
Towards a Framework for Improving Goal-Oriented

Requirement Models Quality

Carlos Cares

Depto. de Ingeniería de Sistemas

Universidad de La Frontera

Temuco, Chile

ccares@ufro.cl

Xavier Franch
Dep. Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

Barcelona, Spain

franch@lsi.upc.edu

Abstract

Goal-orientation is a widespread and useful

approach to Requirements Engineering. However,

quality assessment frameworks focused on goal-

oriented processes are either limited or remain on the

theoretical side. Requirements quality initiatives range

from simple metrics applicable to requirements

documents, to general-purpose quality frameworks that

include syntactic, semantic and pragmatic concerns. In

some recent works, we have proposed a metrics

framework for goal-oriented models, but the approach

did not cover the cycle of quality assessment. In this

paper we present a semiotic-based quality assessment

proposal built upon the i* framework and the SEQUAL

proposal. We propose a simplification of SEQUAL

which can be applied to i* models by defining

semantic, pragmatic and social metrics. As a result, we

obtain suites of metrics that can be applied to i* goal-

oriented requirements models. This theoretical work is

put into practice by using iStarML, a XML

representation of i* models, over which XQuery

sentences compute the proposed metrics.

1. Introduction

Goal-Oriented Requirements Engineering (GORE)
[1-3] is playing a relevant role in the Requirements
Engineering (RE) discipline since the mid nineties. The
simple question about the “reason why” behind some
requirement has opened the door to Software
Engineering (SE) not only to better understand specific
business domains but also to propose different
alternatives of achieving organizational goals. Besides,
goal-oriented modeling provides an effective approach
to understand, specify and design distributed
information systems that need to operate in open,
heterogeneous and evolving environments.

As remarked in [4] and easily checkable from the
current state of the art, KAOS and the i* framework are

the two main goal-oriented modeling techniques. In this
paper we focus on the i* framework [5]. It aims at
facilitating domain modeling, domain reengineering,
and computer system requirements modeling. The i*
framework includes some procedural guides to build
strategic and intentional models using the i* modeling
language. The i* framework has spread and
successfully been implemented in different contexts,
e.g. organizational modeling [6, 7], requirements
elicitation [8, 9], software design [10, 11] and security
[12, 13]. Its explicit representation of goals and actors
has allowed to use it in both GORE [1-3] and Agent-
Oriented Requirements Engineering (AORE) [11, 14].

In any SE-related discipline, the issue of Quality
Assurance and Measuring comes into discussion. RE is
not an exception. Although software measurement has
been proposed more than 30 years ago [15] it is far to
be considered an accomplished task in the context of
RE (and probably in most other SE contexts). On the
practical side, quality in RE has been tackled by
defining metrics related to requirements documents,
such as number of text lines, number of imperatives
(“must”, “shall”, “will”), continuances following
imperatives (e.g., “the following”), number of
ambiguities or weak phrases (“fast”, ”enough”),
number of optional phrases (“can”, “may”, “it is
desirable that”) among others [16]. All these metrics
have the relevant quality of being feasible and easy to
apply at the requirements stage. However, at the same
time, these metrics show just a few, and not too
relevant, points where improving requirements quality.

Another topic on requirements quality is the
measurement of requirement properties, e.g., it is
recognized that traceability is a relevant positive
requirements feature [17]. Also volatility is a feature
that needs to be controlled [18]. Another set of
desirable requirements properties have been presented
in [19], where are mentioned completeness,
consistency, correctness among many others. In the
case of the i* framework, this type of properties could

be used as indicators that may help on finding methods
and techniques to overcome some of the drawbacks
identified when using i* models [20]. Being these
quality features more relevant in terms of the
possibilities of improving requirements quality, they
present a greater difficulty to be measured.

In the i* framework, we have recently proposed the
i* Metrics Definition Framework (iMDF) [21, 22].
This framework supports the definition of metrics
through metric patterns [23] for measuring properties
like the ones above. However, iMDF does not support
the reasoning process that allows deducing the form
that the metrics must take in order to measure the
required properties. Furthermore, the metrics are
defined as OCL formulae, which makes necessary to
express i* models as instances of the i* metamodel and
in our experience this may hamper its adoption,
especially by practitioners. As a consequence, we may
say that there is a gap between the theoretical
framework represented by iMDF and the practical issue
of how to make this framework close to the needs of
the requirements engineer and easy to implement in
terms of development costs.

This paper is intended to be a first step to fill this
gap. On the one hand, we propose to adopt the
SEQUAL proposal [24-27] as framework for reasoning
about quality. SEQUAL has a strong theoretical
foundation by considering semiotic concepts, i.e. not
only documents or models but also actors as
interpreters, informality and diversity of languages, and
the social phenomena of agreeing. SEQUAL’s structure
focused recently in the particularities of the
requirements stage [27] whilst keeping the original
focus on three types of qualities, syntax quality,
semantic quality and pragmatic quality.

On the other hand, we propose to use the iStarML
interchange format [28] as the baseline for
implementing the metrics. In fact, iStarML is an XML-
based representation of i* models conceived mainly to
overcome the interoperability problem in the
community of i* tools. However, being XML-based, it
is possible to take advantage of the big deal of services
around this standard and in particular, to use some
tools to analyze models with some purpose like for
instance, computing the value of metrics defined as
XML queries.

The rest of the paper is organized as follows.
Section II provides the necessary background to
understand the proposal, focusing on the i* framework,
the iStarML interchange format and the SEQUAL
proposal (including a preliminary discussion on notions
of semiotics). In Section III we develop a simplified
SEQUAL-based framework whose metrics require

interaction with stakeholders, and we show some
samples of metrics and patterns that may be used to
define them. Section IV shows how the framework can
be put into practice by applying several steps whose
practical result is the creation of a query expressed in
Xpath over the iStarML representation of the model.
Finally, Section V summarizes the proposal and
identifies open issues on this research line.

2. Antecedents

2.1. GORE and the i* Framework

GORE methodologies constitute a relevant trend in
SE. GORE was proposed about fifteen years ago
having a great impact on the RE community since that
time, due to its crucial role on the understanding of
stakeholders’ business goals in order to model the
domain and to identify the requirements of new
software systems by stepwise decomposition of high-
level goals [29, 30]. High-level goals capture the
overall organizational objectives and key constraints;
therefore they represent stable needs that are less
sensitive to changes.

As mentioned in the introduction, the i* framework
is one of the most widespread GORE approach. It
includes a modeling language and some reasoning
techniques. In Fig. 1 we replicate Kavakli’s view of the
i* framework as a GORE approach [1].

Activities

As-Is

Strategic actor
modelling strategy

Change To-be

Strategic issue
modelling strategy

Strategic actor
modelling strategy Exit

Models

Fig. 1. Kavakli’s view of the i* scope into GORE processes

The i* framework [5] proposes the use of two types

of models, each one corresponding to a different
abstraction level: a Strategic Dependency (SD) model
represents the intentional level and the Strategic
Rationale (SR) model represents the rational level.

A SD model consists of a set of nodes that represent
actors and a set of dependencies that represent the
relationships among them, expressing that an actor
(depender) depends on some other (dependee) in order
to obtain some objective (dependum). Depending on
the dependum kind, the depender depends on the
dependee to bring about a certain state in the world
(goal dependency), to attain a goal in a particular way
(task dependency), for the availability of a physical or
informational entity (resource dependency) or to meet

some non-functional requirement (softgoal
dependency). It is also possible to define the
importance of the dependency for each of the involved
actors using three categories: open, committed and
critical.

A SR model allows visualizing the intentional
elements into the boundary of an actor in order to

refine the SD model with reasoning capabilities. The
dependencies of the SD model are linked to intentional
elements inside the actor boundary. The elements
inside the SR model are decomposed accordingly to
two types of links: means-end links and task-
decompositions.

Actors

Role

Position

Agent

Generic Actor

Intentional Elements

Goal

Softgoal

Task

Resource

Some Dependencies

Task-dependency Goal-dependency

Intentional Relationships

Means-end Contribution

+ | ++ | - | --

Decomposition

Actor’s Relationships

is_a | is_part_of | instance_of |

covers | plays | occupies

An actor and its boundary

D D DD

StudentTutor

Optimal

satisfaction

Optimal

satisfaction

Timely
attention
Timely

attention

Other
functions

done

Information
about career

provided
Doubts

solved
Doubts
clarified

Ask for
information

Information

about career

Solve
doubts

by email

D
Pay attention

to students

Supervise

students’ career

+

+-

Solve

doubts

personaly

D

D

D
D

D

Fig. 2. The i* framework: an example on tutoring.

Means-end links establish that one or more

intentional elements are the means that contribute to

the achievement of an end. The “end” can be a goal,

task, resource, or softgoal, whereas the “means” is

usually a task. There is a relation OR when there are

many means, which indicate the different ways to

obtain the end. The most used relationships are: Goal-

Task, Resource-Task, Task-Task, Softgoal-Task,

Softgoal-Softgoal and Goal-Goal (following usual

conventions, the left-hand side of each pair represents

the end and the right-hand side, the means). In Means-

end links with a softgoal as end it is possible to specify

if the contribution of the means towards the end is

negative or positive.

Task-decomposition links state the decomposition of

a task into different intentional elements. There is a

relation AND when a task is decomposed into more

than one intentional element. It is also possible to

define constraints to refine this relationship. The

importance of the intentional element in the

accomplishment of the task can also be marked in the

same way that in dependencies of a SD model.

 Actors can be specialized into agents, roles and

positions. A position covers roles. Agents represent

particular instances of people, machines or software

within the organization and they occupy positions (and

as a consequence, they play the roles covered by these

positions). Actors and their specializations can be

decomposed into other actors using the is-part-of

relationship.

These concepts and their graphical representation

are illustrated in Fig. 2 using an example about

academic tutoring of students. On the left-hand side, we

show the SR model of a tutor and the hierarchical

relationships among their internal intentional elements.

On the right-hand side, we show the SD dependencies

between a student and a tutor.

Different methodologies and language variations

have been created based on i* concepts and modelling

techniques. A relevant proposal is Tropos [10, 11], an

agent-oriented software development methodology that

includes some language constructs or variations that are

specific of this approach. Also relevant is GRL [31], an

i* variation which has been added as part of the

industrial Telecommunications Standard Z.150 [32] for

system specification. Besides these widespread

proposals, there are others that have introduced

different constructs in the language with their own

research aims. Most of them have included software

tools to support the underlying methodologies and

techniques.

2.2. iStarML

In general, existing i*-based tools and development

frameworks are not capable to interoperate, i.e. to

interchange models and diagrams, which prevents

taking advantage of existing functionalities. One of the

main reasons related to the lack of interoperability of

different i* frameworks is that the different i*-based

proposals use, define, or redefine the syntax or even the

semantics of the seminal i* constructs.

To confront the variability of models and in order to

provide a common framework to enable

interoperability among i* researchers and users at the

syntactic level, we have proposed iStarML [28], an

XML format for representing i* models. Its relevance

is that the different i* variants can eventually be

translated into iStarML. Therefore iStarML allows a

textual representation of domain models, requirements,

actor relationships and a wide set of the different uses

that i* has covered as modeling language, particularly

GORE and AORE aspects.

Previous work on the analysis of i* metamodels [33,

34] has oriented us towards a core set of stable i*

abstract concepts which constitutes the basis of the

existing i* variations. We may distinguish up to six

different parts that yield to six types of core concepts

(see Areas in Fig. 3): (1) actor, for representing

organizational units, humans or software agents; (2)

intentional element, for representing the set of elements

which give rationality to the actor’s actions, e.g. goals

and tasks; (3) dependency, for representing actors’

dependencies in order to accomplish their own goals;

(4) boundary, for representing the scope of actors; (5)

intentional element link, for representing the

relationships among intentional elements such as

means-end or decomposition relationships; and (6)

actor association link, for representing the relationships

among actors such as is_part_of and is_a, among

others. We have considered each area as a category of

core concepts that drives the structure of iStarML. The

definition of iStarML has allowed: (i) having a file

format for diagrams interchanging among existing and

new tools (see Fig. 4 for a sample); (ii) motivating the

development and compliance of drawing tools to the

defined format; and (iii) having a common way of

representing the differences and similarities between

existing i* variations.

Fig. 3. Core concepts of i*
It is worth to mention that the metamodel represents

a basic conceptualization where i* variants can be
obtained by UML refactoring [33], being only a
conceptual reference. This purely conceptual

AREA 1

AREA 3

AREA 2

AREA 4

AREA 5

AREA 6

perspective would be Our proposal is to cover different
conceptual frameworks, mainly Software Engineering
Frameworks (e.g., Tropos), also in a more practical
way. From this point of view, an OCL-based proposal
would be only applicable to a specific i* metamodel.
However, if we formulate the calculable part on the
iStarML interoperability proposal, we cover the family
of i* variants (different metamodels), moreover, if we
add the current availability of software tools including
iStarML, we facilitate the fact of adopting this quality
proposal.

Fig. 4. An excerpt of the iStarML of the tutoring example

2.3. SEQUAL

According to the Webster dictionary, semiotics is

defined as “a general philosophical theory of signs and
symbols that deals especially with their function in both
artificially constructed and natural languages and
comprises syntax, semantics, and pragmatics”.
Pragmatics deals with the uses and effects of signs;
semantics deals with the signification (meaning) of
signs, that is the objects of the reality represented by
signs; and syntax deals with combinations of signs
regardless of their specific meaning or their relation to
uses and effects [35]. A classical semiotic model is the
Peirce’s model, which requires a repertory of signs
(symbols) as communication elements, an ontology of
objects and interpretants. The objects are elements of
the “reality” for some community, also called cultural
units, the classical example in semiotic is the
conception of unicorn .The interpretants guarantee the
validity of signs, normally there are alternative
representations of objects such as synonyms, pictures,
explanations or descriptions [36]. Although it may
seem a little bit recursive, i.e. to explain a sign in terms
of other signs at the same communication level, it is
necessary to consider that some language sentences can

reach stable meanings in the natural dynamic of
meaning systems [37] and hence became (at least to a
wide set of persons) a useful interpretant.

Therefore, a relevant semiotic idea is to include the
process of meaning-making as part of the human
communication phenomena [38]. In this conceptual
framework, a sign represents an intended meaning
(which implies that there is a referent) but it does not
mean that the interpretation captures this meaning, even
having access to some referent, i.e. it is accepted that
the effect of the representation on the interpreter could
not be the desired one. Therefore the sociolinguistic
context, the knowledge and the experience of the
interpreter become part of semiotic models because
they are associated to the interpretation process. This
perspective is used by U. Eco to state that semiotics is
the Science of the culture and social conventions [36].

The SEQUAL (SEmiotic QUALity) framework is a
semiotics-based reference model for assessing the
quality of models, initially formulated at 1994 (with
another name) [24]. As such, it aligns with the basic
principles of semiotics and for instance, three types of
qualities were initially recognized: syntax quality,
semantic quality and pragmatic quality. Also, the
elements of a model are signs that could have different
interpretations depending on the sociolinguistic context
and previous knowledge of their interpreters. This
seminal proposal of SEQUAL was followed by a
specific RE quality proposal [25] that incorporates into
the framework the notion of the social process of
agreement which was previously modeled by Pohl [39],
yielding to a fourth dimension of quality, social quality.
In Fig. 5 we reproduce the SEQUAL framework as it
was illustrated in 1995.

Domain Model Language

Audience
Interpretation

pragmatic
quality

syntactic
quality

semantic
quality

social
quality

perceived
semantic

qualityParticipant

knowledge

Fig. 5. The second version of SEQUAL (1995) [25]

Other remarkable characteristics of SEQUAL are

explained next. First, in the 2002’s SEQUAL version

[40], interaction principles were included. This

extension meant adding new concepts into the model,

such as modelers, the goal of the modeling process, and

the appropriateness of the different actors over the

representations, which means that actors feel having the

control over the meaning system. Second, the evolution

of the model and the articulation of the actors were also

added into this version of SEQUAL. Third, in the

2004’s SEQUAL version [26], the relevant semiotic

concept of activation, intended to consider the impact

of the models in interpreters, explicitly appeared in

this model.

A revised SEQUAL model was proposed at 2006

[27]. This version included theoretical concepts such as

the needed knowledge for optimal modeling and also

the concept of a theoretical optimal domain, including

the acquisition of knowledge of the participants in the

process, the actions that change the domain, and the

change of the domain model coming from a better

understanding (interpretation) of the domain and also

the evolution of the domain because the promoted

changes. This model considered additional concepts as

Ideal Semantic Quality in two versions (prescriptive

and descriptive), among other extensions.

As a consequence of this evolution throughout the

years, it may be said that the SEQUAL framework has

become a rich model, complete enough to formulate a

first SEQUAL-based approach to assess the quality of

goal-oriented models.

3. i* in a simplified SEQUAL framework

In this section we aim at formulating a SEQUAL

framework for i* with the purpose of assessing the
quality of goal-oriented i* models at the RE stage.
With this purpose, we first formulate a simplified
version of the SEQUAL framework oriented to get a
first approach for improving goal-oriented models
quality. As a second step we formulate some metrics
related to the identified qualities considered in this
simplified SEQUAL version. Concerning this second
point, it is not an objective of this paper to provide a
complete set of metrics but just to illustrate the way the
engineer may proceed to produce them.

3.1. A SEQUAL simplified framework

Due to the great complexity of the SEQUAL

framework as presented in the previous section, we
have considered a reduced version of the model (see
Fig. 6) in order to tackle our first practical approach.
First, we have considered the most consolidated
SEQUAL concepts, namely: Domain, Model and
Language, and Syntactic Quality, Semantic Quality
and Pragmatic Quality as quality aspects. These
elements are also the used ones in the SEQUAL RE-
oriented proposal [25] (see Fig. 5). Although Audience

Interpretation has not been longer kept in the last
SEQUAL proposals, we have kept it because it
represents a relevant concept in the semiotics theory. In
addition we have also considered the concept of Model

Evolution from [26]. From the most recent proposal
[27] we have included the ideas of learning, modeling
and domain changes in a summarized way, that is
adding the edges Domain Evolution and Interpretation

Evolution. Finally, although language normally appears
as static in the previous models, we have considered
Language Evolution which is a classic assumption in
the semiotics theory. It appears relevant to us because it
implies to evolve also in the modeling necessities by
extending the ontology that the language represents.

Since we are interested in measuring the quality of
goal-oriented models, we focus next on the four
dimensions of quality identified above. We have
slightly reformulated some of the recent definitions of
qualities from [27] with two objectives: (1) to be clear
enough to facilitate the engineering process of
measuring, and (2) to go back towards fundamental
semiotic concepts which have been considered the
relevant part of our simplified version of SEQUAL.

semantic
quality

Domain Model Language

Audience

Interpretation

pragmatic
quality

syntactic
quality

perceived
semantic

quality

perceived
syntactic
quality

Domain
Evolution

Model
Evolution

Interpretation
Evolution

Language
Evolution

social
quality

Fig. 6. A simplified SEQUAL framework for the i* case

Syntactic quality has the goal of syntactic correctness,

which means that the statements in the model must be

compliant to: 1) the language syntax, e.g. task

decomposition always with tasks as target, and possibly

2) some notational conventions of the modeling

language, e.g., as done in [41] where some linguistic

patterns are proposed.

This definition of syntactic quality has kept the

SEQUAL definition that appears in this way along the

evolution of SEQUAL framework. It may involve some

degree of interaction as explained later, which means

that it may be partially justified in terms of perceived

syntactic quality.

Semantic quality has the goal of semantic validity. If

we assume that semantics is the meaning of signs then

it implies to relate signs (the model) to objects.

Semantic validity means that the model elements have

the meaning (objects) expected by the audience. From

this perspective it is not possible to check semantic

validity without interaction with the audience,

therefore, in our practical proposal we approach

semantic quality entirely as perceived semantic quality

(see below).

According to this last fact, we have reformulated

this definition taking out the property of completeness

from the semantic part. Completeness of the model has

a strong relationship with pragmatics, i.e. the objective

of the attempted model. This fact has consequences on

the concept of quality, because it supports separation of

concerns and hence to obtain a clearer quality

assessment procedure (as the one proposed in the next

section).

Perceived semantic quality fully represents semantic

quality in our framework, as stated above. It covers the

correspondence between actors’ interpretation of the

model and their current knowledge about the categories

of represented objects. We propose to ask for these

categories in base to (at least ideally) known

interpretants. Here the set of available interpretants

becomes relevant, for example the same English word

“goal” is the first interpretant, but also the definition of

goal taken from the i* framework or what is implied by

something being a goal, for example that it must have

different alternatives to be achieved or which are the

questions that are addressed [39].

In our reformulation, we consider the semantic

concept only as a match with the different interpretants,

i.e., what a goal is supposed to be, which should be its

properties, etc. Other questions about relevance of a

model element or use of a model element are

considered in pragmatics.

Pragmatic quality covers the correspondence between

the actors’ interpretation of the model and their current

knowledge about the domain. It has the goal of

semantic completeness and minimalism in the context

of the model interpretation (use, domain implications,

activations, etc.). Therefore the focus here is what the

participants are interpreting from the model. For

example if “Doubts solved” (Fig. 2) is a real goal of the

current system (e.g., in the case of an As-Is model), if it

is a needed goal, what implies that it has been

recognized, what implies that it has been represented in

the model, etc. Note that this question is meaningful

only if it has been previously checked that “Doubts

solved” is a goal.

Social quality covers the global agreement among

participants about the previous measured qualities. It

includes the process of negotiation of meanings and

global interpretation (meanings and interpretation of

the domain, model and language). When there is

disagreement we talk about low quality whilst high

social agreement means high quality. However, it

seems clear that a total agreement could be never

produced. Therefore, as a general fact, we can pretend

only to evolve in agreement up to a point that does not

admit more advances.

The social quality will be then the capacity to evolve

on the model, the domain and the language to points of

greater social agreement. As a result, these metrics will

usually incorporate the time dimension in their

definition. Therefore modifications to the model are

not the only way of improving agreement, also it is

relevant to reinterpret the domain, to modify the

domain, to reinterpret the language and even to modify

the modeling language, which is represented by the

evolution arrow in the simplified model (Fig. 6).

Interaction. Although we have not explicitly

considered interaction in the model, it is present in all

quality aspects. In the case of syntax quality,

interaction could be needed, even having a well-

defined syntax and a parser for it, because there are

notational suggestions on engineering models that may

not have an easy automatic verification, e.g. that terms

that appear in different elements are synonymous. In

the case of semantic quality, as explained above in

more detail, interaction is needed in order to match

some model’s elements with some of their

interpretants. In the case of pragmatic quality,

interaction is obviously needed, because it is not

possible to have a measure of the perceptions without

asking for these perceptions. Finally, in the case of

social quality, if we consider the interaction of

semantic and pragmatic levels then it could not be

necessary having additional interaction in order to

obtain social metrics. However, if we pretend to

improve the agreement level about models, new

interactions are the only way.

In spite of the mentioned adjustments, the

conceptual baseline still comes from SEQUAL and this

is the reason why we have labeled it as simplification

instead of variation.

3.2. Application to the i* Framework

Considering on the one hand the i* language and

their different models, and on the other hand this

SEQUAL simplified framework, we propose to connect

both proposals in order to have a practical application

of a well-founded quality requirements proposal such

as SEQUAL, applied to a widespread requirements

modeling framework such as the i* framework, with the

purpose of improving the quality of goal-oriented

requirements models.

At this point we use again the Kavakli’s abstraction

[1] to disaggregate the goal-oriented requirements

process. It allows to obtain the models As-Is, Change

and To-Be. The As-Is model represents a current state

of the organizational domain involving human actors,

their dependencies and their intentions. The Change

model represents a modified organizational system

considering the new system as an actor placed in the

human system and connected to human actors through

intentional dependencies. The To-Be system

exclusively represents the new computational system in

order to specify their goals and the strategy to pursue

its goals. All these models are expressed by means of

SD and SR diagrams. They could include specific

tasks, resources or even quality features or quality

constraints (normally in the form of softgoals).

Therefore, we have different models and also

different qualities to measure, as illustrated in Fig. 7. It

may be noticed that the qualities are proposed to be

checked through some measuring points in a given

ordering. The ordering is not accidental. Just as

semantics cannot be verified without previous syntax

verification, pragmatics cannot be verified without

previous semantic verification (e.g., how can we verify

the relevance of the goal G, if G is not a goal?). Thus,

the verification ordering is established as: starting from

syntax, then semantics and then pragmatics. As a

consequence, specific semantic interaction on a correct

syntax model can evolve the model into an improved

semantic version and, moreover, a specific pragmatic

interaction on a correct semantic portion of the model

can evolve the model into an improved pragmatic

version. Finally social quality can be tackled when

individuals have their own interpretation of the domain,

the model, and the modeling language. Concerning

models, Kavakli’s order is the obvious choice: first As-

Is, then Change, finally To-Be.

Fig. 7. The space of qualities to measure

In order to show how our simplified SEQUAL

framework can be applied to i* models, we have built

Table 1, where the main concepts of the simplified

SEQUAL framework are matched with the appropriate

language constructors of the i* modeling language.

As a natural consequence of the role that perception

plays in our framework, most identified qualities need a

certain level of interaction in order to be determined.

An exception is syntactic quality that can become

automatic when there is a complete formal

specification. We do not consider syntactic quality in

this paper due to its simplicity, since most of this

quality concern can be solved used some iStarML

parser for the syntax itself, and a simple natural

language checker for language conventions.

Table 1. Correspondence between i* and the simplified
SEQUAL framework

Simplified
SEQUAL concept

i* framework

The model (M)
represents the
domain

The i* language is oriented to
organizational modelling including socio-
technical systems. Therefore it can
represent the domain As-Is, Changed and
including the system To-Be.

The audience (A)
represents
organizational actors
and technical actors.
It is a subset of the
stakeholders

It models the concept of actor. In fact, a
complete i* model should have all
stakeholders represented in the domain
model. The i* language allows
representing actors and there is a special
language constructor to delimitate the
organizational scope namely boundary.

The language (L)
can be divided into
formal, semi-formal
and informal

The i* language and the iStarML format
constitute semi-formal languages. Informal
language would be natural language in the
process of requirements engineering.

Audience
interpretation (I).
There are as many
interpretations as
actors.

Not considered. Although i* can represent
intentionality, it does not allow specifying
that the specified intentionality is the
perception of a specific modeller or
informant.

Therefore we will focus on interaction-based
measurements to calculate some metrics that may serve
as indicators to semantic quality, pragmatic quality and
social quality. Table 2 summarizes some examples of
metrics applied to the example of Fig. 2.

Semantic metrics point to approach semantic
quality, which means to measure the relationship
between the interpretants and the model symbols. It can
be only checked by asking for the precise match among
them. We envisage four possibilities (semantic quality
interaction type of patterns) here: (i) to try to match a
symbol (instance of an i* model element) with the set
of their interpretants, which can be a “good” indicator;
(ii) to try to match a symbol with some set of other
interpretants, which can be a “bad” indicator (for
example to try to match a goal with the task definition);
(iii) to try to match the symbol’s properties with some
of their interpretant’s properties, which can be also a
“good” indicator (for example checking that a specific
softgoal represents a fuzzy concept) and, finally (iv) to
try to match symbol’s properties with other different
properties, which can be a “bad indicator” (for example

if someone said that a softgoal can have a mean that
implies that the softgoal is completely achieved).

From a formal point of view, we can say that:
having a set P of semantic quality interaction patterns
(like the above ones), a set of interpretants I, and a set
of symbols S which correspond to a language
constructor (or group of language constructors) of the
modeling language L, then m is a semantic metric iff
the objective of m is to measure the gap between each s

∈ S and the set of its interpretants of s, namely i(s) ∈ I,

i.e. m is a function m: {s} × i(s) → V, where V is a set
of quality values. Thus m’ is a measure that approaches

m iff m’ is a function m’: {p} × {s} × {i} →V, where p

∈ P and i ∈ i(s).

Table 2. Some examples of metrics for the tutoring i* model

Name Definition

Semantics metrics

Proportion of tasks
that are considered
tasks

Amount of positive matches between
model’s tasks with corresponding
interpretants over the total amount of
negative and positive matches.

Proportion of
resources that are not
considered resources

Amount of positive matches between
model’s resources with non-
corresponding interpretants over the total
amount of negative and positive
matches.

Pragmatics metrics

Proportion of non-
relevant tasks in the
model

Amount of positive answers to negative
considerations of tasks in the model over
the total amount of considered tasks.

Proportion of
unconsidered relevant
actors

Amount of unidentified relevant actors
over the total of actors in the model

Social metrics

Agreement level about
goals in the model are
really goals

Average of level of agreements
(percentage) on the individual
considerations of each goal in the model

Velocity of agreement
on domain models

Average over the total amount of time
that the group has arrived to an As-Is
model over the 80% of agreement in past
modeling activities.

Pragmatics metrics point to measure pragmatic
quality, which means that there is a match between
object elements and symbols. Objects are assumed to
be part of the reality of each participant. A high
pragmatic quality means that the model is complete and
has only the necessary modeled objects, i.e. we should
consider to model only “relevant” objects. As in the
previous case, interaction is absolutely necessary to
obtain what is relevant to each participant. We
envisage three basic ways (pragmatic quality
interaction type of patterns): (i) to try to match a
relevant object with an existing symbol in the model,
which can be a “good” indicator; (e.g., to try to match a
domain task that needs computational support with a
task in the model); (ii) to try to match a irrelevant

object with an existing symbol in the model, which can
be a “bad” indicator (e.g., to identify a resource in the
model which has not implications over the social
organization); (iii) to try to identify a relevant object in
the domain which is not present in the model, which
can also be a “bad” indicator, (e.g., to identity an actor
which should change its practices with the new
software system).

From the formal point of view, we can say that:
having a set P of pragmatic quality interaction patterns
(like the above ones), a set O of perceived objects from
the domain, and a set of symbols S which corresponds
to a language constructor (or group of language
constructors) of the modeling language L, then m is a
semantic metric iff the objective of m is to measure the

gap between s ∈ S and the set of objects from domain

that could be represented by s, namely o(s) ∈ O, i.e. m

is a function m: {s} × o(s) → V, where V is a set of
quality values. Thus m’ is a measure that approach m

iff m’ is a function m’: {p} × {s} × {o} →V, where p ∈

P and o ∈ o(s).
Social metrics point to measure the social quality,

which means that there is a match between the
interpretation (reading) of domain, model and
language. A high social quality means that there is a
general agreement about individual interpretations.
Therefore we can approach at least high social quality
through the level of agreement and the dynamics of the
quality evolution on the base of the answers already
formulated in the semantic and syntactic pattern-based
interactions.

From a formal point of view we can say that: having
a set of functions M of metrics, a set P of participants,
a set V of quality values, an ordered set T of time
values, and the definition of A+ as the power set of A
without the empty set, then we define a social metric m

as a function m: T+ × M+ × P+
→ V. Therefore social

metrics will be focused on the level of agreement (of
some community of participants) with respect to
symbols or group of symbols in the model, e.g. level of
agreement in goal representation (semantic
perspective), level of agreement in relevance of goals
in the model (pragmatic perspective), etc. Besides, the
social dynamics of evolution is also part of social
metrics, e.g. Average of needed amount of model
versions to reach agreement levels over 80%.

Therefore the proposed general social quality
interaction patterns depend on the access and evolution
of the audience to the reasons of others. High
agreement and fast convergence will mean high
confidence and good social learning (high social
quality).

Finally, we propose to trigger interaction by
questions to the users of the models; the already
established correspondence between metrics and
quality patterns enable the feasibility to obtain a set of
values which can be used to approach a metric value
(depending on the selected scale). The model evolution
will occur when we correct the model in order to
minimize “bad” measurements (not modeled elements)
or maximize “good” measurements (modeled
elements).

3.3. Implementing quality measurements

In this section we show how to implement the

proposed simplified SEQUAL framework for i* over

the previous tutoring system example (Fig. 2). We

focus on the Change stage, where some needs have

already been established (by modelers) but there is not

yet a software system taking any specific responsibility.

We assume that the model of Fig. 2 is a first version of

the change model, therefore the issue of quality for

improving (evolving) the model becomes crucial.

To implement the framework applied to semantic

metrics we propose the following steps that can be

taken iteratively: (1) to select a type of symbol s of the

modeling language, i.e. an i* element (as “goal”) or

group of elements (such as “intentional element”); (2)

to define a metric m on the basis of s and its generic

interpretants, using techniques as GQM [42]; (3) to

identify the interpretants i(s) of s, i.e. definitions or

properties; (4) to define a set of measures on the base

of s and i(s); (5) to select one or more semantic quality

interaction patterns; (6) to define the values of

measurement to be obtained; (7) to produce a high-

level parameterized query that, by applying this pattern,

asks for a particular quality value; (8) to generate the

implementation of that high-level query.

In the last step, the iStarML format comes into

existence: metrics may be applied on models

represented in i*, typically generating a XQuery

sentence.

To implement the framework applied to pragmatic

metrics we propose the same steps than before but,

instead of considering the pair symbol-interpretant, we

consider the pair symbol-object, where object is a

relevant object in the domain, and hence it must be

present in the model.

Table 3. Example of metric implementations

Step Select Example of Semantic Metric Example of Pragmatic Metric

(1) Symbol i* goal i* goal

(2) Metric Proportion of goals that effectively are goals Proportion of main goals placed in wrong actors

(3)
Pair

symbol-x

Interpretant: (From [5].) A goal must be reached by
some of its means

Object: A “wrong” (to the community) goal of the actor

(4) Measure
Proportion of goals in the model that have identified
means which are not enough to ensure satisfaction of
the goal

Proportion of main goals by each specific actor which have
identified other actors where they (goals) could be placed

(5) Pattern type
Type (i)- by trying to match a goal with some of its
interpretants

Type (ii)- by trying to match a goal which belongs to other
actor

(6) Scale yes/no yes/no

(7) Query
Is it possible to reach %goal when %means attached
to the goal

Is %goal one of the main goals of the %wrong actor

(8) Xquery

for g$ in document("Tutoring.istarml")
 //ielement[@type="goal"]
LET m$:=g$/ielementLink[@type="means-end"]
 /ielement[@name][@type]
return <question type="yes-no">
 It is possible to reach {g$/@name} when
 {m$/@name} ?</question>

 for $a in xmlmem($bibo)//actor
 for $b in xmlmem($bibo)//actor
 for $g in $a/boundary/ielement[@type="goal"]
 where $b/@name<>$a/@name
 return <question type="yes-no">
 Is {$g/@name}a relevant goal for the {$a/@name}?

Interaction example Is it possible to reach Doubts solved when Solve
doubts by email?

Is Knowledge of courses acquired one of the main goals of the
Tutor?

To implement the framework applied to social

metrics we propose the following steps: (1) to select a

set of time instances, for example next Monday; (2) to

identify the group to measure, for example the tutors

p1, p2 and p3; (3) to identify the metrics to apply in

defined time instances, e.g. “Proportion of goals that

effectively are goals”; (4) to identify the measurements

collected, for example m’1: Proportion of goals in

the model that have identified a false means and m’2:

Proportion of goals that have been identified as

reachable objective; (5) to collect the measurements

grouped by symbol and by time. A valid sequence

could be:

<”Doubts solved”, p1, Monday(<m’1=yes, m’2=yes>)>

<”Doubts solved”, p2, Monday(<m’1=no, m’2=yes>)>

<”Doubts solved”, p3, Monday(<m’1=yes, m’2=yes>)>

<”Other functions done”, p1, Monday(<m’1=yes,

m’2=yes>)>

(6) to define and apply the social metric function, for

example average of agreement in all symbols. So, if we

have the agreements m’1(”Doubts solved”) = 66%,

m’2(”Doubts solved”) = 100%, m’1(”Other functions

done”) = 33%, and m’2(”Other functions done”) =

80%, then the final result is 70%.

Finally, to conclude the technical proposal, in Table
3 we have summarized these steps applied to produce
two metrics: a semantic metric namely “proportion of
goals that effectively are goals” and the pragmatic
metric namely “proportion of main goals placed in
worng actors“. In both cases we have used the tutoring
system example and the XQuery sentence assumes that
the model representation is in iStarML.

4. Conclusions and future work

In this paper we have proposed a theoretical and
practical framework for quality assessment of goal-
oriented models at the RE stage that may eventually
help on improving the quality of deliverables of each of
the internal phases identified by Kavakli [1]. To do so,
we have complemented the iMDF framework for
defining metrics on i* with two already existing
proposals. Firstly, we have considered the quality
assessment and measurement proposal named
SEQUAL. We have configured a simplified version of
SEQUAL based in its semiotic principles and analysed
its meaning in i*. As part of this analysis, we have
illustrated how to elicit semantic, pragmatic and social
metrics for providing a practical framework of question
patterns to obtain goal-oriented process measurement
values. Secondly, in order of being able to implement
these patterns easily, we have used the iStarML as
language for representing i* models making then
possible the expression of the patterns as XML-based
queries, which is a very simple way to implement the
framework, far more than our previous versions using
OCL. Besides, the use of iStarML allows applying the
quality framework also over existing i* variants
because these can be represented by iStarML too. Even
as future work, one could think of abstracting iStarML
into something like GOREontologyML to host KAOS
and other formalisms.

In fact, we claim that our work is not just a
contribution for the i* community or even the GORE
community, but to the RE community in general. We

sustain this claim by considering the dissertation given
by Abran et al. about the existing gap between
theoretical frameworks for requirements measuring and
requirements metrics [43]. This work shows a
comparative study between measuring engineering
frameworks and the SWEBOK (Software Engineering
Body of Knowledge) initiative. As a way of
summarizing the findings, they have built a table
crossing knowledge areas (from SWEBOK) and a
generic four-step generic measurement model. It is
shown that RE topics do not present research activity
on the first three steps of the model that are: design of
measurement methods, application of measurement
methods and analysis of measurement results. The
fourth step, in which some activity has been
recognized, deals with exploitation of measurements.

 In terms of future work we have planned to cope
two new theoretical problems: (1) to quantify the
amount of interaction needed to obtain trustable goal-
oriented process metrics; (2) to propose ways of
enriching interaction in order to allow a more rapid
evolution of models and social quality. Our next step in
this sense is to confirm these theoretical problems
testing this practical framework on some study cases
and also get some feedback of the assumed benefits.

5. Acknowledgments

This work has been partially supported by the
Spanish project ref. TIN2007-64753.

6. References

[1] E.Kavakli, "Goal Oriented Requirements Engineering: A
Unifying Framework", Informatica, vol. 6, pp. 237-251, 2002
[2] A. v. Lamsweerde and E. Letier, "From Object
Orientation to Goal Orientation: A Paradigm Shift for
Requirements Engineering", LNCS (RISSEF'02), vol. 2941,
pp. 325-340, 2004.
[3] E. Yu and J. Mylopoulos, "Why goal-oriented
requirements engineering?", Proc. of the 4th Int.Workshop
on Requirements Engineering, 1998, pp. 15-22.
[4] N. Maiden, "What has requirements research ever done
for us?", IEEE Software, vol. 22, pp. 104-105, 2005.
[5] E. Yu, "Modelling Strategic Relationships for Process
Reengineering", PhD Thesis, Computer Science D.,
University of Toronto, 1995.
[6] P. Donzelli and P. Bresciani, "Domain Ontology Analysis
in Agent-Oriented Requirements Engineering", LNCS

(KES'03), vol. 2773, pp. 1372 - 1379, 2003.
[7] M. Kolp, P. Giorgini, and J. Mylopoulos, "Organizational
Patterns for Early Requirements Analysis", LNCS

(CAiSE'03), vol. 2681, pp. 617-632, 2003.

[8] P. Donzelli, "A goal-driven and agent-based requirements
engineering framework", Requirements Engineering, vol. 9,
pp. 16-39, 2004.
[9] P. Donzelli and R. Setola, "Handling the knowledge
acquired during the requirements engineering process -a case
study-", Proc. of the 14th Software Engineering and
Knowledge Engineering Conference (SEKE'02), Ischia, Italy,
2002, pp. 673-679.
[10] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopoulos, "Tropos: An agent-oriented software
development methodology", Autonomous Agents And Multi-

Agent Systems, vol. 8, pp. 203-236, 2004.
[11] J. Castro, M. Kolp, and J. Mylopoulos, "Towards requi-
rements-driven information systems engineering: the Tropos

project", Information Systems, vol. 27, pp. 365-389, 2002.
[12] F. Massacci, J. Mylopoulos, and N. Zannone, "An
Ontology for Secure Socio-Technical Systems", in Handbook

of Ontologies for Business Interaction, P. Ritggen, Ed.:
IDEA Group, 2007.
[13] H. Mouratidis, M. Weiss, and P. Giorgini, "Security
Patterns Meet Agent Oriented Software Engineering: A
Complementary Solution for Developing Secure Information
Systems", LNCS (ER'05), vol. 3716, pp. 225 - 240, 2005.
[14] E. Yu, "Why Agent-Oriented Requirements Enginee-
ring", Proc. of the 3rd Int. Workshop on Requirements
Engineering: Foundations for Software Quality, Barcelona,
Spain, 1997.
[15] B. W. Boehm, Software engineering economics.
Englewood Cliffs, N.J.: Prentice-Hall, 1981.
[16] R. J. Costello and D.-B. Liu, "Metrics for Requirements
Engineering", Systems Software, vol. 29, pp. 39-63, 1995.
[17] O. C. Z. Gotel and C. W. Finkelstein, "An analysis of
the requirements traceability problem", Proc. of the 1st Int.
Conf. on Requirements Engineering, Colorado Springs, CO,
USA, 1994, pp. 94-101.
[18] N. Nurmuliani, D. Zowghi, and S. Powell, "Analysis of
requirements volatility during software development life
cycle", Proc. of the Australian Software Engineering
Conference, 2004, pp. 28-37.
[19] R. Matulevicius, "How Requirements Specification
Quality Depends on Tools: A Case Study", LNCS

(CAiSE'04), vol. 3084, pp. 353-367, 2004.
[20] H. Estrada, A. Martínez, O. Pastor, and J. Mylopoulos,
"An Experimental Evaluation of the i* Framework in a
Model-based Software Generation Environment", LNCS

(CAiSE'06), vol. 4001, pp. 513-527, 2006.
[21] X. Franch, "On the Quantitative Analysis of Agent-
Oriented Models", LNCS (CAiSE'06), vol. 4001, pp. 495-
509, 2006.
[22] X. Franch, "A Method for the Definition of Metrics over
i* Models", LNCS (CAiSE'09), in print, 2009.
[23] X. Franch and G. Grau, "Towards a Catalogue of
Patterns for Defining Metrics over i* Models", LNCS

(CAiSE'08), vol. 5074, pp. 197-212, 2008.
[24] O. I. Lindland, G. Sindre, and A. Solverg,
"Understanding quality in conceptual modelling", IEEE

Software, vol. 11, pp. 42-49, 1994.
[25] J. Krogstie, O. I. Lindland, and G. Sindre, "Towards a
Deeper Understanding of Quality in Requirements
Engineering", LNCS (CaiSE'95), vol. 932, pp. 82-95, 1995.

[26] H. D. Jorgensen, "Interactive Process Models", PhD
Thesis, D. of Computer and Information Science, Norwegian
University of Science and Technology 2004.
[27] J. Krogstie, G. Sindre, and H. Jørgensen, "Process
models representing knowledge for action: a revised quality
framework", European J. of Information Systems, vol. 15,
pp. 91-102, 2006.
[28] C. Cares, X. Franch, A. Perini, and A. Susi, "iStarML:
An XML-based Model Interchange Format for i*", Proc. of
the 3rd Int. i* Workshop, Recife, Brazil, 2008, pp.
[29] A.v.Lamsweerde, "Requirements Engineering in the year
00: A Research Perspective", Proc. of the Int. Conf. on
Software Engineering (ICSE'00) Limerick, Ireland, 2000, pp.
5-19.
[30] J. Mylopoulos, L. Chung, and E. Yu, "From Object-
Oriented to Goal-Oriented Requirements Analysis",
Communications of the ACM, vol. 42, pp. 31-37, 1999.
[31] "GRL - Goal Oriented Requirement Language",
http://www.cs.toronto.edu/km/GRL/, last visited Apr. 2009.
[32] "Z.150: User Requirements Notation (URN) - Language
requirements and framework", http://www.itu.int/rec/
recommendation.asp?type =folders&lang =e&parent= T-
REC-Z.150, last visited Apr. 2009.
[33] C. Ayala, C. Cares, J. P. Carvallo, G. Grau, M. Haya, G.
Salazar, X. Franch, E. Mayol, and C. Quer, "A Comparative
Analysis of i*-Based Agent-Oriented Modeling Languages",
Proc. of the Conf. on Software Engineering and Knowledge
Engineering (SEKE2005), 2005, pp. 43-50.
[34] A. Susi, A. Perini, J. Mylopoulos, and P. Giorgini, "The
Tropos Metamodel and its Use", Informatica, vol. 29, pp.
401-408, 2005.
[35] C. W. Morris, Signs, language and behavior. New
York: Prentice-Hall, 1946.
[36] U. Eco, La estructura ausente: introducción a la

semiótica, 3rd ed. Barcelona: Editorial Lumen, 1986.
[37] P. B. Andersen, "Dynamic semiotics", Semiotica, vol.
139, pp. 161-210, 2002.
[38] U. Eco, Tratado de Semiótica General. Barcelona:
Lumen, 1995.
[39] K. Pohl, "The three dimensions of requirements
engineering: A framework and its applications", Information

Systems, vol. 19, pp. 243-258, 1994.
[40] J. Krogstie and H. D. Jorgensen, "Quality of interactive
models," Proc. of the 1st Int. Workshop on Conceptual
Modelling Quality (IWCMQ'02), Tampere, Finland, 2002,
pp. 115-126.
[41] X. Franch, G. Grau, E. Mayol, C. Quer, C. Ayala, C.
Cares, F. Navarrete, M. Haya, and P. Botella, "Systematic
Construction of i* Strategic Dependency Models for Socio-
technical Systems," Int. J. of Software Engineering and

Knowledge Engineering, vol. 17, pp. 79-106, 2007.
[42] V. R. Basili, G. Caldiera, and H. D. Rombach, "The
Goal Question Metric Approach", in Encyclopedia of

Software Engineering, G. Caldiera and D. H. Rombach, Eds.
New York City: John Wiley and Sons, 1994, pp. 528-532.
[43] A. Abran, A. Sellami, and W. Suryn, "Metrology,
Measurement and Metrics in Software Engineering", Proc. of
the 9th Software Metrics Symp., Sydney, Australia, 2003, pp.
2-11.

