
Automated Assistance for Use Cases Elicitation from User Requirements Text

Shadi Moradi Seresht and Olga Ormandjieva

Dept. of Computer Science and Software Engineering

Concordia University, Montreal, Canada

{sh_morad,ormandj}@cse.concordia.ca

Abstract

Software Requirements Engineering addresses specific

challenges which exist in the effort to gain an

understanding of the nature of the engineering

problem arising from user’s real-world needs and

desires. This research is aimed at helping software

analysts meet these challenges. The proposed

methodology forms the basis of the automated process

designed to capture the high-level system services and

actors from the textual user requirements. This model

is intended to serve as a basis for software Use-Case

Model development, and can be used by analysts in

their in-depth study of requirements text. The approach

is rooted in the syntactical analysis and formalization

of text written in natural language, and it is enriched

with domain-related information provided by the

Expert Comparable Contextual (ECC) models that are

extracted from reusable domain-specific data models.

We illustrate the applicability of our methodology on

an order invoicing case study and demonstrate it with

a prototype tool. The results of the validation of our

methodology prove that such a tool for assisting the

elicitation of use-case models from textual

requirements is feasible.

1. Introduction

The software requirements engineering (RE) process

should begin with an analysis of the problem and

agreement with the customer on what the software

product must do. This agreement, in the form of textual

user requirements, should be well written and

completely understood by both customer and software

analyst. In reality, customers do not usually understand

the software design and development process well

enough to write a comprehensive problem statement,

and, at the same time, software analysts often do not

understand the customer’s problem and field of

endeavor well enough to model requirements to satisfy

their system needs.

 The aim of this research is to provide a methodology

and a supporting tool for the (semi-) automatic

assistance of the user requirements analysis in the RE

process. More specifically, this research addresses the

challenges in the first steps toward elicitation of the

Use-Case Model – a concise description of software

system’s actors and services recognized as one of the

models most often used in coming to an agreement on

the final set of requirements [8], as well as being well

known as a conventional analysis method in RE [14].

Research Goal. The research goal of this paper is

to generate a high-level contextual view on the

software system’s actors and services (Context Use-

Case Model - CUCM) automatically and thus

objectively from the textual user requirements. The

importance and benefits of such a high-level view on

the system to be developed are obvious. It would save

development time, serve as a means to proofread the

requirements, and facilitate communication between

the users who provide the requirements and the

software analysts who have to implement them. In

other words, CUCM serves as a medium to

communicate user requirements to the technical

personnel responsible for developing the software.

Approach. Our approach combines two

technologies: a formal graphical language called the

Recursive Object Model (ROM) [24] and an Expert-

Comparable Contextual (ECC) models extracted from

the domain-specific data models. ROM provides a

formal graphical model of the text and the knowledge

it carries; and ECC is used to extract stakeholder role

analogies. The paper targets the problem of automatic

generation of CUCMs from text by: (i) applying the

knowledge included in the ECC model to identify the

actors; (ii) devising rules for extracting CUCM

elements, such as actors and system services (or system

use cases), and relating them, in addition, each

sentence from the requirements text is assigned to

exactly one use case with the help of a metrics-based

text partitioning algorithm; and (iii) developing a

prototype tool in support of the methodology to

visualize graphically the CUCM.

11th. Workshop on Requirements Engineering

128

The work presented in this paper forms part of a

larger project, the Requirements Engineering

Assistance Diagnostic (READ), which is aimed at

applying Natural Language Processing (NLP)

techniques to the RE process [13]. The authors would

like to point out that, as Ryan concluded in [20], it is

clear from a review of the history of NLP in RE that

building a system which will automatically explain

user needs is an unrealistic objective. However,

considering that the elicitation of user requirements is a

dynamic and social process error-prone due to the

ambiguous nature of NL text, NLP techniques can

assist the analyst in this process without replacing

his/her role in RE.

The paper is organized as follows: section 2 reviews

related work; the background required to understand

the methodology is covered in section 3; the

methodology is explained in section 4 and illustrated

with a case study in section 5; the architecture of the

tool implementing our approach is described in section

6; section 7 covers validation of the methodology; and,

finally, in section 8, the conclusions are presented and

directions for future work are outlined.

2. Related Work

Over the past few decades, extensive studies have

been conducted in the area of applying linguistic

techniques to the analysis of a requirements text.

Although a wide variety of radically different case

tools has been developed, common to all these

approaches are a couple of basic concepts, such as

relating nouns to classes, and relating adjectives to

attributes [1, 4]. GOOAL (Graphical Object-Oriented

Analysis Laboratory) [19], CM-Builder [11], and

LIDA [18] are examples of such tools. GOOAL,

presented by H. G. Perez-Gonzalez et al. [19], has only

been tested with problems described in no more than

eight sentences and an average of 100 words. CM-

Builder [11] is a CASE tool which performs domain-

independent object-oriented analysis. Unfortunately, it

does not support any kind of dynamic diagram.

Overmyer et al. introduced LIDA [18] with the main

goal of helping the analyst in the transition from

natural language text to object-oriented notation. It

does not support the dynamic diagram either; moreover

it requires considerable user intervention. Circle, the

work of Ambriola et al. [3], attempts to validate NL

requirements text with the help of the user after

deriving a conceptual model automatically from the

requirements specifications. Although Circle is in

general use, it still does not consider the existence of

ambiguities at the level of surface understanding. This

could corrupt their model, making errors generated by

it extremely difficult for a user to detect later on. In

[23], Subramaniam et al. proposed a tool for automatic

object/class identification. This case tool was

developed as one of the add-ins of Rational Rose, and

has two main functionalities: 1) use-case realization;

and 2) class diagram generation. In [10], the method

for processing textual use cases and extracting their

behavioral aspects based on linguistic techniques is

suggested. For his part, Some [22] developed a tool

called UCEd with the aim of providing the framework

for use case edition, clarification and finally

developing the “executable specification integrating

the partial behaviors of the use cases” in the form of

the state machines. Therefore, the methodology

reported in [22] provides means for capturing the use

case descriptions but does not assist the developer in

the use case model’s elicitation process.

The work reported in this paper differs considerably

from the related work in that our methodology is

applicable in the early phases of RE and is meant to aid

the analysts in requirements elicitation and analysis

activities. Moreover, it is founded on a formal

representation of the text and not on the parts-of-

speech technique ([12, 13]), which allows for an

automatic CUCM generation from text, which in turn

would allow the number of costly human errors in the

RE process to be reduced considerably. In addition, we

bring an automatic expert assistance into the process

by integrating into the process the ECC models

containing domain-specific data. Details of the ROM

and ECC models are provided next.

3. Background

The purpose of this section is to briefly introduce the

formal representation of the syntactical structure of text

with the ROM [5, 6, 25, 26] and to explain the ECC

models extracted from domain-specific data models.

3.1 Recursive Object Model (ROM)

Our choice of formal representation is justified by the

fact that the ROM has proven sufficient to represent

the technical English text used in software engineering

documents, where only statements are involved. The

ROM was initially developed in [6] and further refined

in [5, 25, and 26].

Mathematical Foundation. The linguistic

structure’s formal representation has been confronted

with the fundamental mathematical and philosophical

challenges of uniting two contrasting concepts. The

axiomatic theory of design modeling [25] provides a

solution to this problem based on the rigorous

11th. Workshop on Requirements Engineering

129

mathematical concepts on which the ROM has been

developed for representing text [6, 25].

Graphical Representation of Linguistic

Structure with ROM. The following graphical

symbols are defined in correspondence with the

axiomatic theory of design modeling to represent

English verbs and nouns [6, 25, and 26].

The ROM uses only five basic symbols to represent

an object, a composite object, constraint, connection

and predicate relations.

A word surrounded by a solid-line box represents a

concrete entity corresponding to a noun in English:

A constraint is a descriptive, limiting, or particularizing

relation of one object to another:

The connection relation (�), represented by a dashed

arrow, connects two objects which do not constrain one

another:

The predicate relation (�), represented by a solid

arrow, is the relation that describes an action of one

object on another or that describes the state of an

object:

.

A double solid line box represents a composite object,

which consists of other kinds of objects:

The Recursive Object Model Analysis (ROMA)

tool transforms a text in natural language into a ROM

diagram. This diagram is also stored internally in the

XRD (an extension of XML) format, and can be used

by various applications which are based on the formal

syntactical structure of a text.

The formal ROM model of the requirements text

represents its linguistic structure, and carries

knowledge on the structured relations between

language entities. It does not, however, offer a means

to discover the high-level services of the system. In our

methodology, the formal model is employed to bridge

the textual user requirements and the high-level

contextual view (CUCM) on the software system’s

actors and services.

3.2 Expert-Comparable Contextual (ECC)

Model

Generally, data models are developed to achieve a

particular goal and to highlight the important features

of something, considering that specific goal [30].

While reviewing the literature, we came across

interesting evidence which supports the resemblance

between the data models and the conceptual classes.

For example, in [15], one of the strategies for

identifying conceptual classes has been identified as

the reuse of the universal data models. These models

describe the structure of the data as well as their

meaning, and data modeling is recognized as a

standard for designing databases [21]. Our analyses

reveal that there is great potential for using data models

as resources for identifying the necessary elements of

the conceptual models due to their resemblance. We

intended to construct a comprehensive model for

specific domains and further contemplate their

potential for assistance in automatic generation of the

CUCM of the system. In our approach, we use a

concise form of these models by extracting the fewest

concepts necessary to form the basis of the specific

domain. By this we mean that it is essential to extract

only the expert knowledge required for the conceptual

modeling of the domain and to reduce the number of

details pertaining to the physical data model instances

and the persistent storage. As suggested in [21], some

of the constructs applicable to most organizations are:

people and organizations, products, product ordering,

shipping, work effort, invoicing, accounting and

budgeting, and human resources. The process of

deriving ECC from the data model is outlined below:

• Acquisition of the standards and conventions used

in Data Modeling

• Developing the list of heuristics that can be used

for mapping data models to the domain model

• Developing the representative domain concepts for

each of the entities in the data models

• Developing a comprehensive model that defines

the interrelation between the concepts

Table 1 lists some of the transformation rules which

map data models to ECC models, and Figure 1 shows

an ECC model for the Invoicing System (attributes are

omitted from the figure to increase readability). It is

worth mentioning here that the ECC models are

developed manually for each domain and can be later

reused.

Building an ECC model obviously requires effort;

however, once built, these models can be reused and

either extended or modified, or both, revealing their

potential for generating real, long-term benefits. The

influence of these models on the improvement and

completeness of the software domain model [15], such

as useful information added about the relationships

between concepts (e.g. generalization and

composition), has been addressed in [17]. In this paper,

we make use of the ECC in the Context Use-Case

Modeling of the system. The details of our proposed

methodology are described in the following section.

11th. Workshop on Requirements Engineering

130

Table 1. Mapping Data Models to ECC Models

Data Model Structural Model

Naming

Standard
Diagramming Conventions

Naming

Standard
Diagramming Conventions

Entity

&

Attributes

Concept

&

Attributes

Non-mutually

exclusive

Subtypes &

Supertypes

Inheritance

that includes

all possible

combinations

One-to-Many

Relationship

(composed of)

Aggregation

Many-to-

Many

Relationship

Relation with

many-to-

many

multiplicity

4. Methodology

This section describes an elaborate methodology which

constitutes a proof of concept for the idea that a

CUCM can be acquired through an (semi-) automated

process, with a requirements text as input and a CUCM

diagram representing the actors and services (use-

cases), as well as summary-level use-case textual

descriptions [7], as outputs.

Use case identification can be done at different

levels, such as business/interaction [14], or with

different scopes, such as functional/design [7]. In the

requirements elicitation phase, business services are

initially captured at a higher abstraction level as

“summary-level use cases” [7]. These are further

refined into functional or design user-goal use cases.

Actors are divided into two categories: primary actors,

which initiate an interaction with the system to achieve

a goal, and supporting actors, which provide a service

for the system [7, 15].

Our goal is to identify the use cases within the

scope of business/interaction, which is defined as the

services provided by the system to the user. The steps

of our methodology for automatically generating

CUCM from the textual user requirements and

extracting a brief description of the summary-level use

cases are summarized below:

Step 1: Identify the actors with ECC model assistance;

Step 2: Identify the high-level system services, called

“summary-level use cases” and the key sentences in

the user requirements text characterizing each service;

Step 3: Extract a brief textual description of the

summary-level use cases using a metrics-based text-

partitioning algorithm;

Step 4: Identify the supporting actors;

Step 5: Draw a Context Use Case Diagram which

depicts graphically the CUCM.

The above steps are described in detail in the

corresponding subsections.

The remaining issue is how to deal with structures

such as “while”, “go to”, and “if”. Because our focus is

on the summary-level use cases rather than on the user-

goal use cases, we are excluding the appearance of the

keywords “go to” and “while” in our text. “If” clauses

are normally used to express the conditions, status, or

state under which a certain relation is established or an

activity is performed. Hence, “If” clauses are frequent

in user-goal use cases scenarios descriptions. In our

methodology, the “if” clauses are visualized in the

form of UML notes and may later be refined by the

analysts to user-goal use cases.

4.1 Actors

Discovering and finalizing the existence of the actors is

accomplished separately for each type of actor

(primary and supporting).

11th. Workshop on Requirements Engineering

131

Primary Actor. Each ECC model accommodates

the possible roles played in that specific domain (e.g.

customer and supplier in invoicing) by the various

users of the system to achieve their requests.

Therefore, the list of possible roles for each specific

domain is generated automatically in terms of the

potential primary actors in the system.

Supporting Actor. There are two main approaches

to producing systems for an enterprise: building them

individually or developing them from the perspective

that an enterprise system is an enterprise-wide

framework where the systems can collaborate (in other

words, a holistic approach to system development)

[21]. We are interested in the second approach.

Modeling the interrelationship between these

systems makes it possible to automatically elicit the

supporting systems associated with the system under

development (SUD) as potential actors to support its

services. In order to provide the flexibility to take

account the customized needs of SUD stakeholders,

which do not exactly match the standard domain

models (ECC models), both these lists will be shown to

the user for his/her approval and modification, if

required.

4.2 Identification of System Services

SUD should provide certain services to the primary

actors with the purpose of fulfilling their needs. In

order to identify those system services (use cases) we

search for and analyze two kinds of patterns in the

ROM presentation of the text: i) relations directed from

the SUD toward another entity, and ii) the relations

that are directed from the primary actors towards

another entity.

Whenever a relation is directed from the SUD to

another entity, the combination of the relation and the

entity can be a use case. Yet, not all these

combinations are valid, and further analysis is required

to reveal those that are. Relations stemming from the

system can be divided into: (a) internal actions of the

system; (b) the services of the system or high-level use

cases; (c) any interaction between the system and

supporting actors, such as forwarding a result or

waiting for data [10], etc.; and (d) any interaction

between the system and primary actors, such as asking

for information or confirmation. In order to identify

valid use cases, each <primary actor, trigger, relation

directed from the SUD, entity towards which the

relation is terminated> tuple will be checked with the

original sentences in the user requirements. The

primary actor’s relationship to the SUD can be

considered as the triggering event for accomplishing a

certain service (use case). This triggering event is

normally stated in the requirements text using verbs

such as request, ask, etc. If a sentence with all the

keywords in the tuple exists, then the use case and the

communication between the actor and the use case are

considered to be valid; otherwise, they are invalid and

will therefore be omitted. In completing the use case

identification process, we will study the relations that

originate from the primary actors and are directed

toward another entity. If an entity which is the target of

a terminated relation is found on the predefined list, the

relation and the entity will be ignored because this list

contains some of the keywords, such as ID, username,

password, etc., which are normally used in type (d)

interactions. If the entity is not on the list, we scan the

original text sentence by sentence, looking for tuples of

the type <primary actor, relation directed from the

actor, entity towards which the relation is terminated,

to (for), system >. We are seeking the relations that are

directed toward the system entity with the prepositional

relations “of” and “to”. If there is a sentence containing

all the keywords, then a combination of the entity and

the relation is considered to be a valid use case. The

above two patterns were revealed by our studies of the

user requirement documents.

The result of this procedure is a set of sentences SS,

each containing a primary actor and the verb indicating

a particular use case of the SUD. There is one sentence

in an SS per high-level system service. High-level

system services are usually described in narrative style

and are referred to as “summary-level use cases”.

4.3 Summary-Level Use Case Briefs

Summary-level use cases are high-level descriptions of

the services provided by the SUD. Our goal is to

partition the original problem statement description

around the sentences chosen in an SS into summary-

level use-case descriptions, one partition per sentence

Si in the SS, where each partition groups the sentences

related to one service (use case) in one equivalence

class. The equivalence criterion is the rule for

evaluating the closeness of a sentence to Si. Such a

grouping increases the visibility of a service in the text

describing it, which is possibly scattered among the

paragraphs or pages of the original text. The increased

visibility will facilitate the job of analysts in ensuring

the completeness of the use-case descriptions and in

inspecting the text for possible inconsistencies between

otherwise scattered statements.

Metric-based text-partitioning algorithm. The set

of sentences in the user requirements is represented as

a metric space were the space points are abstractions of

sentences.

11th. Workshop on Requirements Engineering

132

Figure1. ECC Model for an invoicing system

The word “metric” here means distance between

two points (that is, abstractions of two sentences) in a

metric space, where the distance is a measure of

functional similarity/dissimilarity between two

sentences.

Let RR be the set of all sentences in the user

requirements, excluding those already chosen in the SS.

The metric-based text-partitioning algorithm takes as

input the sets RR and SS. It breaks down the set of

sentences of the original problem statement into

equivalence classes UCS1, one class for each sentence

Si in the SS (that is, for each summary-level use case).

The number of partitions is equal to the number of

sentences in SS. A sentence belongs to an equivalence

class UCSi if it is the closest to the corresponding Si

∈SS. The distance between two sentences S1 and S2

(S1∈SS, S2∈RR) is calculated as follows:

sd (S1, S2) = similarity (S1, S2) * dissimilarity (S1, S2)

It should be noted that a similar approach was

originally proposed in [2] for a metric-based test case

partitioning algorithm. The similarity (S1, S2) was

redefined to adapt the formula to the analysts’ use case

elicitation process. The details of the distance

calculation are as follows:

First, sets Ws1 and Ws2 are generated for each

sentence S1, S2, each of which contains the significant

words in the corresponding sentences meaning modals,

auxiliary verbs, determiners and etc. are ignored. Two

tables in which each row corresponds to a sentence and

each column corresponds to a different word in S1 and

S2 are then generated. Each cell has a value “1” if the

word corresponding to that column belongs to the

sentence or “0” otherwise. Thus, the sentences are

converted into binary strings (rows are binary strings

representing the sentences) forming a metric space on

which the distance sd between two sentences S1, S2 is

defined. The first table (see, for example, Table 2(a))

contains actors and actions, and the second table (see

Table 2(b)) contains the remaining words in the

sentence. The first table is used for calculating the

similarity (S1, S2), while the second table provides the

necessary information for calculating dissimilarity (S1,

S2). Similarity and dissimilarity are calculated from the

above binary strings, as follows:

11th. Workshop on Requirements Engineering

133

 Similarity (S1, S2) = 2-C (S1, S2)

where C is the number of common actors and

actions in S1 and S2 sentences. This definition is

justified by the fact that the use cases might include

common behavior started off by the same request from

a primary actor (input action). In the analysis phase the

above mentioned common behavior will be refined into

a set of scenarios defining the use-case. The range of

the similarity measure is between 0 and 1.

The dissimilarity measure between two binary

strings representing S1 and S2 is calculated as the

number of elementary transformations or in other

words number of words that should be changed in

order to transform string S1 into string S2 in Table 2.

The more the set of objects manipulated in one

sentence differs from another sentence, the more

dissimilarity is between them. The distance formula sd

(S1, S2) indicates that the more distance there is

between two sentences, the more they will differ in

content, and thus the less likely they will be to

characterize the same use case. For instance: Let

S1=“The customer requests the CBMSys to place an

order.” and S2=“If the customer’s credit record is

good, then the CBMSys places the order.” The

distance between the sentences S1 and S2, using the

information shown in Tables 2(a) and 2(b), is

calculated as sd (S1, S2) = 2
2−

*2 = 0.5.

Table 2. Measuring Distance

(a) Calculating Similarity

 (b) Calculating Dissimilarity

 customer request place

S1 1 1 1

S2 1 0 1

 CBMSys Credit Record order

S1 1 0 0 1

S2 1 1 1 1

The distances between all the sentences in RR and

each of the sentences in SS are calculated using the

suggested formula. Each sentence is placed in one of

the equivalence classes from which its distance is

minimal. If the shortest distances are equal, the

algorithm calculates the distance between that specific

sentence and the rest of the sentences in each chosen

equivalence class; the sentence is finally added to the

class UCSi from which its distance is minimal. The

sentences corresponding to the set of binary strings in

the UCSi are then recovered, and the use case summary

is generated and shown to the user.

4.4 Supporting Actors

The communication links between the use cases and

the supporting actors are then extracted based on the

appearance of the supporting actor names in the use-

case summary description.

4.5 Use Case Context Diagram

The Context Use Case Diagram is generated from

knowledge of the CUCM elements (actors, use cases,

and their communications) extracted in the steps

outlined above. A sample Context Use Case Diagram

is shown in Figure 3.

4.6 Discussion

As mentioned earlier, user requirements text is

normally written in NL. Writing style and the

terminology used for describing the problem are highly

dependent on the individuals who record them [14]. In

this context, applying ECC models may give rise to the

question of how certain we are that the same

vocabulary will be used by the authors of the user

requirements. The terms used in the ECC models are

standard in each domain and are applicable to different

organizations with different needs [21]. They form the

dictionary of terms which can be used in writing the

user requirements, and authors are greatly encouraged

to use them. It should be noted that using unpopular

terminologies or different terms for a single concept

may give rise to inconsistencies and uncertainty in the

later stages of development of the SUD. It is worth

noting that using homogenized terminology has

previously been suggested by [7, 14] as a pattern for

specifying the requirement text and use cases.

The methodology we describe here is illustrated in

a case study in the next section.

5. Illustration

In this section, we illustrate the proposed technique on

the following minimal description, inspired by the

Order Invoicing System problem statement for a

fictitious company, CBM Corp [29]:

“1.The customer requests the CBMSys to place an

order. 2. CBMSys retrieves customer’s credit record

from the Customer Persistent Storage (CPS). 3. If the

customer’s credit record is good, then the CBMSys

places the order. 4. CBMSys creates and sends the

purchase order to the publisher. 5. The CBMSys

11th. Workshop on Requirements Engineering

134

receives the order invoice from the publisher. 6. If the

purchase invoice’s details are correct, then the

CBMSys accepts it and sends it to the Account Payable

System. 7. The CBMSys prepares the payment for the

publisher and sends the check to the publisher. 8. The

CBMSys assigns shipment to the orders. 9. CBMSys

generates a sale invoice for the customer. 10. The

customer provides payment information to the

CBMSys, and the CBMSys sends it to the Accounts

Receivable System. 11.The customer shall view the

order status from the CBMSys.12. The customer enters

the order ID into the CBMSys, and CBMSys shows the

order status. 13. Customer and publisher shall be able

to update their personal profile from the CBMSys.”

This example has been chosen because, despite its

simplicity, it gives us the opportunity to clearly explain

the details of our technique. The sentences are

numbered to simplify this explanation.

Step 1: Actors. The primitive list of actors generated

for the user contains: customer, supplier, and general

organization as the primary actors, and shipment,

ordering, and financial account as the supporting

actors. With the help of the user, this list is refined to

customer and publisher as primary actors, and accounts

receivable, account payable, and customer persistent

storage as supporting actors.

Step 2 System Services. The overall formal

presentation of the text describing the system is shown

in Figure 2.

Figure 2. Formal Presentation of the text

From this formal presentation, all the relations that

are rooted in primary actors and the entity toward

which the relation is directed, and also the relations

that stem from the “system” entity plus the entity

toward which they are directed, are extracted as

potential use cases of the system. Tables 3 and 4 give a

few samples of potential use cases extracted from the

ROM presentation. For the former group of potential

use cases, each <primary actor, trigger, relation,

entity> tuple will be checked against the original

sentences in the invoicing description. If a sentence

with all the keywords in the tuple exists, then the actor,

use case, and communication are considered valid;

otherwise, the communication is ignored.

For example, <customer, request, place, order> is

valid because the sentence that carries all these

keywords exists in the original problem statement as

“The customer requests the CBMSys to place an

order.” In contrast, <customer, request, prepare,

invoice> is not valid because none of the sentences in

the original problem statement contains all these

keywords. As for the latter group of potential use

cases, every tuple consisting of <primary actor,

relation, entity, to (from), system> is aligned with the

problem statement, as a result of which “update

profile” is identified as a valid use case associated with

both the customer and the publisher, and “check status”

which is related to the customer, whereas “enter ID” is

ignored because ID is one of the keywords on the

predefined list. The sentences chosen for the SS are:

{1, 11, 13}.

Table 3. Finding Use Cases from a Formal

Presentation (System perspective)

Actor Trigger Sample Potential Use case

customer

Request show status

prepare payment

place order

Table 4. Finding Use Cases from a Formal
Presentation (Actor perspective)

Actor Sample Potential Use case

customer

publisher

update profile

enter ID

check status

Step 3: Summary-level use case briefs. The first step

of the metric-based text-partitioning algorithm results

in three UCSj sets, namely {1, 2, 3, 4, 5, 6, 8, 9, 10},

{11, 2,12}, {13,7}, corresponding to the sentences 1,

11, and 13 from the SS and the use cases “Place order”,

“Check Status”, and “Update Profile”. As can be seen,

sentence 2 belongs to both UCS1 and UCS2 because its

11th. Workshop on Requirements Engineering

135

distance from sentences 1 and 11 is the same. In the

next step, the distances between sentence 2 and the rest

of the sentences in both UCS1 and UCS2 are calculated,

and it is concluded that the distance between sentence

2 and UCS1 is the shorter than the distance between

sentence 2 and UCS2; therefore, sentence 2 will be

omitted from UCS2. The final equivalence classes are

UCS1 = {1, 2, 3, 4, 5, 6, 8, 9, 10}, UCS2= {11, 12},

UCS3= {13, 7}. All the sentences are correctly

assigned to their corresponding equivalence class,

except sentence 7 which was wrongly assigned to

UCS3; in reality, it belongs to UCS1. The reason might

be originated in the definition of similarity criteria. The

refinement of the distance metric definition will be

tackled in our future work.
Step 4: Supporting Actors. The supporting actors

identified from the UCS1 are CPS and the Accounts

Receivable System. This shows that there exists a

communication between these two supporting actors

and the corresponding use case “place order”. No

supporting actors are identified in UCS2 or UCS3.

Step 5: Context Use Case Diagram. The graphical

model consolidating the above information is shown in

Figure 3.

������

��������

	�
���
��

����������
��

���	���
��

�����������

��������������

�
����������

�	�

����
����������������������������������

�
����
�����������������
�������

����
������
�����������������������������������
���

�
���������������������

�������������
����������	���
���������

Figure 3. Context Use Case Diagram

Having presented the methodology to prove the

concept, we now introduce the prototype tool.

6. READ Tool

The automated visualization of the contextual model

from the requirements text is achieved through the

Eclipse Visualization Plug-in (EVP). The EVP

leverages the open-source eclipse framework,

specifically the UML2 component and tools project,

which represents an implementation of the UML 2.x

OMG metamodel using the Eclipse Modeling

Framework (EMF) and a set of UML diagram editors

developed using the Graphical Modeling Framework

(GMF) for viewing and editing UML models [27, 28].

The inputs to the EVP consist of one XML file

containing the ROM presentation of the user

requirements, another XML file embodying the ECC

model, the other XML file containing the dictionary of

keywords for type (d) relations, and finally the XML

file that contains the textual description of the

requirement text. These XML files are then processed

by the UC Modeler module, which is responsible for

generating the final XML file that represents the

context use case diagram elements(e.g. primary actors,

use cases, etc.). The processing steps of this module

are described in section 4 and will not be explained

again due to lack of space. The model described in this

XML file is then transformed into the XMI file that is

in accordance with the UML2 metamodel provided by

the UML2 component using the Transformer module.

The UML2 Tools use case diagram editor is then used

to view and edit the use case context view. These

diagrams are also saved in XMI files. Figure 4 shows

the architecture of the system, and Figures 5 and 6

present sample snapshots of the tool.

Figure 4. Tool Architecture

Figure 5. Snapshot of the EVP

11th. Workshop on Requirements Engineering

136

A controlled experiment was designed to validate

the methodology introduced in this paper, the details of

which are explained next.

Figure 6. Snapshot of the EVP

7. Validation

In order to evaluate our methodology, we designed

an experiment similar to the approach in [9]. In our

experiment, the same invoicing system description (see

section 5) was given to two experts who created the

corresponding use case diagrams. The intersection of

these models served as a benchmark for validation

purposes. The case study was also given to five

graduate students in software engineering with a good

knowledge of use-case modeling; as a result, five use-

case diagrams were developed. The students’ use case

diagrams were analyzed carefully and summarized

based on the average number of correct and incorrect

choices of actors, use cases, and their communications.

Next, the students’ use case diagrams and the use case

diagram developed using our methodology were

compared with the expert use case diagrams. Actors,

use cases, and communications were considered equal

if they were playing the same role, achieving the same

goal, and establishing the same relationship between

the same actors and use cases respectively. They were

considered equivalent if everything was equal, as

defined above, but the names of the roles or use cases

were different (e.g. publisher (in the case study text)

plays the role of the supplier (proposed by the ECC

model) in this system, however they do not have the

same names). Finally, the actors, the use cases, and

their communications were considered different if they

were either incorrect or added extra (but valid)

information. The validation results are summarized in

Table 5. For instance, 16.66% of the actors

automatically identified by the READ tool were equal,

33.33% were equivalent, and the other 50% were extra

but valid when compared to the expert model. As for

the students, 86.95% of the actors identified were

correct and the other 13.04% were incorrect.

Table 5. Validation Result

Actor

Equal Equivalent
Different

Incorrect Extra

READ 16.66% 33.33% 0 50%

AVG_Students 86.95% 0 13.04% 0

 Use Case

READ 100% 0 0 0

AVG_Students 31.11% 0 68.88% 0

 Communication

READ 100% 0 0 0

AVG_Students 38.98% 0 61.01% 0

We concluded from this experiment that interaction

with the user is definitely needed in order to permit

acceptance and modification of the actors once the

primitive list has been automatically proposed by the

READ using the ECC model. READ is better at

identifying the high-level use cases and

communications, whereas human analysts tend to

extract incorrect use cases which are actually

considered as steps for other use cases.

It is also important to know the percentage of

information that is missing from the READ result as

compared to the expert models. The results of this

comparison are shown in Table 6. For example, 6.66%

of the use cases identified by the experts are missing

from the average student’ models, and 20% of the

actors extracted by the experts from the text are

missing from the READ tool’s model. We can

conclude that READ was better than the human

analysts at identifying the use cases and the

communication links between the actors and the use

cases. In none of the cases were the READ results

incorrect. Moreover, READ helped identify extra

information undetected by the analysts. Missing

information was reported in the list of actors, but the

pre approval of the actor list by the user will eliminate

this deficiency. The results of the above experiment

prove that such a tool for assisting the elicitation of the

use cases from textual requirements is feasible.

It should be noted that only the user requirements

text, without the ECC model, was given to the students

and experts. The purpose of the experiment was to

compare the automatically generated results of our tool

with those derived by human analysts without

11th. Workshop on Requirements Engineering

137

influencing their requirements analysis process,

whereas in our methodology we use the ECC as a

substitution for the knowledge and experience of the

human analysts.

Table 6. Validation Result

Actor

Missing

READ 20%

AVG_Students 8%

 Use Case

READ 0

AVG_Students 6.66%

 Communication

READ 0

AVG_Students 28.57%

8. Conclusions and Future Work

According to the statistics [16], a large number of

software projects either fail or deliver products that do

not provide the required functionality that customers

expect. The functionality of the software system to be

developed is usually captured as a Use-Case Model in

the requirements analysis phase. This paper proposes a

methodology for automatically assisting the software

analysts in the early steps of the use case model

elicitation process. It also briefly describes a tool

which implements the proposed methodology,

illustrates the approach on a case study, and discusses

the results of the evaluation. The remaining challenge

here relates to the inconsistencies that may arise in a

large requirements text and that we are unable to

identify automatically, as well as to the scalability of

the approach, which is yet to be determined through

larger, real-world case studies.

In the context of the READ project, detecting

ambiguities at the level of surface understanding has

already been tackled successfully in [13], and we are

currently investigating means for visualizing the non-

functional requirements (NFRs) that are automatically

extracted and classified from text [12]. Specifically,

NFRs will be highlighted to increase their visibility,

and explicitly linked to the corresponding functional

requirements, and they will be integrated with the

domain model and CUCM. We believe that such

automated assistance would be very beneficial to

Requirements Engineering.

Acknowledgments

The authors would like to thank Dr. Yong Zeng

(Concordia Institute for Information Systems

Engineering, Concordia University) for providing

information and references on the Recursive Object

Model (ROM) introduced in section 3 of this paper.

References

[1]Abbott, R. J. Program Design by Informal English

Descriptions, CACM, vol. 26, iss. 11, pp. 882-894 (1983)

[2]Abu Talib, M., Ormandjieva O., Abran,A., Khelifi A.,and

Buglione.L. Scenario-based Black-Box Testing in COSMIC-

FFP: a Case Study. ASQ Software Quality Professional

Journal 8 (3), pp.23-33, June 2006.

[3]Ambriola, V .and Gervasi, V. Processing natural language

requirements, In: Proceedings of Automated Software

Engineering (ASE'97), 12th IEEE International Conference,

November 1-5, pp. 36-45 (1997)

[4]Booch, G. Object-Oriented Development, TSE, vol.12,

n.2, pp. 211-221 (1986)

[5]Chen, Z. Y. Formalization and Classification of Product

Requirements Using Axiomatic Theory of Design Modeling,

Master’s Thesis, Department of Electrical and Computer

Engineering, Concordia University (2006)

[6]Chen, Z. Y., Yao, S., Lin, J. Q., Zeng, Y., and Eberlein, A.

Formalization of product requirements: From Natural

language description to formal description, Int. J. of

Manufacturing Research, vol. 2, no. 3, pp. 362-387 (2007)

[7]Cockburn, A. Writing Effective Use Cases, Addison-

Wesley (2001)

[8]Diaz I., Losavio, F., Matteo, Al., and Pastor, O. A

specification pattern for use cases, Information &

Management, vol. 41, iss. 8, pp. 961-975 (2004)

[9]Díaz I., Moreno L., Fuentes, I., and Pastor O. Integrating

Natural Language Techniques in OO Method. Proceedings of

the 6th Int’l. Conference on Intelligent Text Processing and

Computational Linguistics (CICLing'05), LNCS Springer

Verlag, February 2005.

[10]Drazan, J. and Mencl, V. Improved processing of textual

use cases: Deriving behavior specifications. In: Proceedings

of SOFSEM 2007, LNCS, vol. 4362, pp. 856-868 (2007)

[11]Harmain, H. M. and Gaizauskas, R. CM-Builder: An

Automated NL-based CASE Tool, In: Proceedings of the

15th IEEE International Conference on Automated Software

Engineering (ASE'2000), pp. 45-53 (2000)

[12]Hussain I., Kosseim, L., and Olga Ormandjieva. Using

Linguistic Knowledge to Improve the Detection of Non-

Functional Requirements Specifications. Proceedings of the

13th International Conference on Applications of Natural

Language to Information Systems (Accepted at NLDB 2008).

11th. Workshop on Requirements Engineering

138

[13]Hussain, I., Ormandjieva, O., and Kosseim, L. Automatic

Quality Assessment of SRS Text by Means of a Decision

Tree-Based Text Classifier. In: Proceedings of the Seventh

International Conference on Quality Software (QSIC

2007), pp. 209-218, Portland, USA (2007)

[14]Kim, J., Park, S., and Sugumaran V. Improving use case

driven analysis using goal and scenario authoring: A

linguistics-based approach, Data and Knowledge

Engineering, 58 (1 Spec. Iss.), pp. 21-46 (2006)

[15]Larman, C. Applying UML and Patterns. 3rd ed.,

Prentice Hall (2004)

[16]Leffingwell, D. and Widrig, D. Managing

SoftwareRequirements. Addison-Wesley (2003)

[17]Moradi Seresht, Sh., and Ormandjieva, O. Towards

Automatic Diagnostic of Conceptual Problems in

Requirements Engineering. Accepted at the 2008

International Conference on Software Engineering Theory

and Practice SETP-08 (2008)

[18]Overmyer, S. L. V., Rambow, O. Conceptual Modeling

through Linguistics Analysis Using LIDA, In: Proceedings of

the 23rd International Conference on Software Engineering

(ICSE2001), pp. 401-410 (2001)

[19]Perez-Gonzalez, H. G., and Kalita, J. K. GOOAL: A

Graphic Object-Oriented Analysis Laboratory, In:

Companion of the 17th Annual ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and

Applications (OOPSLA '02), pp. 38-39 (2002)

[20]Ryan, K. “The role of natural language in requirements

engineering,” Requirements Engineering, 1993., Proceedings

of IEEE International Symposium on, pp. 240–242, 4-6 Jan

(1993)

[21]Silverston, L. The Data Model Resource Book, vol. 1,

Wiley Computer Publishing (2001)

[22]Some S., Supporting use case based requirements

engineering. Journal of Information and Software

Technology, Volume 48, Issue 1, January 2006, Pages 43-58

[23]Subramaniam, K., Liu, D., Far, B. H., and Eberlein, A.

Automatic Transition from Use-Cases to Class Model, In:

Canadian Conference on Electrical and Computer

Engineering, IEEE CCECE 2003, vol. 2, pp. 831-834 (2003)

[24]Zeng, Y. Axiomatic theory of design modeling,

Transaction of SDPS: Journal of Integrated Design and

Process Science 6, pp.1-28 (2002)

[25]Zeng, Y. Formalization of Design Requirements, in

Integrated Design and Process Technologies, IDPT-2003,

Austin, Texas, December 3-6 (2003).

[26]Zeng, Y. “Recursive object model (ROM): a graphic

language for representing linguistic information in design,”

Computers in Industry (accepted) (2008)

[27]EclipseModelingFramework,http://wiki.eclipse.org/MDT

-UML2-FAQ

[28]GraphicalModelingFramework,http://wiki.eclipse.org/M

DT-UML2Tools

[29]Mylopoulos, J. Structured Analysis and Design

Technique (SADT),

http://www.cs.toronto.edu/~jm/2507S/Notes04/SADT.pdf

[30]West, M. “Developing High Quality Data Models,” Shell

International Limited,

http://www.matthewwest.org.uk/Documents/princ03.pdf.

11th. Workshop on Requirements Engineering

139

