

requirements engineers [16, 7, 11]. The “system’s”

goals, on the other hand, are designed in later stages of

development process to support the users’ goals.

How can goals be achieved? The possible

strategies to achieve user goals are also traditionally

investigated by requirements engineers, and more

recently their variability has also been taken into

account [7-11, 16]. Later during design one or more

selected strategies will be mapped onto action

sequences on user interface.

When will goals be achieved? Besides common

known time divisions, such as minutes, hours, days,

months, and so on, the requirements engineer should

investigate other relevant time divisions or intervals,

such as seasonal intervals.

Where will goals be achieved? The interaction can

occur in a set of places, such as home and work, or in a

hierarchy of places, such as a room at a university, a

campus, a city, a state, and so on. An environment

analysis should investigate the physical (such as light

and noisy levels), social (such as the possibility of

learning to use the system with colleagues or when

users are pressured to go fast) and cultural (as this

culture works better with uncertainty than others)

aspects of the environment that can interfere in

interaction process [11, 12, 15].

The analysis should not only consider variations in

one kind of element (for instance, among users or

among environments), but also variations in time, with

special attention to the frequency of change. For

example, it is not sufficient to investigate that a specific

user has such and such skills and preferences, because

they can change in time, motivated, among other

factors, by training or attitude. As the concerns

involved in variability can change during system usage,

it may not sufficient to deal with variability searching

for “the best option” at design time for user X and

context Y (privileging some softgoals over others) to

design and develop the system according to this option.

It is also important to consider strategies to deal with

variability later, during system usage, as will be briefly

described in section 4.

3. A Language-Based Approach to Explore

Variability Concerns

11th. Workshop on Requirements Engineering

181

To analyze variability, we need to go beyond “how

to achieve goals?” concern. The concerns related to

variability are typically described by softgoals [7-10],

which qualify, positively or negatively, different ways

to achieve user goals. In our variability approach, we

decide to change our focus from a cognitive approach,

where the interaction process is viewed as a sequence

of user actions and interpretations [17], to a semiotic

approach, where the interaction process is viewed as a

signification and communication process [13]. Both the

meaning of what the user requests directed by his goal

to the system and how to express these requests at the

user interface (i.e. the interactions) are important.

However, the “what” should be defined before and then

help determine the “how”. This idea is reinforced when

we remember that achieving a user goal results from a

cooperative work between user and system which needs

communication or exchange meanings and ideas. Our

focus in this paper is on analysis of (the meanings of)

what the user requests to the system, directed by his

goals. Therefore, to understand how users elaborate his

requests and what his intentions are, we should

investigate how people exchange meanings and ideas.

The main entity or piece of information investigated

in signification and communication processes by

Semiotic is the sign. A sign is “anything that stands for

(meaning) something to someone”, such as words,

pictures, and others [18]. The meaning of a sign is not

static and evolves during time in a process called

unlimited semiosis [19].

When we communicate with each other, we

exchange signs (or ideas) according to some code or

language. During the user-system communication

(interaction), the user interface represents (or

instantiates) a language used by both user and system

to communicate with each other [13,14]. The user

interface language makes systematic use of the signs

encoded in the system. When the system is

implemented, there is encoded in it a meaning of every

sign which the system can “make sense” of. These

encoded meanings command the system behavior. The

meanings of all encoded signs in the system will always

be partial and fixed, but because of unlimited semiosis,

the meanings of all signs continue to evolve in the

development team’s minds after codification in (or

implementation of) the system, as well as in the users’

minds.

The user interface language must be as close as

possible to the language used by users to talk about the

domain [13, 14]. This will facilitate the production and

interpretation of sentences during user-system

communication (interaction). The concept of user

interface language is similar to “application language”

proposed by [20]. We prefer to use the term “user

interface language” to remind us that this language will

also be used by the users and not only by the

application.

Therefore, the variability analysis in a semiotic

approach is related to the variability in both the user’s

domain language and the user interface language. As

mentioned in the introduction, the user interface

language is defined later, mainly during interaction and

user interface design. Given the amount of variability

concerns, it is interesting to analyze smaller sets of

variability concerns during several activities of the

development process. This will reduce the amount of

variability concerns analyzed at a time and will result

in a user interface language designed for variability.

In the early stages of a development process, users

and their goals are among the first identified elements.

In line with [7-10], we propose to begin the variability

analysis with the identified user goals. In our language-

based approach, we propose a process to analyze the

variability of user goals based on the user`s domain

language (Table 1). The identified variability should be

accommodated in the user interface language,

elaborated later in the design stages. Although the

activities in the process are presented sequentially, the

proposed variability analysis process is actually

incremental and iterative.

Table 1. A language-based variability

analysis process.

Type of

analysis

Activities

Lexical and

semantic level

1. Elicit information of domain and

contexts of use;

2. Identify and describe signs;

Syntactic and

semantic level

3. Identify goal-directed user requests;

4. Rewrite goal-directed user requests

as cases;

5. Review goal-directed user requests

by means of systematic question

asking;

Variability 6. Organize the signs in an ontology;

7. Analyze variability by means of

systematic question asking.

3.1 Elicit information of domain and contexts

of use

By means of interviews, questionnaires,

observations and analyses of documentation and

similar systems, the requirements engineer obtains

information about the domain and the contexts of use,

as discussed in section 2 [11,12].

11th. Workshop on Requirements Engineering

182

3.2 Identify and describe signs

Given the previously elicited information, the

requirements engineer identifies the signs that belong

to the domain and that are candidates for being

designed later into the application’s user interface. In

this variability analysis process, the requirements

engineer should register certain information about each

sign: name (and synonyms), description of the meaning

that will be encoded in the system, restrictions to the

possible values the sign may take on, a default value (if

any), and the relations between the signs. These pieces

of information can be registered in a structured

representation, such as the Language Extended Lexicon

[21], briefly presented here in a table. In a media player

system domain, we can find some signs as the examples

presented in Figure 2.

Play

Meaning to perform selected media files or media

files from a playlist

Possible Values -

Default Value -

Relationships Activated by the user.

Has to be “previously buffered”.

Synonyms Go

Media File

Meaning Represents an audio or video file, with a

title and duration time

Possible Values Any media file which system can

reproduce

Default Value -

Relationships Was recorded by an artist

Can be part of an album

Can be part of playlist and media library

Synonyms song, video

Playlist

Meaning Represents an ordered list of media files

chosen by the user

Possible Values Any media file which the system can

reproduce

Default Value Empty list

Relationships Can contain media files from media

library

Can contain media files from CDs,

DVDs and MP3 Players

Synonyms -

Figure 2. Partial descriptions of some signs in a

media player system.

Registering this information for all signs which

make up the user’s domain language can seem

excessive work at first. However, we should remember

that the system will encode a meaning of all signs in the

user interface language. As it is important that every

stakeholder who produces or uses the system have

access to (a description of) the encoded meaning of

signs, representing this information in natural language

facilitates human comprehension and helps establish

shared knowledge about the application being

designed.

What about words considered common sense?

Should they still be described? Yes, they should. We

should not forget that sign meanings, be they

considered common sense or not, are all culturally-

dependent, and many signs have multiple meanings. In

addition, the encoded meanings of signs are arbitrary,

resulting from the requirements engineers’ and

designers’ semiosis processes that have arbitrarily

stopped at some given moment. For example, the word

“play” has more than one “common sense” meaning. In

a media player system, the meaning of the “play” sign

is in line with “to perform media files” and not with “to

exercise oneself in diversion or recreation”, nor with

“to move freely within a space” (definitions from

dictionary.com).

Moreover, the meaning of a sign keeps evolving in

the stakeholders` minds, characterizing unlimited

semiosis [19]. When we describe a sign meaning which

will be encoded in the system, one stakeholder may

compare the described meaning with the evolved

meaning in his mind, as the development process

proceeds. If the difference is significant, the

stakeholders should (re)negotiate and review the

meaning that will be encoded in the system.

Furthermore, the information about encoded signs

will be very useful during subsequent activities in the

development process, such as user interface design and

help content development.

3.3 Identify goal-directed user requests

Taking into account the information collected about

domain and context of use, the requirements engineer

identifies the user goals that will be supported by the

system [11, 16]. The requirements engineer can

continue his work by analyzing different ways for users

to achieve their goals, for example, by decomposing

the user goals in AND/OR sugbgoal trees [7].

However, as we are interested in analyzing variability

based on the user`s domain language to later support

the design of the user interface language, it may be

interesting to encode the user goal as a high-level

request to the user interface, represented using the

previously identified signs. This way, instead of

representing the goal itself (e.g. Listen to song X), we

represent the goal-directed user request, or simply user

request, i.e., what the user wants the system to do to

achieve his goal (e.g. Play X). We are not yet

concerned yet with how to express his request to the

system using the user interface language (e.g. selecting

11th. Workshop on Requirements Engineering

183

media file X and clicking on button), which

corresponds to design issues. In our media player

system example, we can point out the following

identified user requests:

§ play media file;

§ organize media files in a playlist: (a) create

playlist; (b) add a media file to a playlist; and

(c) remove a media file from a playlist; and

§ skip the current media file.

In the next section, these user requests will be further

characterized to illustrate our proposal for variability

analysis.

3.4 Rewrite goal-directed user requests as

cases

The next step in the proposed variability analysis is to

rewrite the identified user requests to represent them in

a way to facilitate the variability analysis based on

user`s domain language. Like Liaskos and collegues

[10], we propose to use Fillmore’s cases [22] as a basis

for characterizing user requests. The cases considered

in this paper are:

Agentive (A) is a category of signs which represent

agents who request an action identified by a verb. A

sign of this category typically represents actors or

groups of actors found in the domain, including the

system(s)-to-be. In the case of the media player, for

example, the sign “user” belongs to Agentive category

in the sentence “a user requests the system to play a

media file”
2
.

Dative (D) is a category of signs which represent

agents who will be affected by the action described by

a verb. These signs typically represent actors or groups

of actors found in the domain, including the system(s)-

to-be. The sign “user” also belongs to Dative category

in the sentence “system notifies user when the copy of

media files from CD has finished”.

Objective (O) is a category of signs which represent

objects affected by actions identified by a verb. The

signs “media file” and “playlist” belong to the

Objective category in the sentence “a user plays a

media file of a playlist”.

Factitive (F) is a category of signs which represent

object(s) or being(s) that result from the action or state

identified the verb. In the sentence “a user creates a

playlist”, the sign “playlist” belongs to the Factitive

category.

Instrumental (I) is a category of signs which

2 In this system, there is a single user role, but in multiuser

applications one would typically find different roles occupying the

agentive and dative cases.

represent instruments involved in the performance of

an action identified by a verb. The sign “playlist”

belongs to the Instrumental category in the sentence

“a user burn a CD with a playlist”.

Manner (M) is a category of signs which represent

the manner (i.e. the mode, the intensity, the velocity,

the force, and so on) by which the action identified by a

verb is performed. The sign “volume” belongs to the

Manner category because “a user plays a media file in

volume 70%”.

Location (L) is a category of signs which represent

(virtual or real) spatial locations where the action

identified by a verb is supposed to take place. The sign

“playlist” belongs to Location category in the sentence

“a user removes a media file from a playlist”.

Temporal (T) is a category of signs which represent

the duration or frequency involved in the action

identified by a verb. The abstract sign “play duration”

belongs to the Temporal category as it is numerically

represented in the sentence “play media files of a

playlist for 30 minutes”.

The general format for representing a user request

is: Verb[A(),D(),O(),F(),I(),M(),L(),T()]. Since

we do not have more than one user role, we will

assume A(user) for all sentences. In the case of the

aforementioned user requests, we have:

§ play a specific media file: play[O(media
file)]

§ organize media files in a playlist;

a) create playlist:
create[F(playlist)];

b) add a media file to a playlist: add[O(media
file), L-to(playlist)];

c) remove a media file from a playlist:
remove[O(media file),
L-from(playlist)];

§ skip the current media file:

skip[O(media file)].

Each slot defined by a case reduces the search space of

possible signs which can occupy the slot, and thus may

facilitate the variability analysis, as we will further

discuss in section 3.6.

3.5 Review goal-directed user requests by

means of systematic question asking

When we describe a user request in a natural language

sentence, it is common to summarize and omit some

related pieces of information (or concerns). Sometimes,

we do this consciously when we know (or remember)

more than we describe. In other times, we do this

unintentionally because we do not know (or remember)

related pieces of information about the user request.

These omitted pieces of information about a user

11th. Workshop on Requirements Engineering

184

request can be important to help analyze the system

variability.

The systematic question asking technique [23] has

been explored to help remember and discover related

pieces of information from summarized sentences. It

“allows cognitive scientists to examine the content and

structure of the information that is linked to a

particular concept in memory. (...) The answer to a

question about a component in a narrative can reveal

an otherwise hidden connection to an idea that is

critical to understanding that component.” [p. 249].

For every identified user request, we propose to use

the systematic question asking technique to help to

remember or discover additional cases (or roles of

signs as discussed in section 3.4) related with a user

request sentence. If any other piece of information

related to a user request is revealed, the requirements

engineer should expand the user request both in natural

language (section 3.3) and in cases format (section

3.4). If new signs are revealed, they should be

identified and described (section 3.2) before

proceeding with the variability analysis. Based on

Fillmore’s cases [22], we propose the following

questions for systematic question asking to improve the

requirements engineer`s comprehension about user

requests and related signs:

Agentive: Are there other agent roles who cooperate

with the performance of this action? Who are they?

Dative: Are there other agent roles affected by this

goal? Who are they?

Objective: Are there other kinds of objects affected

by this goal? What are they?

Factitive: Are there other kinds of objects resulting

from this goal? What are they?

Instrumental: Are there other kinds of objects used

as instruments to achieve this goal? What are they?

Manner: Are there other kinds of manners to

achieve this goal (considering the same action)? What

are they?

Location: Are there other kinds of (virtual or real)

spatial locations to be taken into account during the

achievement of this goal? What are they?

Temporal: Are there other kinds of duration or

frequency involved in the achievement of this goal?

What are they?

For each user request sentence, the requirements

engineer should answer all these questions. Again,

because we are dealing with a single user system, all

Agentive cases will be considered to be a non-varying

user.

We describe below the application of the systematic

question asking technique on the user requests of the

example media player system:

§ play a media file − play[O(media file)]:

Dative? People close to the system can listen and

watch the media being played, but the system is not

aware and cannot handle this.

Objective? A media file can belong to one or more

playlists, and thus the case O(playlist) may be added.

Factitive? This action produces change the state of

current media file, from paused or stopped to playing.

It also changes the current media file position. So, we

may add two more cases: F(state=playing) and

F(media file position).

Instrumental? Just media file.

Manner? A media file can be played with different

volume intensity, in a specific speed, and with a

specific equalization configuration. Then, it is

necessary to add three more cases: M(volume),

M(speed) and M(equalization).

Location? Temporal? None.

The expanded sentence of this user request is: user

plays a media file of a playlist, with a certain volume,

speed and equalization settings according to the current

position of the media file, changing state of media file

− Play [O(media file), O(playlist), M(volume),
M(speed), M(equalization), O(current position
of media file), F(state of media
file=playing)].

§ User removes a media file from a playlist − Remove
[O(media file), L(playlist)]:

Dative? None.

Objective? Just media file.

Factitive? Instrumental? Manner? None.

Location? Just playlist.

Temporal? None.

This user request does not need to be reviewed.

§ User skips the current media file – skip[O(media
file)]:

Dative? None.

Objective? Beyond the current media file, this goal

affects another media file which will be played in the

place of the current media file. To represent this we

will replace O(media file) with O(media_file_A)

and O(media_file_B).

Factitive? The media file in question is playing

and will be substituted by another media file which will

be playing too. So, we can add the cases: F(stopped-

A), F(playing-B).

Instrumental? The next media file depends on the

order sign (for example, sequentially or shuffle) and the

continuity sign (indicates if the system should continue

playing the playlist from first media file when the last

media file has finished) on a playlist. Then, it is

necessary to add three more cases: I(playlist),

I(order) and I(continuity).

11th. Workshop on Requirements Engineering

185

Manner? Location? Temporal? None.

The revised description sentence of this user request

is: user skips the media file being played to the next

one in a playlist, according some order and continuity −
ship [O(media_file_A), F(stopped-A),
O(media_file_B), F(playing-B), I(playlist),
I(order), I(continuity)].

Even in a widely known domain, such as media

player systems, we tend to summarize the description

of user requests. These examples showed that the

systematic question asking activity may reveal

important related pieces of information of a user

request. The cases identified by the systematic question

asking will be useful to analyze variability, as we will

show in the following.

3.6 Organize the signs in a domain ontology

We propose to explore sign substitutions to analyze

variability. How can we find a sign which can be put in

the place of another? A good way to do this is to search

for another related sign according to some criteria.

Thus, we propose to organize the signs in an ontology

[24].

Given an ontology, signs that are candidates for

substituting other signs may be found by following a

few simple traversal movements:

§ siblings: when a sign A and a sign B have an is_a

relationship with sign X, than A is a candidate for

substituting B in a variation, and vice-versa (e.g. a

audio file may be substituted by a video file);

§ specialization/generalization: when a sign A is_a

sign B, then A is a candidate for substituting B in a

variation, and vice-versa (e.g. a audio file may be

substituted by a media file)

§ related via a synecdoche: when a sign A is_part_of

a sign B, sign A is a candidate for substituting B in

a variation (e.g. a media file may be substituted by

a media collection); if the verb accepts multiple

elements as an argument, B can also be substituted

by the collection of signs that are part_of B (e.g. a

media collection may be substituted by the set of

media files which comprise it);

§ metonymically related: when a sign A is related to

sign B through a metonymic relation [26] (e.g.

located in; produced by), it is a candidate for

substituting B (e.g. media files can be substituted

by the MP3 player that contains them).

Generic traversals of the ontology, however, may bring

about undesired results (e.g. substituting media file for

user). Besides constraining the traversal by assigning

weights or penalties to each kind of relation, it would

be useful to further characterize the roles each sign can

play in the sentences that describe potential user goals

in the domain. We propose to have all signs related

(directly or indirectly, via is_a relations) to a case. For

instance, media file “can play the role (case)”

Objective but not Location (therefore, there might be

a can_play_role relation linking media file and

Objective). This way, one would be able to copy

media file to a certain location, but we cannot consider

the media file to be a location per se, constraining the

set of variations to be generated. The cases that define

the roles each sign may play are identified in the user

goals’ definition.

An ontology which organizes signs can be reused in

other systems in the same domain, with the necessary

care to review the meanings of signs, of course. Even in

the same system, as in the case of the media player

being investigated, the pieces of information about

signs can be reused. For example, pieces of information

and relations of “media file” and “playlist” signs are

used by both “play” and “remove” user goals. In an

approach of user goals decomposition in AND/OR

subgoal trees this is not possible, and it is necessary to

have similar trees to represent them.

3.7 Analyze variability by means of systematic

question asking

Having identified the signs, organized them in an

ontology, and explored cases sentences that express

user requests, we should conclude the variability

analysis of user goals by exploring possible variations

in these sentences in different contexts of use.

From the initial motivation for variability cited in the

introduction [1], we can identify four dimensions to

analyze variability: (a) variability from user to user;

(b) variability of a single user in time; (c) variability

from one context to another; and (d) variability from

one platform to another ([15] proposes similar

dimensions). We propose to analyze the variability of

each user goal sentence as a function of these four

dimensions – time, user, context and hardware platform

– by means of systematic question asking [23]. Thus,

using information obtained in elicitation discussed in

section 2, the requirements engineer should answer

these questions for each user request:

What can vary? Why? A user request written as

cases is very useful to help us investigate this question.

Given a case sentence of a goal-directed user request,

what can vary is: (1) the meaning of the verb, (2) the

set of cases associated with the verb, (3) different signs

(sign-types according to Eco [19]) for substituting each

case in the request (the natural candidates are signs

resulting from transversal movements in the signs

11th. Workshop on Requirements Engineering

186

ontology), and (4) different values (sign-token values

according to Eco [19]) which a sign can assume in the

sentence (the natural candidates are the identified

possible values of the sign in section 3.2).

When can it vary? In which situations can it

vary? According to what does it vary? With what

frequency? Why? Here the requirements engineer

should consider the four mentioned variability

dimensions [1,15]:

 Can it vary in time for the same user?

(Related with “Who” question to user in

section 2.)

 Can it vary from user to user? (Related with

“Who” question to user in section 2.)

 Can it vary from one context to another?

(Related with “Where” and “When” questions

in section 2.)

 Can it vary from one hardware platform

and infrastructure to another? (Related with

“Who” question to system in section 2.)

How much can it vary? It is possible to

enumerate variations? What are they?

Is it possible to omit some cases? What would be

the default value? Could the default value be different

or vary? When and why?

What could be the impact of the variation on the

use if the system does not deal with it?

How many people could realize this variation?

One user, few, many? Why?

These questions are based on interaction concerns

presented in Figure 1 and on research on adaptive user

interfaces presented in [1].

The natural and expected way to record the answers

to and the thoughts fostered by these questions is using

natural language description. However, if the

requirements engineer wants to, he can organize some

concerns of these questions in a graphical way using

trees with AND/OR hierarchies to facilitate his

reflection, as presented in Figure 3. (The dashed

rectangle in Figure 3 represents an optional case.)

In spite of the similarity with the AND/OR

decomposition of goals in subgoals [7-10], this

representation has significant differences. First, every

level of this hierarchy is associated with some type of

concern (verb, case, sign-types – or simply signs, and

sign-token values – or simply sign values) used in our

language-based approach to variability analysis.

Second, the hierarchy between the verb and case levels

represents a relation established by user request; while

the hierarchies between case–sign-type and sign-type–

sign-token value are relations that reduce the scope of

possible signs in direction of its instantiation. These

meanings of the hierarchical levels are very different

from decomposition of a user goal into subgoals.

Verb

Case 1 Case 2 Case 3

Sign-Type 1 Sign-Type 2

Sing-Token

Value 1

Sing-Token

Value 2

Sing-Token

Value 3

and

or

or

Verb Level

Case Level

Sign-Type Level

Sign-Token Value Level

Figure 3. A representation for language-based

variability concerns of user goal sentence.

We present below the application of the systematic

question asking technique to analyze the variability of

two user requests in the example media player system.

Figure 4 shows part of the variability concerns for

the “What can vary?” question about the user request

“user plays a media file of a playlist, with a certain

volume, speed and equalization settings according to

the current position of the media file, changing state of

media file”. In particular, we explore the cases O(media

file), M(volume) and M(equalization).

Play

A(user) I(media file)

volume equalization

0-100 % Pop

and

or

or

I(playlist) M(volume) M(equalization)M(speed)
M(current

position)

or

Rock Jazz

media file

or

The girl from

Ipanema.mp3

Waters of

March.mp3

or or

M(state of

media file)

Figure 4. Part of the variability concerns of “Play”.

Regarding “When can it vary?” concerns, we

realize that:

Variability of a single user in time: a user can

choose media files according to his preferences at

moment. For example, he may want to listen to a

specific music. Or, when he is happy, he could prefer to

listen to a set of dance songs. Thus, we may explore

and offer to the users different ways to choose media

files at different moments and decide how the user

alternates between them. The sign ontology can

indicate some criteria to choose media files. In

particular, transversal movements via a synecdoche

(“part_of”) and metonymical relations can point out

good criteria, such as media files from an album or

interpreted by an artist, respectively.

11th. Workshop on Requirements Engineering

187

Variability from one context to another: Anna

usually listens to music loud at home using her

notebook, but at her university campus, she prefers to

listen to music less loudly so as not to disturb her

colleagues. Therefore, not only is it necessary to

provide users with the volume control, but it may be

interesting to create usage profiles for easy

configuration of the media player in different contexts.

In addition, some variations in context occur abruptly,

such as a phone ringing, so a way to turn the volume

down completely (mute) may be considered.

Variability from one platform to another: When

Bob used his old and very simple speakers, he was not

concerned with the equalization of songs being played;

but when he bought new “super speakers”, he

discovered that adjusting the equalization can make a

lot of difference, and he liked the results. He also noted

that different songs required different equalization

settings. Then, it would be interesting to save the

equalization settings for a song or set of songs.

About of “How much can it vary?” concerns, we

realize that: (1) The possible media files are potentially

any file which a user can access from CDs, DVDs, pen

drives, hard disks and so on. The possibilities are so

many, that it is impractical to enumerate them. Also, it

is very common for a user to change his mind and

choose to listen to different media files from his initial

selection. Therefore, it is better to keep the user in

control of the system and allow him to choose what

media files should play. (2) The volume can vary from

0 to 100 percent and can do so very frequently. (3)

There are some predefined equalization settings, such

as, pop, rock, dance, and so on; and, if user wants, he

can change manually the equalization settings

frequency by frequency. We do not expect that user

change manually the equalization settings so

frequently.

About “It is possible to omit some cases?”

concerns, we realize that there is no default value to

media file, thus, the user must choose media files to

play them, at least indirectly putting a CD (media files

from CD) to play. On other hand, it is not necessary to

impose to user the necessity to inform the volume or

equalization settings; because the system can

presuppose default values (e.g. 100% for volume and

50% for each frequency of equalization settings). When

the user adjusts the volume or equalization settings,

two variations may be considered: a) it is a one time

adjustment, and the next time the user runs the system

the default values are restored, or b) the user is

adjusting the system’s default values, i.e., its

presuppositions to adequately “interpret” the user

request “play media files”, without mentioning volume

nor equalization settings. In the media player system,

the second option is usually preferred. However, it

raises another issue: the user need to be able to restore

the initial default values, in case he inadvertently

changed an important setting and does not remember

what the initial configuration was.

Regarding “What could be the impact?” concerns,

we realize that the user experience [12] can be

seriously injured by playing inadequate media files

with inadequate volume, and can cause embarrassment

in a social environment. Inadequate equalization

settings can also do that, but typically with less impact.

The “How many people could realize this

variation?” concerns do not apply directly to our

example, because it is a mono-user application.

However, if we think of different user profiles, this

question can uncover interesting issues.

Remove

A(user) I(media file)

and

L(from)

media file

or

play list
media

library

or

hard disk
mp3

player

Figure 5. Part of variability analysis concerns of

“Remove”.

Figure 5 shows partial variability concerns for the

“What can vary?” question to the user`s goal “remove

a media file from a playlist”. In particular, we explore

the case L(playlist). By means of transversal

movements in the signs ontology, especially by siblings

and specialization/generalization relations, we found

three signs which can be placed in the slot of playlist:

media library, hard disk and mp3 player. It is important

to note that if the user puts a playlist or a hard disk sign

in the slot of case L(from), the meaning of the verb

remove may be significantly different. It may be the

case that a) the user wants to remove the references to

media files from the playlist, or b) the user wants to

delete the media files from the disk.

Regarding “How much can it vary?” concerns, we

realize that: The possible media files are potentially

any file which a user can access from hard disks and

pen drives, which makes it impractical to enumerate

them. Also, it is very common for a user to change his

mind and decide to remove different media files at

different moments. The same is true for from

possibilities, both regarding enumeration and user`s

decision.

Regarding “Is it possible to omit some cases?”

concerns, like with the “play” user request, the user

11th. Workshop on Requirements Engineering

188

must choose media files to remove them. If the from

sign is omitted, several interpretations may hold when

requesting “remove file A”: a) remove the file from the

current playlist; b) remove the file from the media

library, but keep it in the physical storage; c) delete the

file. Even when the requirements engineer and

designers believe there is a preferential interpretation

(such as remove from current playlist), it is important,

because of the possible variations, to inform users of

the precise encoded meaning, because a

misunderstanding can have a serious impact, such as

the undesired loss of a media file.

4. How To Deal With The Identified

Variability?

In the previous activity, the requirements engineer

investigated answers to questions about anticipated

variability of goal-oriented user request and reflected

about its foreseen impacts during use. Once acquired

this information, how to deal with the identified

variability? In this paper we propose some questions to

help the requirements engineer decide if it is necessary

to deal with the identified variability and what

strategies should be used. These decisions about

variability should guide the user-system interaction and

user interface design in further activities of

development process.

Given a user goal, for each possible identified

variation, it is important to decide:

Is it necessary to deal with this variation in the

system? Even if the requirements engineer decides not

to deal directly with the variation, the user interface

designer will need not only to acknowledge the

possibility of variation, but also to deal with users’

possible expectations regarding the variation.

If the requirements engineer chooses deal with the

variation in question, he should decide “What strategy

should be used to deal with it?” taking into account

the strategies discussed in introduction of paper. Thus,

this question raises other questions:

§ Will there be a single product supporting all

variations for all users? Or a product family, where

each product supports a subset of goals?

§ Will the user be able to select a variation and keep

it as the default?

§ Will the user be able to create configurations

(profiles) of settings to apply in different contexts?

Will the system take care of adapting the system

for the user, as deemed appropriate according to

some predefined set of models and rules?

5. Concluding Remarks

We presented a language-based approach to

variability analysis of goal-directed user requests in

terms of user’s domain language. We take into account

concerns involved in different contexts of use, before

considering the possible sequences of actions on user

interface to make these requests to the system. In the

later activities of development process, a user interface

language [13,14] will be designed to allow users to

express their requests and accommodate the identified

and chosen variability.

The basis of our language-based approach is the

analysis of signs [18] which will further compose user

interface language. Most of the signs in the user

interface language should be somehow related to the

user’s vocabulary and domain.

Using Fillmore’s cases [22] to help us analyze

variability is not a new idea [10], but this work

advances in that direction and proposes to use the cases

as a constraint mechanism for traversing a sign

ontology when exploring possible variations. This

categorization can be reused in similar domains with

the necessary care to review the sign meanings. When

this work frames the variability problem in terms of the

variability of signs in user request sentences, we are

able to explicitly explore not just variations of sign-

tokens as in [10], but also variations of sign-types, of

the sign-types (or cases) associated with verb, of verb,

and of their meanings. Furthermore, analyzing

variability in terms of possible goal-directed user

requests sentences facilitates the communications

between stakeholders about it.

The decision of how to deal with identified

variability is sometimes made by a computer tool

according some privileged softgoals [7-11]. Our work

promotes the requirements engineers’ reflection to help

them decide which strategies should be used to deal

with the identified variability during the user interface

design activity. It guides the requirements engineers’

reflection by means of a set of questions about

variability applied to user request sentences, according

with the proposed dimensions of variability [1,15].

In a preliminary study using these questions, we

could verify that (1) an expression of the user request

during the interaction can omit some cases or signs (i.e.

a user can take a few things for granted that another

user would not); (2) it is important to think about the

impact of an identified variation before design and

implementation; and also (3) it is important to think

about which users can experience an identified

variability.

11th. Workshop on Requirements Engineering

189

The decisions resulting from the proposed language-

based variability analysis depend little or nothing on

the possible action sequences to achieve a user goal, on

a specific solution of user interface design and on a

specific technology to implement the user interface.

This occurs because they are made in terms of language

for user-system communication (interaction), and not in

terms of actions at the user interface.

As future work, we need to improve the support for

the requirements engineers’ reflection towards

interaction and user interface design solutions to deal

with the identified variations. It is also important to

conduct experiments with the proposed approach to

analyze variability with different systems and domains,

with special attention to the difficulties and facilities

which the requirements engineer may encounter.

6. Acknowledgments

All authors thank CNPq for the financial support to this

work, and reviewers for valuable comments to improve

our approach enunciation. The first author also thanks

FAPERJ for the financial support to his Doctoral

program.

7. References

[1] Kühme, T., Schneider-Hufschmidt, M., “Introduction”. In

Schneider-Hufschmidt, M., Kühme, T. and Malinowski, U.

(eds.) Adaptive User Interfaces: Principles and Practice.

Elsevier, North-Holland, pp.1-9, 1993.

[2] McGrenere, J. The design and evaluation of multiple

interfaces - a solution for complex software. PhD thesis.

Department of Computer Science, University of Toronto,

Toronto, Canada, 2002.

[3] A Framework for Software Product Line Practice -

Version5.0, http://www.sei.cmu.edu/productlines/index.html.

[4] Nielsen, J. “Heuristic Evaluation”. In Nielsen, J. and

Mack, R.L. (eds.), Usability Inspection Methods. John Wiley

& Sons, New York, 1994.

[5] Kühme, T. and Malinowski, U. (eds.) Adaptive User

Interfaces: Principles and Practice. North-Holland, Elsevier,

1993.

[6] Lieberman, H., Paternò, F. and Wulf, V. (eds.) End User

Development. Springer, v. 9, 2006.

[7] Mylopoulos, J., Chung, L., Liao, S., Wang, H. and Yu, E.

“Exploring alternatives during requirements analysis”. IEEE

Software, 18(1):92–96, 2001.

[8] Hui, B., Liaskos, S. and Mylopoulos, J. “Requirements

Analysis for Customizable Software: a Goals-Skills-

Preferences Framework”. In Proceedings of the 11th IEEE

International Requirements Engineering Conference, pp.

117-126, 2003.

[9] González-Baixauli, B., Laguna, M.A. and Leite, J.C.S.P.

“Aplicación de un Enfoque Intencional al Análisis de

Variabilidad”. In Proceedings of the 8th Workshop on

Requirements Engineering, Porto, Portugal, pp. 100-111,

2005.

[10] Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E. and

Mylopoulos, J. “On Goal-based Variability Acquisition and

Analysis”. In Proceedings of the 14th IEEE International

Conference on Requirements Engineering. pp. 76-85, 2006.

[11] Hackos, J. T. and Redish, J. C. User and task analysis

for interface design. New York, NY, John Wiley & Sons,

1998.

[12] Preece, J.; Rogers, Y.; Sharp, E. Interaction Design:

Beyond Human-computer Interaction. New York, NY: John

Wiley & Sons. 2002.

[13] de Souza, C. S. The Semiotic Engineering of Human-

Computer Interaction. Cambridge, Mass., MIT Press, 2005.

[14] de Souza, C.S., Barbosa, S.D.J. and Silva, S. R. P.

Semiotic Engineering Principles for Evaluating End-User

Programming Environments. Interacting With Computers.

v.13, p.467 - 495, 2001.

[15] Sutcliffe, A., Fickasm S. and Sohlberg, M.M. “PC- RE:

a method for personal and contextual requirements

engineering with some experinence”. Requirements

Engineering, Vol. 11: 157-173, 2006.

[16] Dardenne, A., van Lamsweerde, A. and Fickas, S.

“Goal-directed requirements acquisition”. Science of

Computer Programming, 20(1-2):3–50, 1993.

[17] Norman, D. “Cognitive Engineering”. In Norman, D.

and Draper, S. (eds.) User Centered System Design.

Hillsdale, NJ: Lawrence Erlbaum, pp. 31-61, 1986.

[18] Peirce, C.S. (1931-55) Collected Papers. Cambridge,

Ma. Harvard University Press. (excerpted in Buchler, Justus,

ed., Philosophical Writings of Peirce, New York: Dover,

1955).

[19] Eco, U. Theory of Semiotics. University Press,

Bloomington, 1979.

[20] Leite, J.C.S.P. Application Languages: A Product od

Requirements Analysis. Departamento de Informática, PUC-

Rio, January 1989.

[21] Leite, J.C.S.P. and Franco, A.P.M. “A Strategy for

Conceptual Model Acquisition”. In Proceedings of the

International Symposium on Requirements Engineering, pp.

243-246, 1993.

[22] Fillmore, C. “The case for case”. In Universals in

Linguist Theory, ed. E. Bach and R.T. Harms. New York,

Holt. 1968.

[23] Carroll, J.M., Mack, R.L., Robertson, S.P. and Rosson,

M.B. “Binding objects to scenarios of use”. International

Journal of Human-Computer Studies, Volume 41, Issues 1-2,

Pages 243-276, July 1994.

[24] Gruber, T.R. “A Translation Approach to Portable

Ontology Specification”. Knowledge Acquisition 5: 199-220,

1993.

[25] Eco, U. Semiotics and the Philosophy of Language.

Indiana University Press. Bloomington IN. 1984.

11th. Workshop on Requirements Engineering

190

