
Towards a requirements reuse method using Product Line in distributed
environments

Thais Ebling, Jorge Luis Nicolas Audy, Rafael Prikladnicki
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

thais.ebling@pucrs.br, audy@pucrs.br, rafaelp@pucrs.br

Abstract

Distributed Software Development (DSD) is a

recent approach where the teams are geographically
distributed. Some characteristics of these environments
have significant impact in activities that require
constant communication, shared vision and
stakeholder’s cooperation, as we have in Requirements
Engineering (RE).

The goal of this paper is to present a requirements
reuse method that integrates software reuse in the
context of Product Lines (PL), to improve the RE in a
DSD environment.

1. Introduction

Requirements Engineering in Distributed Software
Development presents several challenges. The reuse
approach proposes a systematic set of processes,
techniques and tools to reuse software artifacts. The
reuse at the requirements level is among the promising
ways to increase the reuse benefits [22], but there is no
evidence in the literature about the possible benefits of
reusing requirements as a strategy to improve RE in
DSD. The Product Line approach supports the
requirements reuse, through identification and reuse of
features and requirements of the company’s domain
[12].

In this paper we propose a requirements reuse
method using PL in DSD, that explores the integration
of Requirements Reuse, Product Lines and
Requirements Engineering aiming at the improvement
of RE in DSD. We believe that our proposal can be
particular useful for DSD organizations that need a
well defined domain as a basis for the development of
many similar applications.

The contribution of this paper relies on presenting
our proposal of a requirements reuse method using PL
in DSD.

This paper is organized as following: in Section 2
we present the challenges of RE in DSD; in Section 3
we present the main concepts of the software reuse,
requirements reuse and the PL approach; in Section 4
we present our proposal to requirements reuse using
PL in DSD; in Section 5 we present the next steps.

2. RE in DSD environments

DSD is an approach where teams are geographically
distributed [1]. Some characteristics of DSD (physical
and temporal distance, cultural and language
differences [4]) impact mainly in activities that require
constant communication, shared vision and
stakeholder’s cooperation (e.g. Requirements
Engineering).

A previous systematic review [23] has identified
several challenges of RE in DSD, including:

Communication issues: Geographic dispersion
introduces time differences and makes it hard the
communication of teams [4],[24],[7] and the lack of
informal communication negatively impacts
relationship building [8].

Lack of common understanding of
requirements: In DSD, the difficulties of achieving a
common understanding about the requirements are
amplified [7],[9],[25]. The lack of common
understanding can lead to requirements
misinterpretation [26],[8] and reduced collaboration
between stakeholders [4].

Lack of collaboration: The challenges in
collaboration between distributed teams happen due to
differences in culture, language, organization processes
[4],[8],[5].

Lack of common goals: In distributed
environments it’s hard to establish common goals, due
to problems in communication, lack of common

This study was partially supported by the Research Group on
Distributed Software Development of the PDTI financed by Dell
Computers of Brazil Ltd. (Law 8.248/91).

understanding, cultural differences, etc. [5]. This can
cause different viewpoints and priorities in the
development process [24],[4].

National and organizational cultural differences:
Cultural differences can create several challenges for
achieving a shared understanding of the requirements
[7] and often result in remote stakeholders’
misinterpretation [8],[4], particularly in distributed
requirements analysis [24],[27]. The distance
aggravates the cultural gap between the requirements
and development teams [4],[26]. Cultural differences
are the reason of the use of multiple RE processes and
tools which can be problematic in a distributed RE
context [5],[7],[6],[8].

Change Management issues: Change Management
can be a daunting task in RE of DSD environments
[25],[5],[6],[9],[28],[8]. Changes may cause an
extensive process of analysis and communication
between distributed teams.

Knowledge Management issues: DSD makes it
more difficult to seek out and to integrate knowledge
about requirements [24]. The information is not
appropriately shared with the distributed stakeholders
[4] and the interaction between them is affected [8].

Lack of efficient tools and techniques: RE in DSD
requires new or extended techniques to support
distributed development tasks; and efficient distributed
RE management [26]. It’s difficult to track discussions
on requirements that are stored across several media,
due the lack of existing requirements tools that provide
support for collaboration [25].

Many authors have researched about these
challenges, but there is no evidence in the literature
about the possible benefits of reusing requirements as a
strategy to improve RE in DSD. Our proposal is to
explore the possible benefits of integrating
Requirements Reuse, PL and Requirements
Engineering aiming at the improvement of RE in DSD.
Next section presents the main concepts related to
software reuse, requirements reuse and the PL
approach.

3. Reuse and Product Lines

Software reuse is the use of existing software or

software knowledge to construct new applications [29].
The reuse at the requirements level is among the
promising approaches [22]. It can help the RE process
in the following ways: reducing the time-to-
specification; supporting the completeness checking of
new requirements; sharing knowledge; providing reuse
at later stages of development; helping in estimate cost
and effort; and reducing uncertainty [30].

Product Line approach supports requirements reuse,
through identification and reuse of features and
requirements of the company’s domain [12]. First, the
common and variable requirements of the PL products
are identified and analyzed, then their variabilities are
documented with variation points which are filled to
create product requirements [2].

Organizations that have succeeded with PL vary
widely [2]. Nevertheless, there are universal activities:

Core Asset Development: Also called “Domain
Engineering”. Establishes a reusable platform and
defines the PL commonality and variability [13].

Product Development: Also called “Application
Engineering”. The PL products are derived from the
platform established.

Management: Technical and organizational
management plays a critical role in the successful of a
PL [2].

In the next section we present our method.

4. A requirements reuse method using PL
in DSD environments

Our method was proposed based on an extensive

literature review. To help with the identification of
each research area that guided our proposal, we used
the following labels:

• “PL” for the research area about RE in PL;
• “DSD” for the research area about RE in DSD;
• “RW” for related works (requirements reuse

using PL in DSD);
• “OP” for our proposal. Presents the proposals of

our method related to activities, artifacts and
roles, based on the research areas.

As related works, we have the study of Gao et al
[11] that presents experiences and challenges to
develop PL tools that share information to distribute
teams, but it’s not specific to requirements reuse.
Thurimella and Wolf [10] that proposes a variability
model and justification matrices to help the
requirements communication in DSD. And finally, the
study of Cho [14] that proposes some notations to
identify variations and dependencies of the PL
requirements (PLR) and a scheme to reuse the PLR,
but it’s not focused in DSD.

Our proposal consider the contributions of the
related works and include the focus on collaborative
aspects of RE in DSD, establishing a path for
requirements reuse in distributed environments. It
consists of five disciplines and each discipline consists
of activities that produce artifacts and are performed by
roles.

4.1. Roles

Our method includes the proposal of roles to be
responsible for the execution of each activity.

Customers
PL: Customers provide features and qualities for the

products [15]. They have specific needs, which it’s
exploited to derive PL products [13].

DSD: Customers are individuals or companies that
requested the project [17].

RW: The PL needs to support the instantiation of
the products based on the concerns of the customers
[10].

OP: The customers are individuals or companies,
possibly geographically distributed, that provide the
features and requirements of the products.

PL Manager
PL: The Manager must be a visionary leader that

keeps the organization pointed toward PL goals [2].
The Executive role manages business goals [12].

OP: The PL Manager plans, manages and takes
initial decisions of the distributed PL.

Product Manager
PL: This role involves the planning and evolution of

the products [3]. He analyses the possibility and the
actions to be taken for inclusion and exclusion of
products [13].

OP: The Product Manager interacts with distributed
teams to plan and manage the company’s products.

Reuse Manager
PL: Technical management ensures that those who

build core assets and products are engaged in the
required activities [2]. System integrators are
responsible for the quality and for acceptance criteria
requirements [12].

OP: The Reuse Manager manages the reuse process
and the use of the tool, to ensure that the artifacts
management strategy is being followed.

Change Manager
PL: Domain asset manager maintain the versions

and variants of the domain assets [3].
RW: Change Control Board team reviews and

approves the PL changes via teleconference [14].
OP: The Change Manager controls the changes of

the PL artifacts. He monitors the change process.

Domain Requirements Engineer
PL: Domain Requirements Engineer identifies

domain requirements and their variability [13]. He take
care of the evolution of the family [16].

DSD: Requirements Engineer is responsible for
elicitation, analysis, negotiation, documentation,
validation and management of requirements [17].

RW: Domain engineers help the instantiation of the
variation points [10].

OP: The Domain Requirements Engineers, which
may be co-localized or distributed, identifies, analyzes
and documents the domain features and requirements.

Domain Collaborator/Product Collaborator
PL: Collaboration specialists are people with good

communication skills that have knowledge about the
domain and the products [3].

DSD: Ambassadors help the collaboration and
communication about requirements [17]. Human
facilitator helps the requirements decision-making
meetings and manages conflict [4].

OP: The Domain and Product Collaborator help the
communication between distributed teams, solving
questions about domain and products.

Product Requirements Engineer
PL: Application Requirements Engineer develops

and maintains the requirements for a single product [3].
He produces family members to satisfy customer’s
requirements [16].

DSD: Requirements Engineer is responsible for
elicitation, analysis, negotiation, documentation,
validation and management of requirements [17].

RW: Application engineers help the instantiation of
variation points [10]. Regional marketing
representatives are organized worldwide to promote
new products and collect regional customer’s
requirements [14].

OP: The Product Requirements Engineers, possibly
distributed, identifies the product features and
requirements and reuses the domain artifacts.

4.2. Artifacts

Each activity produces artifacts, presented next:
Tool
PL: The PL tool must support the development

process and organizational structure, enforce PL
integrity, represent products capabilities, maintain
traceability, support architecture-based development
with multiple views, provide insight into business and
technical decisions, incorporate new technologies [2].

DSD: The groupware tools must help the interaction
and increase the understanding of the requirements
documents [17].

RW: Using a repository, all involved teams on a
global project can share information. To cope with
diverse needs, it’s essential to provide customizable

data formats and report templates. The tool must send
notifications to users [11]. The product requirements
are created with help from a front-end tool that guides
this process [14].

OP: The tool for reuse requirements using PL in
DSD must have (at least) these features: accessibility;
interoperability; systematization of the reuse process;
creation and search of artifacts; traceability;
configuration management; management reports;
documentation of reuse experiences; notifications to
users; collaboration and interaction.

PL Plan
PL: The PL Adoption Plan describes the business

goals and the strategy of the company [19].
OP: The PL Plan is created during the PL adoption

and contains the organizational definitions. In our
proposal, this artifact (that we assume that the
organization already has) describes: PL scope,
products and domains, company’s goals, etc. During
the activities proposed by our method, this Plan will
help the understanding of the PL context.

Employees Register
DSD: To know as much as possible about the

requirements elicitation scenario, it’s important collect
information about distributed teams [20].

OP: The Employees register include personal
information (name, nickname, birthday, hobby, photo);
professional information (local work description,
email, phone, knowledge about process, technologies,
products); and cultural information (native country and
language, knowledge in others languages, cultural
influences).

PL Role Plan
PL: The map of PL activities and roles determines

the amount to which people work together [3].
DSD: RE in DSD requires knowledge about the

roles and activities [15]. It requires a clear definition of
these aspects [6].

OP: The PL Role Plan identifies the members of
distributed teams and their roles. This will help the
collaboration in distributed environments.

PL Dictionary
PL: The Dictionary defines the terminology utilized

in the work products and supports a consistent view of
the PL requirements [12].

DSD: A Dictionary can help to solve language
questions [15] and to share a common vocabulary in
DSD [20].

OP: The PL Dictionary identifies terminologies of
products, domains and artifacts, and also define a
common vocabulary to distributed teams.

Cultural Base
DSD: Cultural Base provides knowledge to

distributed teams about the context where the software
will be used [17]. This helps the RE in DSD [21].

OP: The Cultural Base helps the creation of the PL
artifacts, storing cultural information about the context
where the products will be used. This information
include: writing and language issues, measures,
cultural influences about products, context of use, etc.

Patterns Plan
DSD: RE in DSD requires the creation of

requirements specification patterns [18] and is
suggested the sharing of requirements-specification
templates [5].

RW: It’s essential to provide customizable data
formats and report templates [11].

OP: The Patterns Plan identifies patterns to create
the PL artifacts, the structure and content of these
artifacts. This will provide a common documentation
of distributed teams.

Artifacts Management Plan
PL: System integrators are responsible for quality in

requirements and for acceptance criteria [12].
OP: The Artifacts management Plan identifies the

criteria for artifacts management. Include criteria for
artifacts acceptance, evaluation, classification,
exclusion, inclusion, etc.

Experiences Register
PL: One PL practice is the documentation of

existing and well-proven PL experiences [19].
DSD: The information generated through the RE

process must be shared to distributed teams [18].
RW: All involved distributed teams must share

information of global software projects [11].
OP: The Experiences register describes the reuse

experiences from distributed teams, including learned
lessons, good and bad practices, etc.

Management Reports
PL: Technical management collects data to track

progress [2].
OP: The Management reports present strategic

information to the organization (verification of reuse
goals, identification of market trends and opportunities,
etc).

Domain Artifacts
PL: Domain Requirements Engineering is

responsible for development of common and variable
requirements and their precise documentation [3].

RW: The specification of the PL requirements
should describe the requirements of the core asset and
their variations [14].To help the understanding of
variability in domain artifacts are suggested the
identification of rationales [10].

OP: The domain artifacts include models that
document the common features and requirements of
the PL and their variability. To help the reuse process
and the understanding of the PL context can be used
the documentation of rationales. Domain artifacts can
include: Feature Model, Use case Model, Orthogonal
variability Model, Requirements Specification, etc.

Product Artifacts
PL: Application artifacts comprise all development

artifacts of a specific application [13].
RW: Program Manager creates a project file of PR

for a new product which specifies requirements of base
model and its series [14].

OP: The product artifacts include models that
document the specific features and requirements of a
product. Usually they are instances of domain artifacts.

4.3. Disciplines

Our proposal establishes a path for requirements
reuse in DSD. The first iteration starts with the
execution of the "Initial definitions" discipline. In
order to reuse the domain requirements on creation of
products, the "Definition of domain requirements"
discipline must be executed before the "Definition of
product requirements" discipline. In the next iterations,
the company can start and run the disciplines in any
order. The Figure 1 presents our method:

Figure 1. Our method

Our approach defines a path to follow, but still

supports individual choices of the organization. Next
we present the activities for each discipline of the
proposed method.

4.3.1. Initial Definitions
This discipline establishes initial definitions to reuse

requirements using PL in DSD. The Figure 2 presents
this discipline:

Figure 2. Initial definitions

Next we present the activities of this phase:
Obtain support tools
PL: The infrastructure for turning out a software

product requires specific PL processes and appropriate
tool support [2].

DSD: The groupware tools must help the interaction
and increase the understanding of the requirements
documents [17].

RW: Using a repository the teams of global projects
can share information. To cope with diverse needs, it’s
essential to provide customizable data formats and
report templates. In global environments the tool must
send notifications to users [11]. The product
requirements are created with help from a front-end
tool [14].

OP: It’s necessary to obtain support tools to help
the artifacts development and the reuse process, share
the artifacts and experiences to all stakeholders and
help the interaction and collaboration of distributed
teams.

Collect DSD teams information
DSD: To know about the requirements elicitation

scenario, it’s important collect information about
distributed teams [20].

OP: To help the interaction and understanding
between distributed stakeholders and also the
allocation of roles, we suggest the collection of

personal, professional and cultural information of
teams.

Assign roles
PL: Often we see a single domain group and several

separate application groups [3].
DSD: RE in DSD requires knowledge about the

roles and activities [17].
OP: In this activity are assigned the roles to

distributed teams. The professional information
collected in the previous activity can be used to define
professional profiles.

Define the PL default language
DSD: To RE in DSD must be defined the language

that will be used to create the artifacts [17].
OP: To reduce the communication problems and to

increase the understanding about the artifacts, we
suggest the definition of a default language.

Create the PL Dictionary
PL: The Dictionary defines the terminology utilized

in the work products and supports a consistent view of
the PL requirements [12].

DSD: A Dictionary can help to solve language
questions [17] and to share a common vocabulary [20].

OP: The PL Dictionary helps to solve language
questions and provides an overview of the PL artifacts.

Define patterns to create PL artifacts
DSD: RE in DSD requires the creation of

requirements specification patterns [17]. It’s suggested
sharing of requirements-specification templates [5].

RW: It’s essential to provide customizable data
formats and report templates [11].

OP: In this activity, we suggest the definition of
patterns to create the PL artifacts.

Define strategies for artifacts management
PL: System integrators are responsible for quality in

requirements and for acceptance criteria [12].
OP: In this activity are defined the strategies for

artifacts management.

4.3.2. Definition of domain requirements
In this discipline the organization’s core asset are

created. The Figure 3 presents this discipline:

Figure 3. Definition of domain requirements

Next we present the activities of this phase:
Collect and analyze PL features and

requirements
PL: The Domain Requirements Engineering

encompasses elicitation and documentation of common
and variable requirements [13]. It comprises the
identification of common and variable aspects among
family members [16].

RW: The PL variability identification may involve
the collaboration of stakeholders from application
engineering [10].

OP: This discipline includes the collection of the
PL features and requirements through the existing
products and documentations or through customer’s
elicitation in distributed sites. Then, the PL
requirements and features are analyzed to identify their
variability.

Document domain features and requirements
PL: Common requirements are written with

variation points that can be filled to create product-
specific requirements [2]. The Domain Requirements
Engineering develops the common and variable
requirements and their precise documentation [3].

RW: The specification of PL requirements should
describe requirements of the core asset and their
variations [14].To help the understanding of the
variability in domain artifacts are suggested the
identification of rationales [10].

OP: In this activity, the features and requirements
are documented, identifying their variability. The
traceability must be maintained. To help the reuse
process and the understanding of the PL context can be
used the documentation of rationales.

Inspect domain artifacts
PL: The common PL requirements must be verified

[2] to ensure their accuracy and completeness [12].
DSD: The requirements must be inspected to ensure

their understanding to all distributed teams [17] and
must be analyzed in order to determine consistency
between the different statements [20].

OP: The domain artifacts must be inspected to
ensure their consistency, quality and understanding in
distributed environments. They can be changed if
necessary.

Validate domain artifacts
PL: The PL requirements must be verified [2].

DSD: The requirements must be validated to ensure
that they meet the customer’s goals [17].

OP: The domain artifacts must be validated,
ensuring that they meet the customer’s needs. They can
be changed if necessary.

Publish domain artifacts
PL: Domain artifacts are stored in a common

repository [13].
DSD: RE in DSD requires a repository of artifacts

[4]. It’s necessary share a project-artifacts [5].
OP: After the inspection and validation, the domain

artifacts can be published to be reused.

Present domain artifacts
OP: To disseminate knowledge about the domain

artifacts they must be presented to the distributed
teams.

4.3.3. Definition of product requirements
In this discipline the products of the organization

are created through the reuse of the core assets. The
Figure 4 presents this discipline:

Figure 4. Definition of product requirements

Next we present the activities of this phase:
Collect product features and requirements, reuse

domain requirements
PL: The Application Engineering must achieve an

as high as possible reuse of the domain assets; exploit
the commonality and variability of the PL during the
development of a application; document the
application artifacts; bind the variability according to
the application needs; estimate the impacts of the
differences between application and domain
requirements artifacts [13].

RW: The PL variability identification may involve
the collaboration of stakeholders from application
engineering [10]. Regional marketing representatives
are organized worldwide to promote new products and
to collect regional customer’s requirements [14].

OP: In this activity, first the product features and
requirements are obtained through changes on domain
artifacts or customer’s elicitation. Then, the domain
artifacts are verified, to analyze if exists a domain
requirement that satisfy the customer’s needs. There
are three outputs for this analysis: (i) Direct reuse -
there are domain artifacts which fully meet the
customer needs and can be reused; (ii) Indirect reuse -
there are domain artifacts which partially meet the
customer needs; (iii) No reuse – there aren’t domain
requirements that satisfy the customer needs.

Document product requirements
PL: The Application Requirements Engineering

encompasses all activities for developing the
application requirements specification [13].

RW: Program Manager creates a project file of
product requirements for a new product which
specifies requirements of base model and its series
[14].

OP: The product requirements are documented and
the traceability must be maintained.

Inspect product artifacts
PL: The product-specific requirements must be

verified [2], ensuring their accuracy and completeness
[12].

DSD: The requirements must be inspected to ensure
their understanding to distributed teams [17] and to
determine consistency between different statements
[20].

OP: The product artifacts must be inspected to
ensure their consistency, quality and understanding in
distributed environments. They can be changed if
necessary.

Validate product artifacts
PL: The product-specific requirements must be

verified [2].
DSD: The requirements must be validated to ensure

that they meet the needs and goals of the customer
[17].

OP: The product artifacts must be validated,
ensuring that they meet the customer’s needs. They can
be changed if necessary.

Publish product artifacts
PL: PL artifacts are stored in a repository [13].
DSD: RE in DSD requires a repository of artifacts

[4]. It’s necessary share a project-artifacts repository
[5].

OP: After the inspection and validation, the product
artifacts can be published.

Create/Update the Cultural Base
DSD: Cultural Base provides knowledge to

distributed teams about the context where the software
will be used [17], helping the RE in DSD [21].

OP: In DSD environments, the cultural differences
are the reason of several difficulties and
misunderstandings, especially during the RE. To
reduce these problems, the organization can create a
Cultural Base.

Document reuse experience
PL: One PL practice is the documentation of

existing and well-proven PL experiences [19].
DSD: The information about requirements process

must be shared to distributed teams [18].
RW: All involved distributed teams must share

information of global software projects [11].
OP: In this activity the reuse experiences are

documented. To distributed environments, this will
encourage the reuse and share knowledge.

4.3.4. DSD Support
This discipline supports the distributed software

development. The Figure 5 presents this discipline:

Figure 5. DSD Support

Next we present the activities of this phase:
Present the PL definitions
PL: Teams must be trained beyond general software

engineering and corporate procedures to ensure that
they understand PL practices [2].

DSD: RE in DSD requires training about the
processes, tools and technologies [5]. It’s suggested
face-to-face relationship and training prior to project
initiation [7].

OP: We suggest the execution of training, courses
or workshops to present the PL definitions to
distributed teams.

Present the tool
PL: Establishing tool support for a PL includes

training tool users and maintainers [2].
DSD: RE in DSD requires training about the

processes, tools, and technologies [5]. It’s suggested
face-to-face relationship and training prior to project
initiation [6].

RW: To PL in distributed environments, is
suggested the face-to-face training to users and
customers [11].

OP: We suggest the execution of training, courses
or workshops to present the PL tool to distributed
teams.

Obtain knowledge through the experiences reuse
PL: One PL practice is the documentation of

existing and well-proven software PL experience [19].
DSD: The information generated through the RE

process must be shared to distributed teams [18].
RW: All involved distributed teams must share

information of global software projects [11].
OP: The documentation of reuse experiences helps

to increase the knowledge sharing, especially in DSD

teams. In anytime, anyone of distributed teams can
obtain knowledge through this documentation.

Establish communication channels and shared

edition of documents
PL: The PL in distributed environments requires

extensive communication, both through face-to-face
and virtual meetings such as telephone conferences and
video meetings [3].

DSD: RE in DSD requires use of electronic
mediation [5]. To improve communication in RE of
DSD, is suggested an analysis about how the
technologies selection influence people performance
[20].

RW: In distributed PL, the Change Control Board
team reviews and approves the changes via
teleconference [14].

OP: To help the collaboration and communication
of distributed teams, the teams can establish
communication channels and shared edition of
documents. Communication channels can be used in
several activities, like: negotiation and elicitation of
requirements, artifacts inspection, etc. Shared edition
of documents can be used to create and update PL
documents and models.

Identify possible sources of problems
DSD: One suggested practice to RE in DSD is the

identification of possible problems and the
recommendation of strategies to improve the
requirements process [20].

OP: We suggest the identification of possible
sources of problems, like: cultural and temporal
differences between distributed teams; lack of
knowledge about domains, products, requirements,
process, technologies; etc.

Mitigate potential problems
DSD: One suggested practice to RE in DSD is the

identification of possible problems and the
recommendation of strategies to improve the
requirements process [20].

OP: To reduce the problems identified in the
previous activity, we suggest the execution of
trainings, meetings and workshops.

4.3.5. PL Management
This discipline is responsible for the PL

management. The Figure 6 presents this discipline:

Figure 6. PL Management

Next we present the activities of this phase:
Manage the reuse process
PL: Management must direct, track and enforce the

use of assets [2].
DSD: The RE in DSD requires practical

performance metrics and project-reporting mechanism
[5].

OP: The reuse process has to be managed to ensure
that those who build core assets and products are
engaged in the required activities. Through the
management of the PL, the organization can obtain
strategic information.

Manage the artifacts
PL: Change management policies must provide a

mechanism for proposing changes and supporting the
systematic assessment of how these changes will
impact the PL [2].

DSD: The RE in DSD requires the management of
requirements changes and the analysis the changes
impact [17].

RW: In distributed PL, the Change Control Board
team reviews and approves the changes [14].

OP: The PL artifacts also need management. The
change management in PL and distributed
environments is essential and challenging. To change
the artifacts, first is necessary to analyze the impact,
interacting with distributed tams. The execution of
changes in artifacts must follow the activities proposed
by Discipline DEFINITION OF DOMAIN
REQUIREMENTS (to change domain artifacts) or
Discipline DEFINITION OF PRODUCT
REQUIREMENTS (to change product artifacts).

Manage the PL Dictionary
PL: The Dictionary persists for the PL lifetime [12].
OP: The PL Dictionary has to be constantly

managed.

Manage the Cultural Base
DSD: The Cultural Base has to be managed [17].
OP: The Cultural Base has to be constantly

managed.

4.4. Overview of our proposal

Table 1 presents an overview of our method,

including the activities of each discipline, their input
and output artifacts and also the roles involved:

Table 1. Proposal overview
ACTIVITY INPUT OUTPUT ROLES

DISCIPLINE INITIAL DEFINITIONS
Obtain support tools No Tool PL Manager
Collect DSD teams information Tool Employees register PL Manager; DSD teams
Assign roles Tool; Employees register PL role Plan PL Manager; DSD teams
Define the PL default language Tool; Employees register PL Plan updated PL Manager
Create the PL Dictionary Tool; PL Plan PL Dictionary PL Manager; Domain and Product Collaborator
Define patterns to create the PL
artifacts

Tool; PL Dictionary Patterns Plan PL Manager; Domain and Product Collaborator

Define strategies for artifacts
management

Tool; PL Dictionary Artifacts management Plan PL Manager; Domain and Product Collaborator

DISCIPLINE DEFINITION OF DOMAIN REQUIREMENTS
Collect and analyze PL features and
requirements

Tool; PL Plan No Domain Requirements Engineer; Domain
Collaborator; Customer; Product Requirements
Engineer

Document domain features and
requirements

Tool; PL Dictionary; Patterns Plan Domain artifacts Domain Requirements Engineer

Inspect domain artifacts PL Dictionary; Patterns Plan;
Artifacts management Plan; PL
Plan; Domain artifacts

Domain artifacts updated Domain Requirements Engineer; Domain
Collaborator; Reuse Manager; Product Manager

Validate domain artifacts Domain artifacts Domain artifacts updated Domain Requirements Engineer; Domain
Collaborator; Customer

Publish domain artifacts Tool; Domain artifacts; Artifacts
management Plan

No Domain Requirements Engineer

Present domain artifacts Domain artifacts No Domain Collaborator; DSD teams
DISCIPLINE DEFINITION OF PRODUCT REQUIREMENTS

Collect product features and
requirements, reuse domain
requirements

PL Plan; PL Dictionary; Domain
artifacts

No Product Requirements Engineer; Customer;
Domain and Product Collaborator

Document product requirements Tool; PL Dictionary; Cultural Base;
Patterns Plan; Domain artifacts

Product artifacts Product Requirements Engineer

Inspect product artifacts PL Dictionary; Patterns Plan;
Artifacts management Plan; PL
Plan; Product artifacts

Product artifacts updated Product and Domain Requirements Engineer;
Product Collaborator; Reuse Manager

Validate product artifacts Product artifacts Product artifacts updated Product Requirements Engineer; Product
Collaborator; Customer

Publish product artifacts Tool; Product artifacts; Artifacts
management Plan

No Product Requirements Engineer

Create/Update the Cultural Base Tool Cultural Base PL Manager; Domain and Product Requirements
Engineer

Document reuse experience Tool; PL Dictionary; Experiences register Product Requirements Engineer
DISCIPLINE DSD SUPPORT

Present the PL definitions PL Plan; PL role Plan; PL
Dictionary; Cultural Base; Patterns
Plan; Artifacts management Plan

No PL Manager; DSD teams

Present the tool Tool No Reuse Manager; DSD teams
Obtain knowledge through the
experiences reuse

Experiences register No DSD teams

Establish communication channels
and shared edition of documents

Tool No DSD teams

Identify possible sources of
problems

Employees register No DSD teams

Mitigate potential problems Tool; PL Plan; PL Dictionary;
Cultural Base

No Domain and Product Collaborator

DISCIPLINE PL MANAGEMENT
Manage the reuse process Tool Management reports Reuse Manager; PL Manager; Product Manager
Manage the artifacts Artifact that will be changed Artifact changed

Change Manager; Product Manager; Domain and
Product Requirements Engineer

Manage the PL Dictionary PL Dictionary PL Dictionary updated PL Manager; DSD teams
Manage the Cultural Base Cultural Base Cultural Base updated PL Manager; Domain and Product Requirements

Engineer

4.5. Our proposal and the RE in DSD

In this subsection we present the main challenges of
RE in DSD (as presented in Section 2) and how our
method aims to reduce such challenges for companies
where the PL approach is suitable:

• Communication issues: use of communication
channels; definition of a default language; use of
a PL Dictionary;

• Lack of common understanding of
requirements: use of a PL Dictionary; use of
patterns to create the PL artifacts; definition of
strategies for artifacts management;

• Lack of collaboration: collection of personal,
professional and cultural information of the
teams; use of shared edition of documents;
identification of those responsible for the tasks;

• Lack of common goals: presentation of PL
definitions; management of the reuse process;

• National and organizational cultural
differences: collection of cultural information of
the teams; use of patterns to create the PL
artifacts; definition of strategies for artifacts
management; use of a Cultural Base;

• Change Management issues: change
management; use of a tool to support it;

• Knowledge Management issues: obtaining
knowledge through documentation of reuse
experiences; use of a tool to share it; reuse of
artifacts; presentation of domain artifacts;

• Lack of efficient tools and techniques: use of a
tool focused in reuse and DSD environments;

Our proposal also includes goals related to software
reuse, including: large-scale productivity gains,
decreased time to market, increased product quality,
etc.

5. Next steps

In this paper we have presented our proposal to
reduce the existing challenges of distributed RE by
integrating requirements reuse and Product Lines. Our
method aiming at an improvement in the execution of
distributed projects where a domain definition may be
necessary for the development of applications.

As future works, we will (i) build a reuse policy,
based on a literature review, which will suggest some
techniques, methods, communication media and other
aspects specific to distributed environments for each
one of the activities, and (ii) evaluate the practical
benefits of our proposal.

6. References

[1] Carmel. E. “Global Software Teams – Collaborating
Across Borders and Time-Zones”. Upper Saddle River, NJ,
Prentice Hall. 1999.

[2] SEI - Software Engineering Institute. “A Framework for
Software Product Line Practice, version 5”.
http://www.sei.cmu.edu/productlines/framework.html. 26-
01-2009.

[3] Linden, F. J. van der, Schmid, K., Rommes, E. "Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering". Springer. 2007.

[4] Damian, D. E. and Zowghi, D. “The impact of
stakeholders’ geographical distribution on managing
requirements in a multi-site organization”. Proc. of the 10th
Anniversary IEEE Joint Int’l Conference on Requirements
Engineering. 2002.

[5] Bhat, J. M., Gupta, M. and Murthy, S. N. “Overcoming
Requirements Engineering Challenges: Lessons from
Offshore Outsourcing”. IEEE Software, volume 23, issue 5,
page(s):38 – 44. 2006.

[6] Berenbach, B. “Impact of organizational Structure on
Distributed Requirements Engineering Processes: Lessons
Learned”. Int’l Conference on Software Engineering. 2006.

[7] Herbsleb, J. D. “Global Software Engineering: The
Future of Socio-technical Coordination”. Int’l Conference on
Software Engineering. 2007.

[8] Damian, D. “Stakeholders in Global Requirements
Engineering: Lessons Learned from Practice”. IEEE
Software, volume 24, issue 2, page(s):21 – 27. 2007.

[9] Kommeren R. and Parviainen, P. “Philips experiences in
global distributed software development”. Empirical
Software Engineering, volume 12, number 6. 2007.

[10] Thurimella, A. K. and Wolf, T. "Issue-based Variability
Modeling". International Conference on Global Software
Engineering. 2007.

[11] Gao, J. Z., Itaru, F. and Toyoshima, Y. "Managing
Problems for Global Software Production – Experience and
Lessons". Information Technology and Management, volume
3, issue 1-2, pages: 85 – 112. 2002.

[12] Chastek, G., Donohoe, P., Kang, K. C. and Thiel, S.
"Product Line Analysis: A Practical Introduction". Technical
Report CMU/SEI-2001-TR-001, ESC-TR-2001-001. 2001.

[13] Pohl, K., Böckle, G., Linden, F. J. van der. "Software
Product Line Engineering: Foundations, Principles and
Technique". Springer. 1998.

[14] Cho, H. "Requirement Management in Software Product
Line". International Conference on Global Software
Engineering. 2007.

[15] Chastek, G., Donohoe, P. "Product Line Analysis for
Practitioners". Technical Report CMU/SEI-2003-TR-008,
ESC-TR-2003-008. 2003.

[16] Harsu, M. "FAST product-line architecture process".
http://practise2.cs.tut.fi/pub/papers/fast.pdf. 26-01-2009.

[17] Lopes, L. T. "Um Modelo de Processo de Engenharia de
Requisitos para Ambientes de Desenvolvimento Distribuído
de Software". Dissertação de Mestrado. Pontíficia Católica
Universidade do Rio Grande do Sul. 2004.

[18] Audy, J. L. N. and Prikladnicki, R. “Desenvolvimento
Distribuído de Software: Desenvolvimento de Software com
Equipes Distribuídas”. Editora Campus-Elsevier. 2007.

[19] Northrop, L. M. Software Product Line – Adoption
Roadmap. Technical Report CMU/SEI-2004-TR-022 ESC-
TR-2004-022. 2004.

[20] Aranda, G. N., Vizcaíno, A., Cechich, A., Piattini, M.
"A Methodology for reducing geographical dispersion
problems during Global Requirements elicitation”. 11th
Workshop on requirements Engineering. 2008.

[21] Mahemoff, Michael J. and Johnston, Lorraine. Software
Internationalisation: Implications for Requirements
Engineering. Proc. of the Third Australian Workshop on
Requirements Engineering. 1998.

[22] Lam, W. “A case-study of requirements reuse through
product families”. Annuals of Software Engineering, volume
5, pages: 253 – 277. 1998.

[23] Ebling, T, Audy, J. L. N and Prikladnicki, R. “A
systematic literature review of requirements engineering in
distributed software development environments”. Accepted
for publication on 11th International Conference on
Enterprise Information Systems. 2009.

[24] Berenbach, B. and Gall, M. “Toward a Unified Model
for Requirements Engineering”. Int’l Conf on Global
Software Engineering, pages: 237 – 238. 2006

[25] Sengupta, B., Sinha, V. and Chandra, S. “A Research
Agenda for Distributed Software Development”. Int’l
Conference on Software Engineering. 2006.

[26] Cheng, B. H.C. and Atlee, J. M. “Research Directions in
Requirements Engineering”. Int’l Conference on Software
Engineering, pages 285-303. 2007.

[27] Audy, J., Evaristo, R. and Watson-Manheim, M. B.
“Distributed Analysis: The Last Frontier?”. Proc. of the 37th
Hawaii Int’l Conference on System Sciences. 2004.

[28] Jacobs, J., Moll, J.V., Krausec, P., Kusters, R.,
Trienekens, J. and Brombacher, A. “Exploring defect causes
in products developed by virtual teams”. Information and
Software Technology, volume 47, issue 6, pages 399-410.
2005.

[29] Frakes, W. B. and Kang, K. “Software Reuse Research:
Status and Future”. IEEE Transactions on Software
Engineering, volume 31, issue 7. Pages: 529 – 536. 2005.

[30] Lam, W., Jones, S., Britton, C. “Technology Transfer
for Reuse: A Management Model and Process Improvement
Framework”. Proc. of the 3rd International Conference on
Requirements Engineering: Putting Requirements
Engineering to Practice. 1998.

