
Quantifying Functional Reuse from Object Oriented

Requirements Specifications

Nelly Condori-Fernández1, Oscar Pastor1, Maya Daneva2, Alain Abran3, Jaelson Castro4

1 Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia, Valencia-Spain

{nelly,opastor}@dsic.upv.es

2University of Twente
Drienerlolaan 5, 7522 NB Enschede, The Netherlands

M.Daneva@ewi.utwente.nl

3École de Technologie Supérieure ETS
1100 Notre-Dame Ouest, Montreal, Canada H3C 1K3

alain.Abran@etsmtl.ca

4Universidade Federal de Pernambuco
Departamento de Informática, Recife Brasil

jbc@cin.ufpe.br

Abstract

Software reuse is essential in improving efficiency
and productivity in the software development process.
This paper analyses reuse within requirements
engineering phase by taking and adapting a standard
functional size measurement method, COSMIC FFP.
Our proposal attempts to quantify reusability from
Object Oriented requirements specifications by
identifying potential primitives with a high level of
reusability and applying a reuse indicator. These
requirements are specified using OO-Method, an
automatic software production method based on
transformation models. We illustrate the application of
our proposal in a Car Rental real system.

Keywords: Functional reuse, requirement
specification, functional size, measurement.

1. Introduction

Software reuse, defined as the process of using
existing software artefacts instead of building them
from scratch [1], is a key element in improving the way
software is developed and supported over its life cycle.
Potential benefits of reuse include lower maintenance
costs, shorter development time and improved product

quality and reliability [2] [3]. These benefits are
particularly evident in new software development
technologies such as Object-Oriented (OO) Systems
development, where several empirical studies have
verified the positive impact of reuse on productivity
[4][5][6][7]. However, the majority of these studies
have been carried out at the source code level, which
saves effort only late in the life cycle.

Given that the Model Driven Architecture (MDA)
paradigm is based on model transformation, and that
such models are constructed at early stages of the life
cycle, this implies a greater need for reusability at such
stages. At present most practitioners ignore
requirements engineering even where requirements
reuse has significant potential for creating further
reusability at later stages in the product life cycle [8].
In addition, there has been surprisingly little research
on quantification of requirements reuse [9], [10].

We are aware of the need for software reuse from
non-functional [33] and functional perspectives.
However, this paper aims to automatically quantify
reusable functionality from requirements specifications
modelled with the OO-Method approach [11], an
automatic software production method compliant with
MDA principles.

In practice, quantification of reused functional
requirements is vital for managers who need to analyse

11th. Workshop on Requirements Engineering

59

reuse figures for project planning and their impact on
effort and costs studies.

Our proposal is based on our previous research on
Functional Size Measurement (FSM) in requirements
engineering [12], [13]. Currently, of the various size
measurement methods that have been proposed, four
methods are considered to be standard (IFPUG FPA:
ISO/IEC 20926; MARK II FPA: ISO/IEC 20968;
NESMA FPA: ISO/IEC 24570; COSMIC: ISO/IEC
19761[29]). We have taken and adapted an FSM
procedure compliant with COSMIC, called RmFFP
[12], with the aim of quantifying functional reuse from
Object Oriented requirement specifications.

In this paper, our research has focused on two basic
questions: what to measure as reuse, and how to
measure it. Therefore our objectives are twofold: 1) to
identify what requirements model primitives could be
identified as reusable, and 2) to quantify reusability
identified using RmFFP.

The rest of this paper is organized as follows: In
Section 2, we discuss work relating to reusability
measurement. Section 3 provides a brief introduction
to the OO-Method Requirements Model. In Section 4,
we introduce levels of requirement reuse and a reuse
indicator derived from size of functional requirements,
which is achieved by means of automation of COSMIC
in the OO-Method environment. Section 5 presents an
illustrative example on the application of our proposal.
Finally, we present some conclusions and further work.

2. Previous research

Several initiatives on reuse metrics have been
proposed since the early 90s.

Bieman [14] and Karunanithi [15] defined a set of
metrics for object-oriented systems from three reuse
perspectives: server, client, and system. Chidamber and
Kemerer[16] proposed a metrics suite for object
oriented design. Among these, the most significant in
relation to reuse is the Depth of Inheritance Tree
metric, which calculates the depth of inheritance
hierarchies. Chidamber and Kemerer assert that this
metric can help managers manage reuse opportunities
by measuring inheritance.

In 1995, Abran and Desharnais [17] proposed the
first version of functional reuse metrics based on the
FPA technique. They illustrated how these metrics
could be used to take into account the benefits of reuse
in a cost-benefit analysis. On the basis of this
technique, Daneva [24] dealt with the identification
and the measurement of reuse in the requirements
conceptualization phase of the SAP R/3 component
configuration cycle. Vinh Ho et al. [18], using the
more recent COSMIC FSM method, proposed

quantifying functional reuse based on the size of the
processes referenced in the functional relationships
between ‘layers’ . A disadvantage of this proposal is
that the measurement is carried out in the design phase,
where the layer concept is identified.

We have found current research on measurement of
reuse at the requirements level to be scarce in the
literature we have perused.

3. OO-Method Requirements Model: Basic

Concepts

OO-Method is a method based on model
transformations, where a requirements analysis process
semi-automatically generates the primitives of a
Conceptual Model, which are then converted into their
associated software component counterparts through an
Execution Model [11]. As the purpose of this paper is
to discuss reuse that could be quantified from
requirement specifications, in this section we introduce
a set of complementary techniques that allow the
capture of the functional properties that the system
requires.

3.1. The Requirements Model

The Requirements Model [19], as shown in Figure
1, includes identification of the mission statement,
construction of the Functional Refinement Tree, and
the Use Case Model.

The Mission Statement is a high-level description of
the nature and purpose of the system, which makes it
possible to accurately determine what the system will
and will not do.

The Function Refinement Tree (FRT) represents the
hierarchical decomposition of the business functions of
a system independently from the actual system
structure. The resultant tree is merely an organization
of external functions and does not say anything about
the internal decomposition of the system. The leaves of
this tree are use cases that represent the functions of
the desired system. This tree gives an entry point for
building the Use Case Model which avoids the need
for starting from scratch, and helps prevent any
potential confusion between the abstraction levels of
Use Cases.

The Use Case Model allows us to model the
system’s functional requirements from the user’s
perspective. The leaf nodes of the Function Refinement
Tree (elementary functions) are considered to be
Primary Use Cases; they represent the most important
functions of the system. It is also possible to have
Secondary Use Cases. In this case, we have to relate
the Primary Use Case to these Secondary Use Cases.

11th. Workshop on Requirements Engineering

60

We consider a use case to be a Secondary Use Case
when (1) it is duplicated in other Use Cases, and (2)
when the Primary Use Cases are complex and long,
and separating them helps factor the Use Case into
manageable and comprehensible units.

Version 2.1 of UML [20], proposes two kinds of
relationships between Use Cases: include, and extend,
which are supported also by the OO-Method
Requirements Model.

F1 F2 F3

F4 F5

FRT

Use Case Model

manual

manual

Semi-automatic

Mission statement

Sequence Diagrams Model

Fig 1. Requirements Process

3.2. The Sequence Diagrams Model

The Sequence Diagrams Model is built semi-
automatically from use case specifications on the basis
of the Metamorphosis framework that follows a
linguistic engineering approach [21]. The sequence
diagram model documents the internal view of a
system for a Use Case. Notation is provided by UML
with some extensions incorporated to classify object
interactions by their nature. There are four interaction
types: signal, service, query, and connect [19]. Each
interaction message can also be labelled with a
condition that, if satisfied, allows the interaction to
occur. The syntax for this type of condition is:
[Boolean-expression] message-name.

Finally, when a set of messages is implied by a
particular condition or a particular iteration, it can be

graphically represented by a box labelled with the
condition or iteration expression. This set of messages
is called Block.

4. Functional Reuse

In this section, before quantifying the reuse of
requirements specified with OO-Method from a
functional standpoint, we will first describe the notion
of reuse level used to identify these requirements.

4.1. The notion of reuse level

For the purpose of our research, we adopt the term
reuse level to mean the amount of specified
functionality that a project team will reuse in the
system development. Our paper borrows reuse level
definitions used by the third author in her earlier
studies of requirements reuse in COTS-projects [9].
Therein this author distinguished between three levels
of reuse, based on (i) analysis of COTS-requirements
changes [22], (ii) measurement concepts captured in a
Functional Size measurement model (namely the
Function Point Analysis), and (iii) modes of
component reuse investigated by Karlsson [23]:

 Level 3 refers to conceptual modelling units (e.g.
scenario processes and data entities) that were
reused in a requirements specification without any
changes. Scenarios with higher reuse rate at this
level are known to have greater potential for reuse.

 Level 2 refers to minor enhancements applied to
units in conceptual models. A minor enhancement
is defined as a change of a certain parameter of a
business scenario process or a data entity that does
not result in a change of the business process
logic.

 Level 1 refers to major enhancements applied to
the process or data modelling units in conceptual
models. A major enhancement is any considerable
modification in the definition of a scenario process
or a data entity that affects the business process
logic from the user’s point of view.

 Level 0 refers to newly introduced processes and
data entities. This does not mean a reuse category;
it just helps us to partition the overall
requirements.

In this paper we focus on identifying and measuring
functionality that is reused without any changes (Level
3) in object-oriented requirements specifications. We

11th. Workshop on Requirements Engineering

61

deliberately do not investigate other reuse levels, as
they do not fall within the scope of this paper.

4.2.The functional reuse indicator

The most commonly reported reuse indicator is the
“reuse percentage”, which at the beginning of the 90’s
was expressed as a proportion of (i) the total lines of
code previously used and included in the source files,
and (ii) the total lines of code in the product source
files [25].

The purpose of the “Reuse Percentage”
measurement is to indicate the portion of a product,
product release, or organizational effort that can be
attributed to reuse.

As our reuse perspective is purely functional,
applying the “Functional Reuse Percentage” allowed
us to derive a reuse indicator that includes Reused
Functional Requirements (RFR) as a percentage of
Total Functional Requirements Delivered (TFR).

%100*__
TFR

RFR
percentagereuseFunctional ! (1)

Project staff, in order to be able to use this indicator,
first need to have a way to quantify the amount of
reusable requirements (RFR) and the amount of all
functional requirements (TFR) that are specified for
development in an Object Oriented application.

The quantification of functional requirements has
been most often carried out with IFPUG Function
Point Analysis (FPA) [26], the first Functional Size
Measurement Method developed in the 80s. However,
researchers [27] indicate that, although IFPUG FPA
has had a wide take-up in industry, it has only a limited
applicability to modern types of software systems and
new development paradigms. Due to these weaknesses,
we have chosen the COSMIC Full Function Point
(FFP) method [28], which is suitable for measuring
any software component and can be applied to various
types of software.

4.3 Obtaining the ‘functional reuse percentage’

with RmFFP

We first introduce COSMIC FFP and then show
how it has been automated within the OO-Method
approach.

The general COSMIC measurement process starts
with the measurement strategy phase which is
necessary to determine measurement scope and
purpose, functional users and the level of granularity of
the description of the piece of software to be measured.
In contrast to traditional FSM methods –where the user
concept is limited to human users– COSMIC has a

broader user concept defined as anything that interacts
with the software being measured.

The second phase, known as the mapping phase,
takes as input the specifications of the Functional User
Requirements (FURs) to be measured. This collection
of FURs can be decomposed into a set of functional
processes. Each functional process is a unique,
cohesive and independently executable set of
movements of data groups, with data groups being
defined as a distinct, non-empty, non-ordered and non-
redundant set of data attributes. The measurement
method does not require the identifying of data
attributes; these might be identified if a sub-unit of
measure is required. The identification of the data
movements of each functional process is then carried
out. A data movement moves one or more data
attributes that belong to one data group. The four valid
types of data movement are: input, read, write and exit.

Finally, the measurement phase begins with the
application of the measurement function to each
instance of a data movement by assigning a numerical
quantity, 1 CFP (COSMIC Function Point), which is
the basic unit and is equivalent to a single data
movement. Finally, the application of the aggregation
function continues when the data movements of all the
functional processes have been measured.

Taking into account this standard method [28], we
have defined a measurement procedure called RmFFP
[12] designed to automatically measure functional size
from requirements specifications in the OO-Method
context.

In order to measure functional reusability using the
“reuse percentage” indicator, we have adjusted the
RmFFP procedure in the following way:

With respect to the measurement strategy phase:

 Our measurement purpose is to measure the size of
the total FURs of the application delivered, as well
as the size of the FURs which were reused in order
to obtain an indicator of functional reuse from
requirement specifications.

 Measurement scope is determined by developer
viewpoint, which covers all the functionality
represented by the OO-Method Requirements
Model.

 The granularity level is medium, because we need
to know certain aspects such as the relationships
between use cases.

With respect to the mapping phase: No change has
been brought about in the mapping rules defined to
represent the COSMIC concepts in the respective OO-
Method Requirements Model primitives (See Table 1).

11th. Workshop on Requirements Engineering

62

Table 1. COSMIC and the OO-Method Requirements Model

COSMIC Concepts [29] Primitives of the Requirements Model [19]

Users Rule 1. Actors of use case diagram
Boundary Rule 2. Use case diagram

Functional processes
Rule 3. Primary use cases
Rule 4. Secondary use cases

Data groups
Rule 5. Entity classes of sequence diagram
Rule 6. Actors of use case diagram

Attributes data
Rule 7. Constant and variable arguments of the interaction
messages of service type

Entry Rule 8. Signal message with value Input

Read

Rule 9. Query message
Rule 10. Condition of message
Rule 11. Precondition of use case
Rule 12. Condition of relation Extend
Rule 13. Integrity constraint

Write

Rule 14. Service message
- New
- Destroy
- Update

Data movements

Exit Rule 15. Signal message with value Output

With respect to the measurement phase:

 We apply the measurement function by assigning
1 CFP to each identified data movement (‘x’) that
belongs to a functional process (P).

},,,{,1)(writereadexitentryPxCFPxf !"#! (2)

In order to quantify functional reusability by using
the ‘reuse percentage’ indicator (See Equation 1), the
aggregation functions were adjusted.

We need first to calculate two values: Reused
Functional Requirements (RFR) and Total of Delivered
Functional Requirements (TFR).

We explain below how each of these values was
calculated.

4.3.1. Reused Functional Requirements

Firstly, we must identify what is considered as reuse
in the definition of Reuse Level 3 to be quantified.
Saeki proposed an approach based on patterns for
reusing use cases [18], utilising the semantics of the
<<extends>> and <<uses>> relationships. However,
this author does not include reuse measurement
concepts in their studies.

By analysing the OO-Method Use Case Model, we
identify as ‘reused’ those use cases and actors which

share different kinds of relationships, which are
described below.

Relationships between use cases. An include
relationship is intended to be used when there is
common behaviour in two or more use cases. This
common behaviour is then extracted to a separate use
case, to be included in all the Base Use Cases having
this commonality (See Figure 2). Since the primary use
of the include-relationship is for reuse of common
parts, what is left in a base use case is usually not
complete in itself. In other words, for the base use case
to be meaningful, it will require the included parts (the
so-called Secondary Use Case). This is reflected in the
direction of the relationship, which indicates that the
Base Use Case depends on the addition of Secondary
Cases Uses but not vice versa [20].

Fig 2. Include relationship in OO-Method

An extend relationship (See Figure 3) is intended to be
used when there is some additional behaviour that

Base use case

Secondary
use case

11th. Workshop on Requirements Engineering

63

should be added (that is, a Secondary Use Case),
possibly conditionally, to the behaviour defined in
another use case. This additional behaviour could be
reused by one or more use cases. The extending use
case can access and modify the attributes of the base
use case; however, the base use case is not aware of the
extending use case [20].

Fig 3. Extend relationship in OO-Method

The secondary use cases are potential candidates for
reuse. However, we only will take into account the
following situations:

1. When the secondary use case has, as minimum,
two include relationships inputs (See B1 in
Figure 4a).

2. When the secondary use case has, as minimum,
one include relationship input and one extend
relationship output (See B1 in Figure 4b).

3. When the secondary use case has two extend
relationship outputs (See B1 in Figure 4c).

Relationship between actors. Another potential
reuse within use-case models occurs between actors: an
actor in a use-case diagram can inherit data attributes
from another actor. For example, the “Foreign Student”
actor inherits attributes from “Student” (i.e. name,
address, and phone). A foreign student is a student, the
only difference being that he or she is subjected to
different rules and policies (for instance, the foreign
student pays higher tuition fees than the local student).

As we can see in Table 1, the actors are identified as
“data groups”. According to COSMIC FFP, the
identification of data groups will rely on the
identification of data movements (one data movement
by each different data group implied). Therefore, the
actors generalized into a super-actor will be considered
only as one data group, which implies that we will
identify a single data movement.

(a) (b) (c)

Fig 4. Situations relating to reused secondary use cases

We must now define how to measure functional
reuse:

In OO-Method, as the system’s functionality is
specified using use cases and each use case is
represented by one or more sequence diagrams, the
value for this functionality is obtained by applying the
following aggregation functions. As a first step, we add
together all data movements identified in the sequences
diagram of a (primary or secondary) use case.

$
!

!
n

i
ij movementDataSizeCaseUseSize

1

)_()_((3)

In order to obtain the RFR value, we will measure
the functional size of the secondary use cases selected
as reuse (see Equation 4).

$
!

!
n

i
iUseCaseSecondarySizeRFR

1

)_((4)

4.3.2. Total of Delivered Functional

Requirements (TFR).

To quantify the total FUR in a project, we work from
the developer’s viewpoint, from which we can deduce
the entire functionality of the software that has to be
delivered.

However, an additional aggregation function is defined
due to the relationships that appear between use cases.
Therefore the functional size of a Base Use Case
(BUC) related to one or more Secondary Use Cases
(SUC) is calculated by applying the following
equation:

)()()(
1

BUCSizeSUCSizeBUCSize
n

i
iT %!$

!

(5)

Base use case

Secondary
use case

11th. Workshop on Requirements Engineering

64

In (5), the expression ‘SizeT’ means the total size of the
base use case.

Finally, to obtain the TFR, we add up the functional
sizes of all the use cases.

$
!

!
n

i
iCaseUseSizeTFR

1

)_((6)

To aid the reader’s understanding of reusability
measurement from a functional perspective, in the next
section we will illustrate the application of adjusted
RmFFP process to measure functional reuse.

5. Applying RmFFP in order to measure

functional reuse

According to Jacquet and Abran [30], three steps
are required to apply a measurement procedure: 1)
software documentation gathering, 2) construction of
the software model, and 3) application of numerical
assignment rules which were adapted to measure
functional reuse. Figure 4 contains a representation of
these steps used in applying RmFFP.

Functional size

CFP

Measurement function &

Aggregation functions

Reuse percentage

Fig 4. Application of the RmFFP procedure

The functional specification used to illustrate the
application of RmFFP is that of a company that needs
to automate the management of car rentals to
customers.

5.1. Gathering of Software Documentation

As shown in Figure 4, functional requirements are
semi-formally specified using the OO-Method
requirements model. We are aware that quality of
software documentation will affect measurement
quality. The OO-Method approach, based on model
transformation, allows our requirements specification
to be traceable, consistent, unambiguous and
modifiable. These quality attributes will reflect
positively on accuracy since there will be a greater
degree of proximity between the size estimated and the
size of the final application.

As we can see in Figure 1, the OO-Method
requirements model includes a mission statement, a
functional refinement tree, a use case model, and a
sequence diagram model. The mission of the Car
Rental system is to “automate the management of cars,
rentals, and customers of the company. The main
activity, car rental, involves another series of derived
activities such as the maintaining and repairing of cars,
additional accessories to be rented (extras), and
customer management. These derived activities must
also be automated”. Due to space limitations, we
cannot fully describe the functional specification in this
paper. However, the first level functional groups are
shown in Figure 5 (Car Management, Customer
Management, User Management and Contract
Management). These functional groups are represented
in the main Use Case diagram as packages.

Fig 5. Use Case view of Car Rental system

Figure 6 represents the use case diagram for the
functional group: Car Management.

11th. Workshop on Requirements Engineering

65

Fig 6. Use Case diagram for Car Management

5.2. Construction of the software model

This step consists of identifying the relevant
elements in the OO-Method requirements specification
that add to functional size, by applying the mapping
rules shown in Table 1. The fundamental result of this
step is a collection of identified data movements that
will be quantified in the following Step (application of
numerical assignment rules).

To illustrate the identification of data movements,
we are going to use only the functional process
“Assignment of Extras”, which is represented by the
Sequence Diagram shown in Figure 7. This scenario
describes the addition of an extra or a set of extras to a
contract.

Fig 7. Sequence diagram: Assignment of Extras

This scenario starts with data input by the user,
which is represented by the message "introduce_data"
with the extratype and contract arguments. Applying
Rule 8, this message generates three data movements

because there is data input that involves arguments
from three different classes (Extra Type, Contract, and
Extra Contract). When the data is introduced, the
system creates a new object from the ExtraContract
class using the message "create_extracontract", which
has the stereotype <<service/new>>. Applying Rule 14
from Table 1, this message is identified as a write data
movement. This new object needs to select its
corresponding Extra Type and Contract objects. In
addition, the stock of an Extra Type is modified using
the message modify_stock, which has the stereotype
<<service/update>>. Reapplying Rule 14 (Table 1),
this message is identified as a write data movement.
This is an iteration that repeats until all the desired
extras are included in the Contract (Extra Contract). In
this case, despite the repeated execution of these
messages, we consider them only once. Therefore, we
have identified 3 entry data movements and 2 write
data movements.

5.3. Application of numerical assignment rules

This step starts with assigning 1 CFP to each
identified data movement in the ‘Assignment of
Extras’ functional process, which is the thirtieth use
case of the Car Rental System (See Table in the
Appendix). We then sum up the quantified data
movements by applying Equation 4, the result of which
is a size of 5 CFP, as shown below:

CFPmovementDataSizeExtrasofAssignmentSize
i

i 5)_()__(
5

1
30 !!$

!

 We carried out these actions to calculate the functional
size for each of our 7 secondary use cases and each of
our 28 primary use cases identified in the Car Rental
system. Then, by applying Equation 6 (TFR), we
obtained 124 CFP as the total of delivered functional
requirements (See Appendix).

CFPCaseUseimarySizeTFR
i

i 124)__(Pr
28

1

!!$
!

As we can see in Figure 6, although there are various
include relationships between use cases, only the
“Disabling” use case is reused by both “Buying” and
“Creating Operation” use cases. Therefore by applying
the Equation 4 (RFR), 3 CFP is obtained as the total of
reused functional requirements.

$
!

!!
1

1
1 3)(

i

CFPDisablingSizeRFR

Finally, replacing both values in the reuse percentage
indicator, we obtained a figure for functional reuse of
2.42% for Level 3 (reused functionality in a
requirements specification without any changes). This
implies that the Car Rental System could have much

11th. Workshop on Requirements Engineering

66

more reusable functionality. However, in this paper we
have only focused on level 3 of reuse proposed by
Karlsson.

%42.2%100*
124

3
%100*__ !!!

TFR

RFR
percentagereuseFunctional

5. Conclusions and Future Work

This paper describes how to automatically measure
reusability from a functional viewpoint. In order to do
this we adjusted the RmFFP procedure, based on the
COSMIC standard method, so as to quantify the
amount of reused functional requirements within the
OO-Method context. We consider that potential reuse
can be modelled through three generalization
relationships supported by the OO-Method
requirements model: 1) ‘Extend dependencies’
between use cases; 2) ‘Include dependencies’ between
use cases; and 3) ‘Inheritance’ between actors.

We have applied the RmFFP procedure to the Car
Rental real system in order to facilitate understanding
of the quantification process.

We plan to explore reusability throughout the entire
OO-Method development process. Moreover, although
reproducibility and ease of use of RmFFP has been
empirically validated [31][32], we intend to carry out
further empirical studies to validate this adjusted
version of RmFFP; which allows quantifying
functional reuse of object oriented requirement
specifications.

Acknowledgments

This work has been developed with the support of
Spanish Ministry of Education and Science under the
project SESAMO TIN2007-62894 and by the
Cooperation Agreement between Ministry of
Education of Brazil and Spain.

References

[1] Kim, Y., & Stohr, E. A, Software Reuse: Survey and
Research Directions. Journal of Management Information
Systems, 14 (4), 113-147, 1998.
[2] Rombach H. D., Software reuse: a key to the
maintenance problem. In Information and Software
Technology Journal, 33(1), February 1991.
[3] Wiles E., Bott F., Eight steps to your own economic
model of software reuse, Technical Report, Department of
Computer Science, University of Wales, United Kingdom,
available at http://www.aber.ac.uk/~edw97/work/reports/
[4] Melo W., Briand L., Basili V., Measuring the Impact of
Reuse on Quality and Productivity in Object-Oriented
Systems, Technical Report, Univ. of Maryland, Dep. of

Computer Science, College Park, MD, USA 20742. January.
1995.
[5] Brito F., Melo W., Evaluating the Impact of Object-
Oriented Design on Software Quality, In Proceedings of third
International Software Metrics Symposium (METRICS'96),
pp. 90-99, Berlin, Germany,1996.
[6] Tewari R., Empirical Investigation of Software Reuse in
Object-Oriented Systems, The Pennsylvania State University
CiteSeer Archives, March 1995.
[7] John A. Lewis , Sallie M. Henry , Dennis G. Kafura ,
Robert S. Schulman, An empirical study of the object-
oriented paradigm and software reuse, Conference
proceedings on Object-oriented programming systems,
languages, and applications, p.184-196, October Phoenix,
Arizona, United States, November 1991.
[8] William N. Robinson , Suzanne D. Pawlowski ,
Vecheslav Volkov, Requirements interaction management,
ACM Computing Surveys (CSUR), v.35 n.2, p.132-190, June
2003.
[9] Daneva M., Evaluating the value-added benefits of
using requirements reuse metrics in ERP projects, ACM
SIGSOFT Software Engineering Notes, v.26 n.3, p.155-163,
May 2001.
[10] Pastor O., Molina, J.C. Model Driven Architecture in
Practice: A Software Production Environment base don
Conceptual Modeling. Springer-Verlag. 2007.
[11] Condori-Fernández N., Abrahão S., Pastor O.: On the
Estimation of the Functional Size of Software from
Requirements Specifications. Journal of Computer Science
and Technology, Springer Boston, 22(3): 358-370 (2007).
[12] Daneva M. Deriving function points from SAP business
processes and business objects, Journal of Information and
Software Technologies, 1999.
[13] Bieman, J. and Karunanithi, S. “Candidate reuse metrics
for object oriented and Ada software.” In IEEE-CS 1st
International Software Metrics Symposium, 1993.
[14] Bieman, J. “Deriving measures of software reuse in
object oriented systems.” In BCS-FACS Workshop on
Formal Aspects of Measurement in Springer-Verlag, 1992.
[15] Chidamber, S. and Kemerer, C. “A metrics suite for
object oriented design.” IEEE Transactions on Software
Engineering 20 (6 1994): 476-493.
[16] A. Abran and J. Desharnais, ``Measurement of
functional reuse in maintenance,'' Journal of Software
Maintenance: Research and Practice, vol. 7, no. 4, pp. 263-
277, 1995.
[17] Ho V.T., A. Abran, S. Oligny, Using COSMIC-FFP to
Quantify Functional Reuse in Software Development, Proc.
of the European Software Cost Estimation Conference
(ESCOM-SCOPE), April 18-20, 2000.
[18] Saeki M. Patterns and Aspects for Use Cases: Reuse
techniques for Use Case Description, in proceedings of the 4
th International Conference on Requirements Engineering
(ICRE), 2000.
[19] Insfran E., Pastor O. and Wieringa R., “Requirements
Engineering-Based Conceptual Modelling”. Journal
Requirements Engineering, Springer-Verlag, 2002.
[20] Object Management Group, Unified Modeling
Language: Superstructure version 2.1.1 (with change bars)
formal/ 2007-02-03.

11th. Workshop on Requirements Engineering

67

[21] Diaz I., Sanchez J. y Pastor O., Metamorphosis: A
framework for the functional requirements analysis,
Workshop on Requirements Engineering (WER), Porto-
Portugal, 2005, pp. 233-244.
[22] Keller, G., and Teufel, T. SAP R/3 Process Oriented
Implementation, Addison-Wesley Longman, Harlow, 1998.
[23] Karlsson, E.-A. (ed.). Software Reuse: A Holistic
Approach, John Wiley & Sons, Chichester, 1998.
[24] Daneva M., Measuring Reuse of SAP Requirements: a
Model-based Approach, Proceedings of the Symposium on
Software reusability, Los Angeles, California, ACM New
York, USA pp. 141 – 150, 1999.
[25] Poulin, J. Measuring Software Reuse: Principles,
Practices, and Economic Models, Addison-Wesley, Reading,
MA, 1997.
[26] IFPUG, Function Point Counting Practices Manual
Release 4.1, International Function Point Users Group,
Westerville, Ohio, USA, 1999.
[27] Kitchenham B. Counterpoint: The Problem with
Function Points, Status Report. IEEE Software, 1997, 14(2):
29-31.
[28] Abran A., J. M. Desharnais, S. Oligny, D. St-Pierre, and
C. Symons, “COSMIC Measurement Manual – Version 3,0,
The COSMIC Implementation Guide for ISO/IEC
19761:2003” École de technologie supérieure- ETS,

Montreal (Canada) 2003. Available free at:
http://www.gelog.etsmtl.ca/COSMIC/
[29] ISO, “ISO/IEC 19761: 2003, Software Engineering:
COSMIC-A Functional Size Measurement Method”,
International Organization for Standardization-ISO, Geneva,
2003.
[30] Jacquet J. P. and Abran A., “From Software Metrics to
Software Measurement Methods: A Process Model”, in
International Software Engineering Standards Symposium
and Forum, ISESS 97: IEEE-Computer Society Press, 1997,
pp. 128-135.
[31] Condori-Fernández N., Pastor O.: Evaluating the
Productivity and Reproducibility of a Measurement
Procedure. Springer Berlin / Heidelberg, ER (Workshops)
2006: 352-36.
[32] Condori-Fernández N., Pastor O.: An Empirical Study
on the Likelihood of Adoption in Practice of a Size
Measurement Procedure for Requirements Specification,
IEEE Computer Society, QSIC 2006: 133-140
[33] Leite J.C.S, Yu Y.,Liu Y., Yu E., Quality-Based
Sofware Reuse, LNCS, Springer, Advanced Information
Systems Engineering, Software Quality, CAISE, June 2005,
Portugal, pp 535-50.

11th. Workshop on Requirements Engineering

68

Appendix

Table A1. Measuring the functionality of the Car Rental System

DATA MOVEMENTS

ID FUNCTIONAL PROCESS E
N

T
R

Y

R
E

A
D

W
R

IT
E

E
X

IT

P
a

rt
ia

l
S

iz
e

S
iz

e
 o

f
S

U
C

F
u

n
c
ti
o
n

a
l
S

iz
e

1 Buying 2 1 1 4 22 26

2 Selling 2 1 1 4 9

3 Delivering 2 1 2 5 4

4 Creating rate 1 1 1 3 3

5 Eliminating rate 1 1 1 3 3

6 Modifying rate 1 1 1 3 3

7 Creating garage 1 1 1 3 3

8 Eliminating garage 1 1 1 3 3

9 Modifying garage 1 1 1 3 3

10 Creating insurance 3 1 2 6

11 Eliminating insurance 1 1 2 4

12 Modifying insurance 1 1 1 3 3

13 Creating insurance company 1 1 1 3 3

14 Eliminating insurance company 1 1 2 2

15 Modifying insurance company 1 1 1 3 3

16 Creating operation 3 2 1 6 3 9

17 Disabling 1 1 1 3

18 Supplying 1 1 1 3

19 Eliminating operation 1 1 2 2

20 Finalizing operation 1 1 1 3 3 6

21 Creating client 1 1 1 3 3

22 Eliminating client 1 1 1 3 3

23 Modifying client 1 1 1 3 3

24 Renting 3 3 6 5 11

25 Modifying contract 1 1 1 3 3

26 Returning 1 4 4 1 10 10

27 Creating type of extra 1 1 1 3 3

28 Eliminating type of extra 1 1 2 2

29 Modifying type of extra 1 1 1 3 3

30 Assigning extras 3 2 5

31 Creating user 1 1 1 3 3

32 Eliminating user 1 1 2 2

33 Modifying user 1 1 2 2

34 Elevating 1 1 2 2

35 Dismissing 1 1 2 2

CAPA 1 124

11th. Workshop on Requirements Engineering

69

