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Abstract—Real-time scheduling theory has made a great an optimal analysis, that allows to efficiently obtain a eotr
progress in the last decades. From small devices to enormousdesign [3].
satellites or industrial plants take advantage of this ongmg The implementation of a real-time system begins, like any

;ﬁﬁ;agggl.oi': ?&eéirhetgtéh; ?#ghtcr)]r:()E; lief, there is stil a gato other software system, with the description of a problemedo b

The comerstone of real-time scheduling theory is the conge  Solved. This description is not always (almost never) fdrma
of task. Nevertheless, very little is mentioned about how to and fully detailed. Usually, the description is ambiguouih
discover such tasks. Thus, the objective of this paper is to little details, not very clear and in colloquial languagénist
propose a systematic way of describing real-time tasks by m@s |eads to the problem of investigating, inquiring and anilgz

of requirements elicitation. The process begins with the gaering . . . .
of user requirements through Use Case Diagrams. Then, those many things to finally describe precisely the problem to be

use cases are refined to turn them into tasks descriptions. lstly, ~Solved. However, this is just the problem description. From

tasks descriptions are further refined and brought to a detaied the problem description to the identification and subsetjuen

characterization of individual execution flows. This final tasks behavioral description of the different tasks to be implared

characterization is made with Activity Diagrams. _ there is still a long way. Moreover, without that identificat it

pI’OFFI)ggg)(;, aappl;g;ec-kllz. ollower System is used to exemplily the ;o extremely difficult to apply the real-time schedulingahg
Index Terms—real time systems; software requirements and With a_ll, the ObJeCt'Ve, _Of this p.aper IS to propose a

specifications; software tools; software testing systematic way of describing real-time tasks by means of

requirements elicitation. The process begins with theerath

of user requirements through Use Case Diagrams. Then, those

use cases are refined to turn them into tasks descriptions.
Real-time software systems are systems that have stiieistly, tasks descriptions are further refined and brought t

timing constraints in their specification. This is, not onla detailed characterization of individual execution floWwhis

they have to be functionally correct, but they also have final task characterization is made with Activity Diagrams.

meet certain intrinsic timing restrictions, that arisenfrahe A Specific Contributi

problem definition itself. Therefore, the analysis of thiadk "~ pecihic Lontributions

of systems implies a careful study of functional and non- The main contributions of this paper include:

functional requirements in a stage as early as possible. A The adaptation of use cases to deal with real-time
Within real-time systems theory, there is a particular lshan systems needs.

that deals specially with the meeting of timing constraints A The presentation and discussion of a use case architec-

the real-time scheduling theoift]. The cornerstone of real- ture for real-time systems.

time scheduling theory is the concept of task. Basically, a a A method for eliciting tasks through user requirements

real-time task is a software component which has a particula and use cases.

purpose within the system. In Jackson’s terms [2], the previ o The adaptation of activity diagrams to deal with real-

statement can be rewritten as:task is a specification of a time tasks.

software requirement extracted from the application domai 4 A method for describing the behavior of tasks.

In this manner, a real-time system is said to be composed of o

tasks, that perform the necessary functions to fulfill therusB- Paper Organization

requirements. Thus, simplistically the complete set okdas After this introduction, the rest of the paper is organized a

answers the questioliVhat does the system dbievertheless, follows: in Section Il, use cases are adapted to handle real-

very little is mentioned in the specialized literature abbow time systems requirements. In addition, a use case generic

to discover such tasks. In this sense, the analysis of ireal-t architecture is developed for this application domain and a

systems is in most cases a job, where experience playsathod to elicit tasks adjusted to that architecture is also

determining role. However, experience is not enough to getesented. In Section lll, the previously mentioned tagks a

I. MOTIVATION



Item Description

refined and their behavior is described in detail. An exarople

. . . . . NAME The use case name
a Line-Follower robot is pre_sented in Sec.tlon IV to |Ilu§s¢fa  ACTOR The actor involved
the proposed approach. Finally, conclusions are derived in pgscripTiON What does the use case do?
Section VI. EXECUTION FLOW Normal execution flow
EXCEPTION FLOW Exception execution flow
II. TASKS ELICITATION THROUGH REQUIREMENTS MONITORED VARIABLES  Explained in Section II-C

. . . . CONTROLLED VARIABLES Explained in Section II-C
In this section, a method for gathering user requirements NER Non-functional requirements

through use cases is developed. The method shares basic (specially timing constraints)
aspects commonly found in the literature [4], [5], [6], [7],
[8], but introduces some improvements for dealing spedifica
with real-time systems. In this sense, use cases are adapted

(restricted) to cope with real-time systems needs and ar@engyurposes of the system. This way, the total collection of
use cases architecture is developed for this kind of problege cases will actually form the complete functionality lué t
frame. Finally, real-time tasks are elicited from thosehgatd system under specification.

requirements and briefly described. It is worth noting, that a use case can be initiated inteynall
by the systemd.g, according to time) and not only externally

i ) _ by an actor. And it can describe internal functionality of a
Use cases are simply an alternative mean of specn‘ylggstem and not only its external behavior.

requirements [9]. Alunctionalrequirement defines a function ~ 4 3 Include relation: This stereotyped relation is used to
of a software system; while aon-functionalrequirement point out that a use case has some kind of dependency on
specifies criteria that can be used to judge the operation iother use case to achieve its goal. Two kinds of deperetenci
a system, rather than specific behaviors. In this sense, a Ugg dentified in real-time systems analysisctional depen-
Case diagram (UC) [10] describesat the system does.  gencyandsharing dependencyn the first case, the execution
As was mentioned in Section |, applications with timings 5 task cannot begin until the execution of another task has
constraints need a different treatment from other kind @fyished. While in the second kind of dependency, both tasks

applications. In particular, uses cases as presented a9 can run concurrently, but they share a resource whose access
be too broad to capture requirements for them. Following, ug ajlowed in a mutually exclusive way.

cases are adapted to cope with real-time systems needs. 4 . Extend relation: As explained in [11], extension use
cases allow to add new behaviors into existing use cases

Fig. 2. Use case template

A. Restricted Use Cases

(which are called the base, or extended, use case). Theagse-c
% | technique is formulated such that the new behavior is desdri
Antor totally separate from the base use case. However, this may
System not be entirely true in real-time systems, since generdléy t
extended use case covers the base one. Thus, the base use
Fig. 1. UC diagram modeling constructs case is only taken into account, in the modeling process, for

completeness and clarity reasons. In this sense, the extend
1) Drawing Use CasesThe easiest and fastest way ofelation might be the more confusing one and its use is
using use cases is by drawing them. As stated in the UMdncouraged only when the extension comes out naturally or
standard [10] a UC diagram has four modeling constructg, (sgue to a refinement process of use cases.
Figure 1): system, actor, use case and communication lines4.c. Generalization relation: This kind of relation is only
that express relations between constructs. These cotstte allowed between actors and its semantics are similar toethos
briefly analyzed for the case of real-time systems as followsf the well-known inheritance relationship of object-miied
1. System construct: For systems that are composed ofrogramming.
hardware and software, as the case of real-time systenss, it i2) Writing Use CaseslUse case diagrams presented above
more appropriate to consider tiBystento be the software and lack of many details relevant to the analysis of the system
hardware composite. The system construct restricts theescainder construction. Although being extremely useful in st fir
of the application and includes all of its functionalitig¥ithin  stage, diagrams need to be refine and expanded to fully get the
the system construct is the purpose of the real-time systenmost out of use cases. The way of achieving a higher level of
2. Actor construct: An Actor represents a specifimle detail is bywriting use cases. This way of viewing use cases
played by an entity that residesitside the modelled system is further explained in [9], [5], [11].
and interactdirectly with it [4]. As a rule of thumb, any  Despite the fact of being some notations more accepted than
entity that interacts with the system but over which there thers, there is no standard when writing use cases. In this
no control is a possible actor. paper, a template is proposed to cope with the requirements
3. Use case construct: The functionality of a system is of a real-time system. The template is shown is Figure 2.
defined by differentuse casgseach of which represents a

specific flow of actions. A use case should focus on tl% Use Cases Architecture for Real-Time Systems



Stereotype Tag Example

1) Real-Time Systems Generic Architectufdie function-

. . . . . . . isSchedulable <transacti on>
ing of a generic real-time system is depicted in Figure 3. TheTransaction i sSchedul as true)
. e = true
framework is composed by one processor and a set of hardware patiemn <triggers
and software resources all of which are managed by the reaL—r. period TaskTrig =
i X . . rigger {pattern = 'period,
time kernel. Real-time tasks require the processor antksta period = 10ns}
a quality of service (QoS) contract to use it. It is worth ngti deadline <Lresponse
that the QoS contract represents non-functional requingsne <ePOnse {deadl i ne = 9nms}
The resources may be used by the real-time tasks that request Ispreemp. <<Sasgﬁ{/ggﬁgg?gf ce>
them and the real-time kernel provides the mechanisms foSaSharedResource {i ség eenp = FFall se,
controlling those accesses. Finally, the kernel allocales | sConsum = Fal s}
processor to the real-time tasks according to its QoS cointra Fig. 4. Subset of the MARTE profile.
RT-Kernel 1 _Administers 0. Resource . i .
- { [ o use case diagrams and a use case architecture for real-time
Manages systems is presented.
1 1.* 1 <<include>>

1

-------------- RT-Kernel
Processor | -~ 7 1. IRT-Task | | ME¥ A SSineyy, -
~~~~~ less

S O ¥ T
! % <<include>> p
O N e N -
QoS Contract ‘@ __________ SSing, @
System \‘\yg?f>
Actor - Task
. Manager
Resource
:

Fig. 3. A Real-Time System Framework Manager

—

Although the framework is expressed as a set of classes, the
model is not restricted to object-oriented technologiasit®
implementation [12], [13], [14].

2) Capturing Non-Functional Requirementds explained Fig. 5. Use case architecture for real-time systems.
in Section II-A, use cases capture the functional requirgme
of a system. However, a system, in general, has certainFigure 5 depicts the proposed use case architecture. On
constraints that are not functional. These kinds of coimgsa the right-hand side of the figure, the actors that represent
are Non-Functional Requirements (NFR). While functiondhe real-time kernel structure are shown. As can be seen,
requirements describ@hat the systendoes the set of NFR the only actors that directly interact with the system are th
describenowthe system is supposedtie. With this in mind, it Resource Managemwhich is in charged of handling shared
follows that NFR must be taken into account when analyzingsaftware resources, such as shared variables and inter-tas
particular system. In this sense, the UML profile for Modglincommunication mechanisms; and tHardware Managerthat
and Analysis of Real-Time and Embedded systems (MARTRJovides the necessary services to interact with the haewa
[15] is adopted in this paper to capture NFR. platform.

The MARTE profile is based ostereotypeshat provide the  On the left-hand side of Figure 5, an example of system
necessary capabilities to model domain-specific concépts.actor is depicted. This actor is in fact the one that requests
addition, stereotypes may have typed properties cadlgdief- certain services from the system through the different use
initions, that represent attributes or relations; armhstraints cases. Concerning uses cases, they can be divided in two
that represent restrictions. groups. The first group (which is composed G€C-1, UC-

When analyzing a particular system, generally an analygsix UC-2, UC-3, UC-4 andUC-EXx{) consists of the use cases
method does not map one-for-one to that particular system.requested by the system actor. These use cases are the actual
this sense, all analysis methods use a simplified/abstiast vfunctional requirements of the application being devetbpe
of the system to analyze, which focuses on those aspects Wditereas, the second grouipe( UC-Res UC-Devland UC-
are relevant to the associated analysis technique [16]s,Ttbu Dev2 is responsible for providing real-time kernel services
the aims of this paper, the MARTE profile is partially adoptedo the first group of use cases. This last concept is a subtle
just to express timing constraints typical in real-timeteyss. change in the point of view of use cases, since real-timedern
The limitation on the usage of the MARTE profile is donectors are not benefit from the system through their use cases
because this paper is focused on an early stage of the seftwaut they provide those benefits to the system by means of their
development lifecycle and there are aspects of the systatn thse cases. Nevertheless, this is just a different inteapoet,
might not be clear yet. Figure 4 shows the stereotypes udbé semantics of use cases remain actually unaltered.
in the proposed approach. With respect to the relationships among use cases, five types

3) Use Case Architecturein this section, the real-time of them are distinguished (from the top of Figure 5 to its
systems framework presented in Section [I-B1 is mapped bottom):

Hardware
Manager

Real-Time System




The first type of relation is the one that expresses the
use of an auxiliary use cas&lC-AuX by a base use case
(UC-1). This relation models a common interpretation of
the includerelation, which is the calling to an auxiliary
function. That isUC-1 needdJC-Auxin order to achieve

its goal.

When two or more use cases need to access the same
resource (as the case dC-1 andUC-2), that resource is
provided by theResource Managedaictor. Thus, both use
cases include the use case related to that share resource
(UC-Res.

The previous situation is analogous to that of a shared
hardware service. This relation is exemplified b{-2,

UC-3 and UC-Devl

When a use cas&JC-3) requests for a hardware service
(UC-Dev? that is not requested by any other use case,
the relation is straight. This relation is similar to that of
the first item, with the difference that in this relation both
use cases do not belong to the same group of use cases
(see the classification presented before this itemized list
Finally, there are analysis situations in which a use case
(UC-Ext) extends the capabilities of a base use case (UC-
4). This situation is to be handled carefully, since it is
very error prone.

C. Eliciting Real-Time Tasks from Use Cases

In

a real-time system, generally there is no much interactio 4)

between a human and the system. Nevertheless, if the system

has

significant external visible behavior, then use cases ar

useful to capture it. On the other hand, since real-timeesyst

are

composed of many tasks that do not have an external

behavior, use cases can also be useful to describing amahter
functionality of the system and not just its external bebavi
Following, a series of steps are presented to build use cases)

and
1)

2)

3)

elicit real-time task from them.

Define the system

The first thing that must be defined is what kind of
system is going to be built. By defining it in the first
place, the scope of the system can be narrowed. In order
to clearly and unambiguously define the system, the first
thing to do is naming it, then define its purpose and
finally write a short description of it.

Find the actors

Any entity that is outside the control of the system, but
interacts with the system is a possible actor. Usually, the
external entities that interact with a system are human
beings or external devices. The key to distinguish a user
from an actor is the role that the last one plays. A role 6)
focuses on the responsibilities not in the person. On the
other side, not every external device is an actor. A sensor
or actuator do not use the system, consequently they are
not external systems and then are not actors.

In order to find actors, every external entity that needs
to interact with the system has to be identified. Then, 7)
each actor must be named and described precisely.
Find the use cases

Each use case describes what the system does. Thus, the
key to find use cases is to identify the largest function-
alities of the system. Particularly, for real-time systems
a list of actor’'s tasks must be created and visualized as
use cases. Tasks are characterized as goals that actors
want to achieve. In many cases, the completion of those
tasks has an effect in the environment.
Naming the use case is essential. The name of the use
case must reflect the intention of the actor. A simple and
effective way of naming use cases is following Zhang'’s
rule [6]: “The<syst eni s nanme> is required[by the
<actor’s name>] to do<use case’s nane>.
As stated in Section [I-B3, there are two groups of use
cases: the ones that benefit an actor and the ones that
an actor provides to benefit others use cases. In general,
the second group is mostly composed of those use cases
provided by the real-time kernel actor and its specialized
ones. However, there are some exceptions as the case of
auxiliary use cases or extended ones. Concerning the
first group, use cases that benefit actors, they are the ac-
tual tasks that compose the system. Whereas, the others
are auxiliary functions. When naming both use cases a
distinction must be imposed. Consequently, the follow-
ing rule is applied: for functionscobject-<verb> and
for tasks <verb><object-. Thus, the use casgensor
read is a function andAdjust positionis a task.
Define inputs (monitored variables) and outputs (con-
trolled variables) for each use case
In general, monitored variables are associated to sensors
or external information and controlled variables are
associated to actuators or internal information. However,
some variables can be monitored and controlled at the
same time.
Solve overlaped use cases
Two or more actors can require the same use case from
the system. Mostly, the difference is that each actor has
a distinct interface or communication path. In order to
solve this situation, two alternatives are given:
B Leave one single use case, that is shared by many
actors. In this case, a mechanism to control the
access is needed, since there might be several paths

from several actors to reach the use case. )
B Split the use case in as many ones as actors trying

to access the original one.

Note that this step is referred only to use cases belonging
to the group that benefits actors and not to those that
offer benefits.

Write use cases in textual form

A use case is a sequence of actions. This flow of actions
is complete and meaningful. Base on the template of
Section II-A to write a detailed description of each use
case. In this step try to be more specific than in any
previous one.

Refine tasks according to variables

Taking into account the monitored and controlled vari-
ables of Step 4, refine each use case text corresponding



to a task. Concerningork andjoin nodes, they are subjected to a special
8) Define non-functional requirements treatment. This nodes are used to show the interaction leetwe
In this case, focus non-functional requirements only dihe real-time tasks and the real-time kernel. This intéoact
timing constraints and shared resources. Thus, defioen be done basically because of a hardware system call or
for each task: deadline and period; and for each sharkdcause two or more tasks share a resource. Finally, in the
use case in the diagram, characterize it. The definitimase of auxiliary procedures, the usesnib-activitystates is
of non-functional requirements has to be done with thencouraged.
MARTE profile. The main advantages of having restricted activity diagrams
9) Balance tasks are: simplicity in the model and ease in the automatic code

In order to balance the complexity of tasks, evergeneration from the graphic model.
use case must be revisited and carefully analyzed. -
balancing tasks the system will not have some tasks Describing Tasks
extremely complex and some almost trivial. But, they The process of describing tasks is divided in two parts.
will have an even level of complexity. This is, of courseln the first part, the mapping between situations that anse i
unless the system imposes to do the opposite. Use Case Diagrams and their corresponding ones of Activity
A way to discover that a task is not actually one pupiagrams is made. This is done by showing how the Use Case
two different ones is through timing constraints. If a us@'chitecture for Real-Time Systems is translated to Agjivi
case has, for instance, two deadlines is natural to thig#agrams. In the second part, the detailed process of mgppin
that the supposed task is not one but two. Thus, it @ach use case to an Activity Diagram and the description of
necessary to refine it and rewrite it. its behavior is done. _ _ _

It is worth mentioning, that the proposed method is itegativ Figures 6 t0 10 show the previously mentioned mapping.

and must be repeated until reaching a satisfactory level gy particular, the way of expressing the use of an auxiliary
detail unction is depicted in Figure 6. In order to use a shared

resource or a device by two tasks, there must be some kind of
[1l. TASK’S BEHAVIOR DESCRIPTION synchronization mechanism imposed by the real-time kernel

Once requirements are captured and tasks are identified, Mi@reover, the real-time kernel is the one that actuallyiearr
next step is to describe those tasks precisely and unbiguou@ the update on a shared resource or the hardware service
This is, requirements must be specified by means of tagké Means of its Application Programming Interface (API).
descriptions. In order to describe the behavior of a tasitlfir | "€S€ two situations are depicted in Figure 7 and in Figure 8,
Activity Diagrams need to be adapted and restricted tofyatig€SPectively. On the other hand, when only one task asks for a
the needs of a real-time system. Once that new characierizak€"nel service, there is no need for synchronization. Tths,

is done, use cases can be easily translated to Activity Biagr MaPPINg is similar to that of an auxiliary function, but magi
in order to precisely describe their behavior. clear that the requested service belongs to the real-tinmeeke

(see Figure 9). Finally, the last mapping has to do with the
A. Restricted Activity Diagrams extension relation. In Figure 10 can be seen that the use case

An Act|v|ty Diagram iS Composed Of Severa' mode”ndhat iS in faCt translated to an aCtiVity diagl’am iS the edm:h
constructs and it describes a logical unit of work [10]. Inca@nd not the base one. This follows from a previous discussion
be broken down iractions An action is the smallest unit of about theextendrelation.

work that is not decomposed any further. The sequencing of
actions is controlled by control flow edges. Actions are ¢oin
by edges that represent process flows or events. D
Before presenting the restrictions imposed to Activity Di- C 2 } Auxiliary
D
@«mclude» ®

.. e function

agrams, the why for thoseestrictionsmust be clarified and
explained. In the first place, there are certain functidiessli
(constructs) that to the aims of this paper are useless. For  (Uc)~"eHe=
instance, object-oriented constructors. In the same lihe o
reasoning, there are situations not allowed in the approach
For instance, those that imply sending or receiving sigoals Fig. 6. Auxiliary function mapping.
events.

In general, real-time tasks are a finite, sequential controlBefore starting with the process of describing behavior
flow that has a particular purpose. Having this in mindtself, it would be interesting to classify the elicited kas
in the approach proposed in this paper neither sending ritbat arise from the use case analysis phase. This classifi-
receiving signals or events is allowed; since synchroiimat cation might be very useful in the following stages of the
is achieved by means of shared variables. In addition, &myth development process and can also be helpful to detect the
related to objects management is also not permitted, simpecurrence of mistaken analysis choices. In this respéeng
the approach is not restricted to object-oriented progrargm [6] identifies three kinds of objects that come from use cases

(a) Use case. (b) Activity diagram.



RT-Task1 RT-Kernel RT-Task2

% by Kimour and Meslati [7], but having into account the

restrictions and characteristics of the model proposedis t

<0 paper. The method is iterative. During the process, the use
OG> SSingy, § caction cases texts may be looked through, changed and enhanced to
T S untock0 exhibit a greater degree of accuracy and details. In additio

44-\_n,\,“5’?7'7’ detected ambiguities, inconsistencies and errors areveto
’ Kimour and Meslati proposed a three step method, in which
(a) Use case. (b) Activity diagram. each step consists of an iteration. Following, the desonpt
and necessary adaptations to that method are presented:

Activity Iteration: The use case text is transformed into an

alis

Fig. 7. Shared resource mapping.

RT-Task2 | RiKemel | Ri-Tasid activity diagram. It is important to model the normal flow of
% % actions first and then integrate the exception flow. Alsohia t
e iteration, possible concurrency between actidres the cases
§* Shared of Figure 7, 8 and 9) are specified. Finally, guard conditions
@i‘i’lc(ug&s ‘iv"iocw on edges or within decision nodes are placed.
Lot %ﬁ/ \%; _Acpon Iterauon_: _Each acuon is specn‘n_ad according to the
@ criteria used to distinguish auxiliary functions from tasknd

enhancing the level of detail by taking into account the API
provided by real-time kernel. Besides, for each action it is
Fig. 8. Shared device mapping. necessary to specify the input and output variables that are
involved. Guard conditions should be revisited and refiried.
is worth noting, that an action should refer to no more than
1) control objects, to coordinate the interactions betwi#n one system unit or one actor.
system and the actors; 2) entity objects, that executeregtio Consistency lIteration: The activity diagram is checked
and 3) interface objects, that communicate with externtarac for internal completeness and consistency. Moreoverngmi
In this paper, there is no restriction to object-oriented-pr constraints are further checked and refined according to the
gramming. However, Zhang’s classification can still be &zbl MARTE profile.
with just some subtle adaptations. Thus, the classificasi@s  As was previously mentioned, the above is an iterative
follows: control objects are related to mutual exclusioroagn method and as such each special iteratian éctivity, action
tasks and task management (creation, destruction, séhgduland consistency) must be further repeated until achieving a
activation, etc.). Those control objects are, in this papsl- satisfactory level of detail.
time kernel primitives that deal with software issues. Enes
primitives differ from those of the interface objects in tllae
last ones are related to hardware issues. Finally, Zhamgjitye  In order to exemplify the proposed approach, a simple
objects are actually tasks themselves. application is presented: a Line-Follower Robot. The psgo
The process of describing tasks is based on the one propogkthis system is to control a robot, so that it follows a black
line painted in a white floor. The robot has two light sensors
and two motors that are controlled by the application. In
addition, the robot has another sensor (a touch sensor) that
é) is used to check for obstacles and avoid them. The system
D}f&'flﬁé was actually implemented in a ngo Mindstorms platform. It
is worth noting, that the application to control the robotswa
@ffi_"_cl_uz’?ii_, % running on top of an Real-Time Operating System developed

by the authors [17]. Thus, the generic architecture progose

(a) Use case. (b) Activity Diagram.

IV. EXAMPLE: LINE-FOLLOWER ROBOT

RT-Task3 RT-Kernel

(&) Use case. (b) Activity diagram. in Figure 5 fits the needs of this particular application.
Fig. 9. Device usage mapping. In Figure 11 the use case diagram of the Line-Follower
System along with its MARTE profile annotations is depicted.
|RT-Tasks Extended| As stated above, the analysis begins by capturing userreequi

ments through use cases. From that analysis follows theg the
are three main tasks in the systemAb)just Position2) Check
Collision and 3)Move Forward This last taskMove Forward
<<extend>> _ is actually an initialization task. This is, the robot is poged
to start with the black line below it and the light sensors
pointing at the white floor. So, the robot moves forward for a
certain amount of time following the black linklove Forward
Fig. 10. Extension mapping. is in fact a one-shot task. Task number@heck Collisionhas

(a) Use case. (b) Activity di-
agram.



Check Collision
Lego Robot
Detects whether the robot crashed into
an obstacle and if so avoids it.
1.a. Determine whether an
obstacle was crashed.
2. Exit use case.
1.b. The robot is crashing into an obstacle.
1.b.1 Avoid the obstacle.
1.b.2 Exit use case

Name:
Actor:

an auxiliary procedureQ@bstacle Dodg®, which is called in
case that the calling t8ensor Crash Rearkturns that there
is an obstacle. It is worth noting, that both use caskwe

Forward and Obstacle Dodganclude the use cases related
with the motors, however in order not to bother with so ma
arrows they are omitted in the figure. The same criterion

used to annotate the diagram with the MARTE’s stereotyp

Description:

Execution flow:

Exception flow:

(i.e, just a couple of use cases are annotated).

<<transaction>>
AdjustLeftPosition
{isSchedulable=true}
<<trigger>>
RT-Timer
{pattern='period',
period=100ms}
<<response>>
AdjustLeftPosition
{deadline=100ms}

<<SaSharedResource>>
SensorLeft
{isPreemp=false
isConsum=false}

<

; Sensor
N de>>,
Tiove o <<|nclu/§‘__ é‘:gd
Forward ~ -
Adjust

RT-Kernel

Resource
Manager

Task

Monitored variables:
Controlled variables:
NFR:

crashSensor

None

e The checking for collision

should be done periodically with

a frequency lower than a second.

e The obstacle avoidance manuever should
be able to avoid an object of at mostc322.

Fig. 12.

Check Collision Use Case.

o P(;-seitfiton <sinclude>> Manager i —
ccoenti-- (oo (Motor Name: Adjust Left Position

%_( <<in0YdSZ5ALeft Set Actor: Lego Robot

OO & OXtongs,  <SinGludass Description: Adjusts the Lego robot left side
Leso~ | =2 / Motor 5 3
fego Adjust Right Set/—T——— to be over the painted line.

ight ) - . : .
Position, £ zrciude™> Ciariare Execution flow: 1. Determine whether the robot
Manager is over the line.

<<transaction>> E>
CheckCollision
{isSchedulable=true}
<<trigger>>

Obstacle
Dodge

Check . N
.ElePJE‘ﬂe» <<include>> Sl%?;sh?r
. R

<<include>3>™, .

Line-Follower System

ead

Sensor
Crash
Read <

s

RT-Timer

period=900ms)
<<response>>

{pattern='period"',

<SaSharedResource>>|
SensorLeft
{isPreemp=false

Fig. 11.

Use case diagram of a Line-Follower System

Exception flow:

NFR:

2.a. The robot is correctly positioned.
3. Move forward.

4. Exit use case.

2.b. The robot is not over the line.
2.b.1. Turn robot to the left.

2.b.2. Move forward.
2.b.3. Exit use case.

CheckCollision isConsum=false} Monitored variables: | ef t Sensor
{deadline=900ms} . ’
Controlled variables: | ef t Mot or
ri ght Mot or

e Left position should be adjusted

periodically every 100ms.

e The turning left manuever should
not exceed 10 degrees.

e Moving forward should not exceed
a distance of 1cm.

Fig. 13. Adjust Left Position Use Case.

During the process of tasks elicitation, it came up that task
Adjust Positionhad to be refined and balanced since its input
and output variables along with its time constraints densand
it so. Thus,Adjust Positionwas actually refined into two
different tasks:Adjust Left Positiorand Adjust Right Position
They both do not share any of the two light sensor, so they

respectively call for the RT-Kemnel servic&nsor Left Read kerel serviceSensorCrashReatihat interaction between the
and Sensor Right ReacHowever, both task share the twoyser task and the Real-Time Kerel is shown by, the use of
motors. _Thl_s is because in order to, for example, turn |_ef)tartitions that separate the two different spaces. Howener
the application must stop the left motor and advance thé righjs case no synchronization mechanism is used since toh tou
one. It is worth noting, that the mutual exclusion mechanisgensor is not shared by any other task. The second character-
for the two motors must be provided by the RT-Kernel sincGgtic has to do with the calling to an auxiliary function. The
it manages the hardware services. o calling is shown by the use a sub-activity state and the &ctua

‘The next step in the process is writing use cases. Jiliary function is depicted in a separate Activity Diagr
Figure 12 and Figure 13 two representative cases are sho\gge Figure 14(b)). The functioBbstacleDodgeses a trivial
CheckCollisionand AdjustL eftPosition algorithm to avoid an obstacle. The interesting thing irs thi

Once use case texts are written, they are translated {(yction is the presence of synchronization mechanismasho
Activity Diagrams. Note the use of the slanted font style an& the usage of fork and join states in the Real-Time Kernel
the removal of blank spaces in the task’s names. This is d%’@rtition).

to distinguish an Activity Diagram name from use case name e taskAdjustL eftPosition(see Figure 15) uses a variable
(which uses an italic font style). The tagkheckCollisionis  gansLft St at when calling the Real-Time Kernel service

shown in Figure 14(a). Note that its execution flow is vergansor eftReadBased on the value of that variable it decides

simple, but it has two noticeable characteristics. In thst firnother to move forward. because the robot is correctly

place, CheckCollisionuses a touch sensor to detect whethgfysitioned on its left side; or to tumn a little to the left. @h

the robot crashed or not. Thus, it needs to call the Real-Ti\g,q jittle might sound vague, but the numerical values shown

in the Activity Diagram were actually calculated based oa th
speed of the robot and the width of the line. In the actual

INote the usage of the rule for naming tasks and auxiliary tians
presented in Section II-C.



ObstacleDodge RT-Kernel

o—

were very helpful to the development of this paper and served
as a starting point to the further working out of several @& th
ideas here exposed.

Some of the first works on requirement engineering for real-
time systems can be found in [18], [19]. Particularly, in][&9
formal model for analyzing requirements for real-time prss-
control systems is presented. In the case of [18], formal
techniques for supporting the nature of real-time systems
are developed. Some interesting results from the practical
experience of applying use cases in the construction of real
time system are shown in [6]. The outstanding contributibn o
the previous paper had to do with the introduction afidual
actor, which is a well-defined role played by an ill-defined
user. Another report on practical experience, but focused o
the automotive domain is [8]. On the other hand, [4] makes
an extensive and deep analysis on the usage of use cases for

love Backwards
100ms

Move Forward
100ms

urn Right 90°

Move Forward
200ms

urn Right 90°

Move Forward
100ms

CheckCollisionTask RT-Kernel

collision = False)—

‘SensorCrashRead
(collision)

collision == False

collision == True

Obstacle Turn Left 90°

Dodge <§>

® . real-time embedded systems by describing their suitgidit
this domain. In addition, the authors presented a method for
@) (b) guiding the process of requirements elicitation. Finahyj7],
Fig. 14. TaskCheckCollision the authors presented a method based on use case texts to

derive objects in a real-time environment.

implementation, the Lego Mindstorms robot slightly weaves VI. CONCLUSIONS

in and out of the black line while moving forward. Scheduling theory is the branch of real-time theory in ckarg
of providing a designer with the necessary tools to make him
AdjustLeftPositionTask RT-Kernel sure that the system meets its intrinsic timing constraints
However, the theory is not very clear about how to define those
I tasks. In this paper, Requirements Engineering concepts we
_—l used to help the system analyst discover and charactense th
SomorLeftRond tasks. Thus, making it easier to apply the real-time scliegul

(sensLftStat) theory.

22 WHITE The analysis of any system begins with the gathering of
user requirements. In the case of real-time systems, those

requirements represents the functionalities of the sysTéis

50ms is, the tasks that compose the system. In this sense, a method
for task elicitation from user requirements was developed
using use cases. In addition, a generic use case archéectur
for real-time systems was also presented. This architedtur
useful, since it includes most of the situations that caseain
this kind of systems and serves as a starting point for amajyz
any system in this application domain.

Once tasks are elicited, the next step is describing their
behavior. In order to do that, Activity Diagrams were restid
and adapted to real-time systems needs. Then, a method to
turn use case texts into those restricted activity diagramas
presented. With this, each task behavior can be precisely
described.

Finally, the proposed approach was empirically verified
by analyzing a Line-Follower robot. The case study was
implemented in a free real-time operating system and it was
used to exemplify the concepts introduced in the paper.

sensLftStat == BLACK

MotorLeftSet
(STOP)

MotorRightSet
(Move Forward 25ms

Move Forward
25ms

@~

Fig. 15. TaskAdjustLeftPosition

V. RELATED WORKS

Several approaches and methods have been proposed to .
describe the process of building use cases. Although, nof# L. Sha, T. Abdelzaher, K.-EArzén, A. Cervin, T. Baker, A. Bums,
fth ddress the main topic of this paper. that is to elicit G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Realetim
Y gm a ! p'_ IS paper, .| ICI scheduling theory: A historical perspectiveReal-TimeSyst., vol. 28,
real-time tasks from user requirements, those previouksvor  no. 2-3, pp. 101-155, 2004.
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