
Can Rules of Inferences Resolve Coordination Ambiguity in Natural

Language Requirements Specification?

1
Sri Fatimah Tjong and

2
Daniel M. Berry

1
University of Nottingham, Malaysia Campus, Malaysia

2
University of Waterloo, Waterloo, ON, Canada

1kcx4sfj@nottingham.edu.my,
2dberry@uwaterloo.ca

Abstract

Coordination ambiguity is the ambiguity that occurs

from the use of coordinators such as and and or. The

first author’s previous work tried to resolve coordina-

tion ambiguity in natural language (NL) requirements

specifications (RSs) by using language patterns derived

from rules of logic (RLs). However, a reevaluation of

the language patterns show that RLs cannot fully re-

solve coordination ambiguity in a RS because the co-

ordinators are not always truth functional, due to in-

compatible interpretations that a human ascribes to

the ambiguous RS. Furthermore, human perceptions in

the interpretation of the coordinators in a RS vary in-

credibly widely. The implications of this observation

on requirements elicitation are discussed.

1 Introduction

Ambiguity in natural language (NL) is a major

problem in scientific disciplines and in natural lan-

guage requirements specifications (RSs). A statement

is ambiguous when it has more than one distinct mean-

ing. An ambiguous RS can have hazardous conse-

quences for its software development project as a

whole, in which wrongly implemented requirements

cause high costs for rework, delayed product releases,

failure, or more than one of these [17, 18, 19].

This paper addresses coordination ambiguity in RS

[5] as a challenging issue. Coordination ambiguity is

the ambiguity that occurs from the use of coordinators

such as and and or. Coordination ambiguity is a very

common form of syntactic ambiguity in RS, because of

the frequent need to use and and or in a RS. This pa-

per focuses on the coordinators and and or, which ac-

count for approximately 3% of the words in the British

National Corpus (BNC) [5] and are also the most

common causes of coordination ambiguity. Words and

phrases of all types can be coordinated. The external

modifier can be a word or phrase of almost any type

and can appear either before or after the coordinator

[7]. Consider the phrase secure hardware and soft-
ware. It can be parsed as either:

a. (secure hardware) and (software)
b. (secure (hardware and software))

Identifying which two modifiers are conjoined by co-

ordinator and is necessary in order to arrive at a cor-

rect interpretation of the phrase. Understanding the

phrase according to the structure (a) leads to only the

hardware’s being secure. However, understanding the

phrase according to the structure (b) leads to both the

hardware’s and software’s being secure. The reading

(a) is a coordination last reading, and the reading (b) is

a coordination first reading. As in many situations, it is

possible that context will disambiguate. A variation of

this phrase suffering even more ambiguity is:

secure hybrid hardware and software

It can be parsed as any of:

(secure hybrid hardware) and (software)
(secure hybrid (hardware and software))
(secure (hybrid hardware)) and (software)
(secure ((hybrid hardware) and software))

The first author’s previous work [1, 2] presented a

set of language patterns based on rules of logic (RLs)

that were meant to resolve coordination ambiguity re-

sulting from the use of the coordinators that are the

logical operators and and or. The language patterns

were seemingly able to remove coordination ambiguity

by simplifying according to RLs. However, later stud-

ies showed that disambiguation of coordinators and

and or by RLs is not plausible because human percep-

tions of the interpretations of the coordinators in a RS

can vary widely. In addition, coordinators are not al-

ways found to be truth functional, because the state-

11th. Workshop on Requirements Engineering

205

ment resulting after simplification by RLs has interpre-

tations that are incompatible with those of the original

ambiguous statement.

Hence, this paper argues that RLs cannot resolve

coordination ambiguity. RLs are unable to consider (1)

domain-specific information, (2) where the coordinator

occurs, (3) what parts of speech occur on both sides of

the coordinator, and (4) any other factors that are rele-

vant in disambiguating the use of the coordinator. De-

termining how these various elements interact is chal-

lenging. Thus, research has been going on to find sim-

pler ways to write less ambiguous requirements state-

ments (RStats) that avoid ambiguous use of coordina-

tors [1, 2, 3, 4, 5, 6].

Throughout this paper, the RStats given are ob-

tained from studies on several sets of industrial

strength RSs [4]. Text from a RStat or other example is

typeset in a sans serif typeface, and this text may end

with punctuation.

Section 2 describes past work on coordination am-

biguity in NL and NL RSs. Section 3 shows why RLs

are unable to resolve coordination ambiguity. Section 4

discusses the implications on requirements elicitation

of the observations of Section 3. Section 5 discusses

the role of guiding rules in avoiding ambiguity and

future work. Section 6 concludes the paper.

2 Past Work

Coordinators such as and and or are potential

sources of syntactic ambiguity in NLs and in NL RSs.

Since their interpretations directly affect the meaning

of the text, their disambiguation is critical in order to

understand the text precisely. However, they have al-

ways been problematic because they are not always

used in truth-functional ways. When one of these coor-

dinators is the main connective in a compound sen-

tence, the truth value of the compound sentence does

not depend in all cases on solely the coordinator and

the truth values of the component sentences [8].

Research has been done on resolving the coordina-

tion ambiguity in NL RSs [1, 2, 5, 6, 13]. Work on

coordination ambiguity in NL has focused on matching

patterns of coordinators [8, 9, 10].

Agarwal and Boggess [10] identified a coordinator

by matching part of speech (POS) and semantic tags of

the words modified by the coordinator. Resnik [12]

proposed a semantic-similarity approach to disambigu-

ate coordinators that involves nominal compounds.

Goldberg [11] applied a coocurrence-based probabilis-

tic model to determine the attachments of ambiguous

coordinators in phrases, using unsupervised learning.

Chantree et al. [5] presented a binary classifier for

coordination ambiguity. They collected a dataset of

ambiguous phrases from a corpus of requirements

specifications, and a collection of associated human

judgements on their interpretations. Their model was

based on word distribution information obtained from

BNC.

Fuchs, Schwitter, and Schwertel [13, 14] proposed a

restricted NL called Attempto Controlled English

(ACE). In ACE, coordinators are defined to be truth

functional. ACE thus avoids the inherent ambiguity of

unrestricted NL. Specifications written in ACE can be

translated into formal logic.

Some works define language patterns that transform

an unstructured NL RStat into a structured NL RStat or

even into a formal specification [e.g. 15, 16].

Tjong collected several sets of industrial-strength

RSs in order to observe patterns of NL RStats com-

monly found in RSs. Based on the observations, she

produced some general yet standardised language pat-

terns using RLs. The suggested language patterns were

applied to rewrite the RStats that contained coordina-

tion ambiguities. She produced also some guiding rules

that help avoid ambiguities [1, 2, 3, 4].

3 Reevaluation of Coordinator Patterns

This section shows a number of ways that and and

or can be used in manners that invalidate ambiguity

remedies that are based on RLs.

3.1 Ambiguity of the and Coordinator

The conjunctive coordinator and is very ambiguous

because a phrase A and B can express a number of

meanings other than the logical conjunction of A and

B:

- B follows A chronologically, e.g., The computer
stops all programs and shuts down.,

- B follows A logically, e.g., The system shall
timestamp and record the initiation and com-
pletion of all tasks. (Here, the recording happens

as a result of the timestamping.),

- B is in contrast to A, in which case and is often re-

placed by but, e.g., The lift should not be
stopped from fast mode but should always be
switched to slow mode for at least 1 second
before stopping.,

- B is a surprise given A, in which case and is often

replaced by yet, e.g., She is only 13; yet, she is
already a university student., and

- B is dependent on A, e.g., Score well and you will
win this game!.

For an example of how strict application of a RL-

based rule can upset the meaning of a sentence, con-

11th. Workshop on Requirements Engineering

206

sider the RL that if A and B then A and B, i.e., from

the logical conjunction A and B, one is allowed to say

each of A and B. There are RL-based rules that trans-

form a Rstat of the form

 Subject Verb Phrase1 and Phrase2.

into two Rstats:

Subject Verb Phrase1.
and

Subject Verb Phrase2.

For

E0: The system shall provide input and output.,

the transformation is valid. However, for

E1: The message is placed in the Outbox and
marked as queued.,

the transformation to two Rstats

E2.1: The message is placed in the Outbox.

and

E2.2: The message is marked as queued.

loses the temporal connection between the actions.

Transforming

E3: For logging and chat tools, the system shall
allow for ‘Undo’ and ‘Redo’ functions.

into

E4.1: For logging and chat tools, the system
shall allow for ‘Undo’ function.

and

E4.2: For logging and chat tools, the system
shall allow ‘Redo’ function

loses the dependency relationship between the ‘Undo’
and ‘Redo’ actions. In many a system, the actions

‘Undo’ and ‘Redo’ are inseparable to the extent that

when a system supports the ‘Undo’ action, it supports

also the ‘Redo’ action. Rewriting

E5: Employees and supervisors are compen-
sated and retained based on their performance
and contribution to mission.

as

E6.1: Employees and supervisors are com-
pensated based on their performance and con-
tribution to mission.

and

E6.2: Employees and supervisors are retained
based on their performance and contribution to
mission.

breaks the relationship of compensation and retention

if the intent of E5 is to say that after being compen-

sated, employees and supervisors are also retained and

are not dismissed or do not quit. Likewise, blindly

transforming

E7: If a search is done and one match is
found, the search and search-all-names com-
mand buttons are not enabled.

into

E8.1: If a search is done and one match is
found, the search command button is not en-
abled.

and

E8.2: If a search is done and one match is
found, the search-all-names command button
is not enabled.

causes the misconception that disabling either the

search command button or the search-all-names button

is sufficient when a match is found. However, the in-

tent of E7 may be the disabling both of the search

command buttons after a match is found. That is, the

intent of E7 is to prevent user’s clicking or misclicking

either search button and thus requesting the system to

search based on the previously returned search result.

The use of an and to pair nouns can convey that the

elements of a set are to be considered together, e.g, as

in Each user shall enter his user id and password
in order to login to the system. However, and can

convey also that each element of the set is to be con-

sidered separately, e.g., as in Submission of data
shall be supported through web based interac-
tions and file submission. Thus, an and can cause

problems regardless of where it is positioned in its sen-

tence.

11th. Workshop on Requirements Engineering

207

3.2 Uncertainty of the or Coordinator

The coordinator or has two ambiguities. First, when

several elements are joined with an or, it is unclear

whether all the elements in the disjunction are to be

attributed (1) to one coordinator, (2) to the other, e.g.,

as in He is to pay a $500 fine or to spend ten days
in jail. or (3) to both of them e.g., as in The stocks
are obtainable at Walmart or Carrefour., which

implies that both Walmart and Carrefour have the

stocks and one is able to obtain the stocks at either or

both places. Second, when an or occurs in the context

of a negation, the or can be interpreted as and [1, 2,

14], e.g., She doesn’t speak Spanish or French.

In English, the disjunctive coordinator, or, carries

two interpretations:

- Inclusive or: a disjunction is true when at least one

of its disjuncts is true; a disjunction is false only

when all of its disjuncts are false.

- Exclusive or: a disjunction is true when at exactly

one of its disjuncts is true; a disjunction is false

when more than one disjunct is true or when all of

its disjuncts are false.

By contrast, Latin has two different disjunctive words,

vel, for inclusive or, and aut, for exclusive or.
As an example of the first ambiguity, the sentence

E9: If the user requests to close a window or
exit the system after making uncommitted
changes to a screen, then the system shall
prompt the user to commit or cancel those
changes.

has two disjunctions. More likely, the first is inclusive

and the second is exclusive, but only the customer can

say for sure.

A negated or derives a conjunctive interpretation as

in

E10: No data or log files will be deleted by the
system without immediate or prior approval by
an operator or other appropriate personnel.

E10 means to say the system shall not delete data

and shall not delete log files without approval from

either an operator or other appropriate personnel. We

assume that obtaining approval from either an operator

or appropriate personnel is sufficient to authorise the

deletion, but only the customer can say for sure.

There is yet another use of or, to introduce an alter-

native, as in:

E11: If the input is correct, then the system
shall calculate the temperature, or if not, then
the system shall issue an error message.

In this case, the or is not truth functional, and it and the

if not, then should be replaced by Otherwise,, by
Alternatively,, or by only the If not, then, e.g.:

E12: If the input is correct, then the system
shall calculate the temperature. Otherwise, the
system shall issue an error message.

3.3 Reevaluation of the Combination of and

and or

The occurrence of both and and or in one sentence

can complicate the sentence and introduce yet more

ambiguity to the sentence, based on the difficulty of

determining precedences of the coordinators. For ex-

ample,

E13: Aircraft that are non-friendly and have an

unknown mission or have the potential to enter

restricted airspace within 5 minutes shall raise

an alert.

E13 has two possible parses:

E14.1: Aircraft that ((are non-friendly) and

(have an unknown mission)) or (have the po-

tential to enter restricted airspace within 5 min-

utes) shall raise an alert.

and

E14.2: Aircraft that (are non-friendly) and

((have an unknown mission) or (have the po-

tential to enter restricted airspace within 5 min-

utes)) shall raise an alert.

Only the customer can describe the intent, and only

after the intent is known can any RLs be applied to

carry out simplifications based on commutativity, as-

sociativity, and distributivity of logical operators.

4 Implications of Observations for

Requirements Elicitation

The observations of Section 3 have an important impli-

cation on the process of requirements elicitation. Basi-

cally, a requirements analyst must search for all in-

stances of and and or in a RS. She must examine each

and if there is any chance that the use is not truth func-

11th. Workshop on Requirements Engineering

208

tional, she must ask questions of the client to determine

his intent for the instance. An instance that is not truth

functional should be changed to another word or

phrase that more accurately indicates the instance’s

intent. The goal of the analyst is that when she is fin-

ished examining the RS, each remaining instance of

and or or is truth functional and can be subjected to

RL-based rules. Specifically, for each phrase A and B,

the analyst and customer must determine if it is one of

the following:

- B follows A chronologically, in which case the and

should be changed to and then,

- B follows A logically, in which case the and

should be changed to and therefore,

- B is in contrast to A, in which case the A and B

should be split into two sentences capturing A and

B, and the B sentence should be changed to begin

with However,,
- B is a surprise given A, in which case the A and B

should be changed into B in spite of the fact that
A., and

- B is dependent on A, in which case the and should

be changed to and thus,.
If the phrase A and B is not one of these, then it can be

safely assumed that the and is truth functional.

Equally specifically, for each phrase A or B, the

analyst and customer must determine if B is an alterna-

tive to A, in which case the A or B should be split into

two sentences capturing A and B, and the B sentence

should be changed to begin with Alternatively, Oth-
erwise, or If not, then. If the phrase A or B is not of

this form, then it can be safely assumed that the or is

truth functional. Then the analyst and customer must

examine each remaining phrase A or B to classify its

or as inclusive or exclusive. If

- A or B is inclusive, then A or B should be changed

to A or B or both or A, B, or both,

- A or B is exclusive, then A or B should be changed

to either A or B.

Finally, the analyst and customer must determine for

any phrase involving more than one coordinator the

precedences of each so that the scope of each coordina-

tor is known. Then it will be possible to use RLs to

work with the coordinators.

5 Guiding Rules and Future Work

Since RL-based rules will never be able to resolve

coordination ambiguity, perhaps a better suggestion is

to avoid introducing ambiguities during writing by

using disambiguation guiding rules such as those we

described previously [3]. A guiding rule is an instruc-

tion describing an ambiguous language use pattern

with a suggestion for replacing that ambiguous lan-

guage use with a less ambiguous way to say what is

intended. For example, one guiding rule is:

Avoid writing S containing X and/or Y. Instead,

write X, Y, or both.,

where “S” is a variable standing in for “any sentence”.

One may use the guiding rules also to drive inspections

for ambiguities in a RS. Guiding rules can be written to

capture the transformations described in Section 4, and

doing so is the subject of future work.

Space limitations preclude a full discussion of guid-

ing rules and their use. Additionally, References 1

through 4 present all the guiding rules the first author

has found, gives examples of the use of each, and dis-

cusses their strengths and weaknesses. Among the

weaknesses is that no list of guiding rules can be com-

plete, because new sources of ambiguity are discovered

all the time. We do hope that the rate of discovery of

new sources of ambiguity will eventually taper off.

Another weakness of guiding rules is that applying

them requires human judgement, because no rule is

always applicable.

Therefore, the future work is to develop guiding

rules to avoid coordination ambiguity and to continue

to find other sources of ambiguity that can be avoided

by guiding rules.

6 Conclusion

A reevaluation of language patterns shows that lan-

guage patterns derived from RLs cannot truly resolve

coordination ambiguity. Coordinators are not always

used in truth-functional ways. The interpretation of the

result of a transformation based on RLs sometimes

differs from that of the original. Many a use of a coor-

dinator serves to convey relationships other than con-

junction or disjunction, such as temporal ordering and

logical implication or exclusion. Such uses must be

identified and made explicit before any RL-based pat-

terns can be applied. Guiding rules are an alternative to

language patterns and can be used to identify and make

explicit the non-truth-functional uses of coordinators.

Guiding rules can be used also to drive inspections.

References

[1] S. F. Tjong, N. Hallam, M. Hartley, “Improving the qual-

ity of natural language requirements specifications through

natural language requirements patterns”, In IEEE Interna-

tional Conference on Computer and Information Technology,

Korea, 2006

 [2] S. F. Tjong, Elaborated natural language patterns for

requirements specifications. Technical Report, Faculty of

Engineering & Computer Science, University of Nottingham,

2006, http://sepang.nottingham.edu.my/~kcx4sfj/TRII.pdf

11th. Workshop on Requirements Engineering

209

[3] S. F. Tjong, M. Hartley, D. M. Berry, Extended Disam-

biguation Rules for Requirements Specifications, 10
th

 Work-

shop on Requirements Engineering, Toronto, Canada 2007

[4] S. F. Tjong, Avoiding Ambiguities in Requirements

Specifications, PhD Dissertation, Faculty of Science, Univer-

sity of Nottingham, February 2008

[5] F. Chantree, A. Willis, A. Kilgarriff & A.D. Roeck, De-

tecting dangerous coordination ambiguities using word dis-

tribution, Recent Advances in Natural Language Processing,

Springer, 2006

[6] F. Chantree, B. Nuseibeh, A.D. Roeck, A. Willis, Nocu-

ous ambiguities in requirements specifications, Technical

Report, Department of Computing, Faculty of Mathematics

and Computing, The Open University, 2005

[7] A. Okumura & M. Kazunori, “Symmetric pattern match-

ing analysis for English coordinate structure”, Proceedings of

the 4
th

 Conference on Applied Natural Language Processing,

Stuttgart, Germany, 41-46, 1994

[8] S. M. Cohen, Introduction to Logic, Chapter 3: The Boo-

lean Connectives, University of Washington, 2004

[9] M. Haspelmath, Coordinating constructions, John Ben-

jamins B.V., 2004

[10] R. Agarwal and L. Boggess, “A simple but useful ap-

proach to conjunct identification”, In Proceedings of ACL

1992, pp. 15-21

[11] M. Goldberg, “An unsupervised model for statistically

determining coordinate phrase attachment”, In Proceedings

of ACL 1999, pp. 610-614

[12] P. Resnik, “Semantic similarity in a taxonomy: An in-

formation-based measure and its application to problems of

ambiguity in natural language”, Journal of Artificial Intelli-

gence Research, 1999, 11:95-130

[13] N. E. Fuchs and R. Schwitter, “Specifying logic pro-

grams in controlled natural language”, In CLMLP’95, work-

shop on Computational Logic for Natural Language Process-

ing, 1995

[14] U. Schwertel, “Controlling plural ambiguities in At-

tempto Controlled English”, In Proceedings of the Third

International Workshop in Controlled Language Applica-

tions (CLAW), 2000, Seattle, WA, USA

[15] E. Kamsties, Surfacing Ambiguity in Natural Language

Requirements, PhD Dissertation, Fachbereich Informatik,

Universität Kaiserslautern, Kaiserslautern, Germany, also

Volume 5 of PhD Theses in Experimental Software Engi-

neering, Fraunhofer IRB Verlag, Stuttgart, Germany, 2001

[16] C. Denger. High Quality Requirements Specifications

for Embedded Systems through Authoring Rules and Lan-

guage Patterns, MSc Thesis, Fachbereich Informatik, Univer-

sität Kaiserslautern, Kaiserslautern, Germany, 2002

[17] W. van Rossum, “The Implementation of Techologies in

Intensive Care Units: Ambiguity, Uncertainty and Organiza-

tional Reactions”, Research Report 97B51, Research Institute

SOM (Systems, Organisations and Management), University

of Groningen, Groningen, the Netherlands, 1997

[18] S. W. Sussman and P. J. Guinan, “Antidotes for High

Complexity and Ambiguity in Software Development”, In-

formation and Management, 1999, 36: 23-35

[19] D. C. Gause and J. M. Weinberg, Exploring require-

ments: quality before design, Dorset House, New York, NY,

USA, 1989

11th. Workshop on Requirements Engineering

210

