
An Initial Analysis on How Software
Transparency and Trust Influence each other

Luiz Marcio Cysneiros1, Vera Maria Benjamim Werneck2

1York University – School of Information Technology, Toronto
cysneiro@yorku.ca

 2Universidade do Estado do Rio de Janeiro – UERJ-IME
vera@ime.uerj.br

Abstract

If we make a simple search on the internet for the
definition of transparency there will be several
different ones from optics to protocols. But most of the
definitions will overlap among the notion that
transparency is about how something is open enough
to allow things to be deeply observed from different
perspectives. Orthogonally, Transparency has been
demanded in several different areas in our society.
Governments are demanded to be more transparent,
banks are being blamed for not being transparent and
so on. In a world where software is already pervasive
and where the internet is connecting individuals all
over the world, software transparency seems to be not
only a remote possibility but something we will have to
deliver sooner than many have thought. This paper
aims at showing that trust is one of the important
features to achieve transparency although this trust
can be sometimes misleading.

1. Introduction

Defining software transparency is itself a challenge.
If we use a search engine looking for existing
definitions we may find only a few results.
Transparency software [14] tackles it from the
business-level solution perspectives where it calls for
business people to be able to monitor, manage, track
and audit information subject to requirements. This
would require among other things a very detailed
monitoring on database transactions. In Eclipse
webinars page [05] we can find a claim supporting
Palamida for promoting software transparency that
allows to answer questions as “what is in your code?”.

In the Economist [06] magazine it is stated that open
software contributes towards transparency due to its
openness and collaboration.

However, transparency can also be seen from non-

technical perspectives as for example what a society
perceives today as the need for transparency. For
example on how their governments make decisions,
how they spent federal money, how they judge and
allocate priorities. Recent economic difficulties have
raised critical issues such as how banks are not
transparent in their processes and balances. It has also
showed to which extent that this may hurt people’s
trust in them as well as how governments may allocate
money. Nowadays software is pervasive and clearly is
key for the daily operation of governments, companies,
banks, etc. Putting that together with the cry for
transparency in these organizations will likely demand
software to be built to deliver transparency not only
about the data it is manipulating but also on the
software itself and what is the reasoning behind the
data created and manipulated.

Leite states in [10] that for software to be

transparent it has to allow the information it deals with
to be transparent and it has to inform about itself, how
it works, what it does and why. Key for accomplishing
this scenario is that requirements be as readable for
general stakeholders as well as for developer’s
stakeholders. We subscribe to this idea.

Another lesson we can obtain from the recent

financial crisis is that trust is important for people to
believe that the transparency they demand is indeed
being delivered. Take for example the AIG affair. At
first the majority of tax payers, although reluctantly,
were trusting the money that government was

allocating to save AIG was being well used just to later
learn that dozens of AIG top executives were getting
165 Million dollars in bonuses despite having led the
company to bankruptcy. Another example can be
drawn from a recent episode in the United States and
in Canada that illustrate how trust without
transparency can be misleading. Ticketmaster is facing
a class action suite for redirecting buyers to a second
site where tickets were up to 60% more expensive than
they should. But since Ticketmaster was redirecting
without making it explicit people would trust in the
prices offered since they implicitly trusted Ticktmaster.
If the software was transparent such situation would
not have happened.

We think that trust is one important component to

achieve transparency. By the same token transparency
in many cases may be essential to assure trust. Sink
exemplifies some of the reasons for that in [13]. He
states that similar to how restaurant chains benefit
from transparency by showing the customer’s food
being prepared in open view behind a window, trust
and transparency in software is what removes the veil.
He also points out that when people buy software there
is an implied trust involved in this transaction.

From a corporate perspective, transparency is then

important; if you can improve the relationship with
your customers, they will provide you with feedback
that will help to make a better product. However, the
level of transparency has to be managed to ensure trust
and also to remain competitive especially for the old-
fashioned way of doing business that believes that their
information and process have to be closed.

As Leite [10] and Yu [18], we consider trust and

transparency to be Non-Functional Requirements, and
as such they are likely to impact each other. Although
at first sight we tend to assume that trust may only
bring positive contributions to transparency and vice-
versa we will show throughout the paper that this
assumption may not hold sometimes.

This paper will analyse some of the

interdependencies between trust and transparency
showing how one can improve the other. We also
show that sometimes implicit trust can be deceiving
and misleading if transparency is not met. We do not
intend this paper to explore all relationships between
trust and transparency. In fact, we hope this paper will
stimulate other researchers to deeply investigate it.

This paper is structures as follows: Sections 2 to 5
present different perspectives for looking at

transparency and some of the requirements arisen from
each of these perspectives if we are to build software
with transparency as goal. Section 6 briefly discuss
some of the things we learned during this work while
section 7 concludes the paper

2. Open Software

We believe that the use of Open Software is linked
to achieving transparency in software. One of the main
reasons is because knowing that the source is available
to be read by anyone would lead people to trust the
software since it would be unlikely to find malicious
code or malicious use of information.

According to Blankenhorn [04] the modularity of

open source is its beauty, since traditionally the user
community develops and recommends as a whole the
components to install, or remove those which are
unnecessary. This works according to Blankenhorn,
because it is analogous to many social structures that
have been similarly successful. He states:

“The best economic systems are transparent.

This doesn't mean they're not regulated. But you
can see the regulations, see how they're
enforced, and see the results. Everyone comes
to the market with their hands open. Things are
as fair as possible.

The best political systems are transparent.
Again this is not the same thing as free. But if
you can change the law, and if the system for
changing things works, with the same rules for
everyone, and the popular will respected, then
you have a good system.

The same point is clear in software as in
business and in politics. Transparency wins.
This is the great lesson of the 20th century. All
the more opaque systems -- fascism,
communism, dictatorships military and
religious -- failed the great test against more
open, transparent systems of capitalism and
democracy. The triumph of open source, then,
is simply the lessons of history applied to
software.”

According to Baird [03] corporate enterprise is not

ignoring the benefits of transparency. Modern systems
evolve to support the user and include the best of both
worlds: the interoperation of market-ready proprietary
software in combination with custom open-source
software (OSS) projects from a well-established
community of dedicated developers.

Baird also states that part of the open-source

community has been adopting development and
business strategies from the proprietary world.
Development is no longer haphazard, but in many
cases driven by a roadmap with milestones and
schedules. Naturally, that has led to a more organized
development and eventually to a greater predictability
for customers. Developers are more likely being paid
to work on open-source projects. Baird points out that
the processes undertaken to develop open-source and
proprietary software are looking more and more alike.

Likewise, Baird writes that proprietary vendors like

Microsoft, IBM, Sun and Oracle are increasingly
employing open source measures to diversify their
product lines. IBM has purchased OSS startups in
response to lost market share, Oracle has offered free
express versions of database clients, [07] and most
have dabbled employing testers from the open-source
development community early on in the development
process to ensure interoperability of their products
with OSS. [03].

The adoption (even if only in part) of open-source

code and ideas tend to improve the way people look at
those companies and increase how they trust in these
companies. In such scenario perceiving transparency
through trust may become a largely adopted practice in
the software development community.

3. Software Purity

An interesting idea is brought by Meunier [11]. He
defines a second concept, called software purity, which
is a standard that software should live up to. He
considers it separate from transparency, because a
transparent product may disclose functions to users,
but in being pure, among others properties, the
software upholds a standard that establishes user trust
and loyalty that data will not be mined and software
will not be surreptitiously installed in the background.
Garfinkel [08] conceives the idea of the “Pure
Software Act,” which, like the U.S. Pure Food and
Drug Act of 1906, forces disclosure of the ingredients
of software, and what side effects exist from using it,
in an effort towards realizing consumer protection.
Government-mandated icons would be included from
wherever the software was obtained, and would
indicate functions such as whether the program installs
and runs during booting of a computer, if it modifies
your operating system, monitors use of your computer,

if it is stuck to registry files and unable to uninstall,
etc.

4. Cryptography

In providing security, cryptography is a solution

that some companies are adopting in some
transactional applications like e-crash, e-vote.
However, cryptography brings some transparency
problems, because they can improve security
especially in a data network transmission of e-
commerce transactions by bringing lack of
transparency [16].

Mercuri [16] discusses the cryptography approach

used by Visa and Master Credit Card Systems that also
distribute the service along different sites to implement
security. This solution can improve security but it
increases complexity and does not really bring human
trustability to the system. The lack of transparency and
the belief that cryptography does not always secure the
data are some issues that start to appear in discussions
for guaranteeing trust in some digital transactions.

Transparency can be viewed as inversely

proportional to trust. This approach relies on the belief
that security may remain in obscurity that only few
people have the knowledge about. For example the
cryptography approach solves the problem of data
vulnerability during transmission along the network
because only few people know about the cryptography
algorithm.

So the management of risk seems to be the point to

be analysed for improving safe and transparency
systems on web services to deal with those conflicting
goals and solutions. The optimal balance of those
criteria is still difficult to arise.

5. Licenses and Data collection

Although we assume we reasonably understand
what is behind licenses and data collection, it is
interesting to note that sometimes we are led to a false
trust and therefore to a false sense of transparency only
because we assume things.

An interesting discussion about licenses can be

found in [13] Among Sink’s recommendations, we
find : “Don’t Annoy Honest People.”. License

enforcement code, such as product activation codes,
are necessary to ensure that the software was obtained
legally. Sink [13] believes from personal experience
that requiring licensing is often detrimental because
software vendors do two things: “1. We fight a battle
we cannot win. Those who want to cheat will succeed;
2. We hurt the honest users of our product by making
it more difficult to use.” Although product activation
mechanisms and license agreements serve as a good
indication that you trust customers to use your product
legally, they can often perform the opposite; if the
validation code is buggy, you run the risk of denying
honest, paying customers the ability to use the product,
when there is more code that has to be maintained.
This puts a strain on the customer relationship.

Sinc [13] states that trust and transparency should

be demonstrated beyond simple terms-of-use license
agreements. Though license agreements have legal
standing, they state what a user can do, any purposes
of information gathering, what the user is and isn’t
allowed to do with the program (i.e. distribute it
illegally), etc.

This is at least what a user assumes it to state.

Instead, many license agreements may contain
statements embedded in the middle of the text that
would allow data collection that a client may not be
comfortable with. But since we frequently trust most of
these companies we assume the agreements will only
contain what is expected from them. Adding to this
situation the fact that reading the agreements can be
time consuming and boring, we simply say yes without
reading and therefore we do not realize we may be
authorizing things we may not have authorized if we
have read it carefully.

Spyware and adware actually thrive on this

assumption. According to researchers at Berkeley
University [09], it was found that people unwittingly
install malicious software, believing that their
operating system or antivirus protection will protect
them. Then, after installing, they find the software to
be malicious; they express regret at not reading the
license agreements. This often happens because users
will make a tradeoff between their level of desired
privacy and security to achieve small monetary gains
(i.e. free programs). Garfinkel’s article on transparency
and purity [08] calls this the “art of deception” of user
agreements. Users will give consent to data collection
and manipulation by the text concealed in spyware and
adware installation notes:

“The text more-or-less spells out all of the
covert tricks that these hostile programs might
play on your system. Of course, hardly anybody
reads these agreements. Nevertheless, the
agreements effectively shield purveyors of
spyware and adware from liability. After all,
you can't claim that the spyware was monitoring
your actions without your permission if you
gave the program permission by clicking on that
"I agree" button” [08].

Garfinkel [08] indicates that companies like Google

are less deceptive where being less deceptive should
mean slightly more transparent. Google’s PageRank
feature integrated into Microsoft’s Internet Explorer
browser collected user browsing history, but “Google
goes out of its way to disclose this feature-when you
install the program, Google makes you decide whether
you want to have your data sent back or not. “Please
read this carefully,” says the Toolbar's license
agreement, “it's not the usual yada yada.”. Berkeley
researchers designed experiments to test certain pre-
and post- installation warnings that provide ample
warning to the user about the information that would
be used, in plain English, and found positive results.
Having operating systems and legitimate software
vendors increasingly use such measures for installation
can be used to an advantage, being more open with
their users should allow them to allay fears about what
information is collected and gaining reputation as a
reputable, transparent company.

Terms and conditions in installation notes often

only specify in legal terms what rights the consumer is
signing over to the author instead of describing in plain
English what personal rights are being subjected to
potentially controversial actions. As an example of a
more common software product that has raised some
privacy and trust issues, we use Apple’s iTunes.
Following the release of iTunes 8.0, the Genius feature
was added. It builds a list of recommendations in a
user’s iTunes music library for songs that go together,
and can make recommendations for new music [01].
This has revealed some mixed reviews about the
product, specifically as violations of privacy due to
collection of personal data combined with knowledge
about musical tastes, and many are equating the tool to
spam [02]. Genius suggestions can be seen as an
example of gold-standard data mining, opines Joe
Wilcox on his Apple Watch blog: “The real genius
isn't the new feature, but how it generates lots of
marketable, trendable data for Apple.” [15]. Moreover,
there is the stipulation that in order to use Genius, user
account information and possibly credit card

information is tied in to the data that is mined. On his
cnetnews.com Digital Noise music blog, Matt Rosoff
pushes aside this concern that a colleague has about
this dangerous provision of information:

“I know why Apple requires an iTunes

account for Genius: if Genius recommends a
song from the iTunes Store, Apple doesn't want
to interrupt your potential impulse buy by
making you enter a credit card number at that
time. But the iTunes requirement and sign-up
screens made my colleague feel like Apple was
asking too much for what he was getting in
return. Fair enough, I usually enter fake names
and e-mails for newspaper sites that require free
registration, and I don't give any information at
all to certain Web sites. We all have different
comfort levels.” [12].

This might lead one to think: why should we have

to falsify our information in the first place? How does
one have a certain ‘comfort level’ with lying? Should
Apple be required to clearly state the intentions of
using Genius, as a means to market to the user and sell
a product? One could answer that Apple is a business,
and iTunes is their success of innovatively marketing
music that it sells. They are not the only company
making software freely available to download off their
website. However, here Apple may be seen as
exploring the fact that most users would trust it to
promote a market ploy that was deceptive with its
clients.

6. Discussion

We showed four different perspectives to
transparency and trust in the previous sections. From
there we can see that transparency can be achieved in
many different forms. We can also see that trust and
transparency may not always support each other. This
was in fact an unexpected outcome for this work. At
the beginning our assumption was that trust would
always help transparency and vice-versa.

It is important to make a distinction between Full

Disclosure and Transparency. Even if software indeed
offers full disclosure, it may not be transparent at all.
For example, in 2004 TiVo offered full disclosure
when you used your Digital Video Recording
equipment. It actually alerted consumers that some
data collection may be made while you were using the
equipment and that you could opt out from the data
collection by making a phone call. Users were

surprised later when they knew that TiVo was able to
tell how many people paused and rewound Janet
Jackson’s exposing herself.

The issues mentioned above alone raise an

interesting line of research. How transparency and trust
may work contrary to user’s interest? By the same
token what are the situations where privacy may
contribute to achieve trust and vice-versa?

As Leite states in [10] the need for transparency

brings together the need for linking requirements to
models. Therefore, the requirements community
should pursue a framework that allows both forward
and backward traceability having transparency as the
key motivator for this traceability. We believe that the
i* framework is one of the best candidates to support
such framework. Leite has proposed to use it to tackle
transparency while Yu [18] has already indicated that
i* can model trust without creating any new concept
carrying special semantics to represent trust.

Of course we only scratch the subject in this work.

Clearly transparency may be achieved in many more
different ways, many times using a combination of
approaches and perspectives.

7. Conclusion

Since today more than ever transparency in many
different levels of our society is becoming almost
mandatory and software is ubiquitous, it seems likely
that we will see an increasing need to achieve and
show that our software is transparent. By the same
token trust regarding both the software and the
provider will be increasingly demanded by costumers.

This paper aims at introducing interdependencies

between trust and transparency on software. It shows
some issues where trust can either improve or hurt real
transparency and vice-versa.

We do not intend to be exhaustive. Rather we

intend to show that these two subjects and how they
relate to each other are far from being understood. We
hope that this work may trigger the interest of
researches to pursue a deeper understanding on how
trust and transparencies can be used to benefit the
society and therefore meet its increasing demand for it.
By the same token we expect to see an increasing
number of work on how do we achieve transparency
and how should we do it.

We are planning to express those ideas using the i*

framework as well as to deeply investigate and model
some situations that happens nowadays like the trust
analysis found in Yorkoff, Yu and Lin [17].

8. References

[01] What’s New in iTunes 8. Apple Inc. Retrieved 7 March
2009 available at <http://www.apple.com/itunes/whatsnew/>.

[02] Did you read the Genius Privacy Policy? It's a license to
spam. Message posted to
<http://discussions.apple.com/thread.jspa?threadID=1701192
&tstart=0>.

[03] Baird, Stacy. “The Heterogeneous World of Proprietary
and Open Source Software.” ACM International Conference
Proceeding Series; Vol. 351 Proceedings of the 2nd
International Conference on Theory and Practice of
Electronic Governance Cairo, Egypt 2008, pp:232-238

[04] Blankenhorn, Dana. (19 April 2005). Open Source
Transparency. April 2005
<http://mooreslore.corante.com/archives/2005/04/19/open_so
urce_transparency.php>.

[05]http://www.eclipse.org/community/rcpwebinars2006.php

[06]
http://www.economist.com/business/displayStory.cfm?story_
id=2054746

[07] Rand, Matt. 1 Open Source Invades the Enterprise.
Forbes.com. November 2005
<http://www.forbes.com/2005/11/01/bow051101011.html>.

[08] Garfinkel, Simson The Pure Software Act of 2006.
Technology Published by MIT Review April 2004
<http://www.technologyreview.com/computing/13556/page1
/>.

[09] Good, Nathaniel S. et al. 3 May 2007. Noticing Notice:
A Large-Scale Experiment on the Timing of Software

License Agreements. Proceedings of the SIGCHI conference
on Human factors in computing systems p607-616, 2007

[10] Leite, J.C.S.P and Capelli, C. “Exploring i*
Characteristics that Support Software Transparency” Julio
Cesar Sampaio do Prado Leite, Claudia Cappelli, in Proc. of
the 3rd International i* Workshop pp. 51-54

[11] Meunier, P. “Software Transparency and Purity”
Communications of the ACM, Vol. 51 Issue 2, p104-104,
Feb2008.

[12] Rosoff, Matt. iTunes Genius and Privacy. October 2008
<http://news.cnet.com/8301-13526_3-10062590-
27.html?tag=mncol>.

[13] Sink, Eric. Tenets of Transparency. February 2005
<http://www.ericsink.com/bos/Transparency.html>.

[14] http://www.transparencysoftware.com/

[15] Wilcox, Joe. iTunes Genius: Not So Smart. September
2008
<http://blogs.eweek.com/applewatch/content/itunes/itunes_g
enius_not_so_smart.html>.

[16] Mercuri, Rebecca, “Trusting in transparency”,
Communications of the ACM, Vol. 48 Issue 5, 2005, p15-
19.

[17]Horkoff,J., Yu, E. and Liu ,L; “Analyzing Trust in
Technology Strategies” , Proc. Int. Conf. on Privacy,
Security, and Trust (PST'06), Toronto, Canada, 2006, pp

[18] � E. Yu, L. Liu “Modelling Trust in the i* Strategic
Actors Framework'”
Proceedings of the 3rd Workshop on Deception, Fraud and
Trust in Agent Societies.
Barcelona, Catalonia, Spain (at Agents2000), June 3-4, 2000.

ACKNOWLEDGEMENTS

This work is partially supported by NSERC grant
number: 262148-05

