
From User Requirements to Tasks Descriptions in
Real-Time Systems

Leo Ordinez, David Donari, Rodrigo Santos and Javier Orozco

Instituto de Investigaciones en Ingenierı́a Eléctrica
Universidad Nacional del Sur - CONICET
Av. Alem 1253 - Bahı́a Blanca - Argentina

{lordinez, ddonari, ierms, jorozco}@uns.edu.ar

Abstract—Real-time scheduling theory has made a great
progress in the last decades. From small devices to enormous
satellites or industrial plants take advantage of this ongoing
research. However, to the authors belief, there is still a gap to
fully exploit the benefits of the theory.

The cornerstone of real-time scheduling theory is the concept
of task. Nevertheless, very little is mentioned about how to
discover such tasks. Thus, the objective of this paper is to
propose a systematic way of describing real-time tasks by means
of requirements elicitation. The process begins with the gathering
of user requirements through Use Case Diagrams. Then, those
use cases are refined to turn them into tasks descriptions. Lastly,
tasks descriptions are further refined and brought to a detailed
characterization of individual execution flows. This final tasks
characterization is made with Activity Diagrams.

Finally, a Line-Follower System is used to exemplify the
proposed approach.

Index Terms—real time systems; software requirements and
specifications; software tools; software testing

I. M OTIVATION

Real-time software systems are systems that have strict
timing constraints in their specification. This is, not only
they have to be functionally correct, but they also have to
meet certain intrinsic timing restrictions, that arise from the
problem definition itself. Therefore, the analysis of this kind
of systems implies a careful study of functional and non-
functional requirements in a stage as early as possible.

Within real-time systems theory, there is a particular branch
that deals specially with the meeting of timing constraints:
the real-time scheduling theory[1]. The cornerstone of real-
time scheduling theory is the concept of task. Basically, a
real-time task is a software component which has a particular
purpose within the system. In Jackson’s terms [2], the previous
statement can be rewritten as:a task is a specification of a
software requirement extracted from the application domain.
In this manner, a real-time system is said to be composed of
tasks, that perform the necessary functions to fulfill the user
requirements. Thus, simplistically the complete set of tasks
answers the question:What does the system do?Nevertheless,
very little is mentioned in the specialized literature about how
to discover such tasks. In this sense, the analysis of real-time
systems is in most cases a job, where experience plays a
determining role. However, experience is not enough to get

an optimal analysis, that allows to efficiently obtain a correct
design [3].

The implementation of a real-time system begins, like any
other software system, with the description of a problem to be
solved. This description is not always (almost never) formal
and fully detailed. Usually, the description is ambiguous,with
little details, not very clear and in colloquial language. This
leads to the problem of investigating, inquiring and analyzing
many things to finally describe precisely the problem to be
solved. However, this is just the problem description. From
the problem description to the identification and subsequent
behavioral description of the different tasks to be implemented
there is still a long way. Moreover, without that identification it
is extremely difficult to apply the real-time scheduling theory.

With all, the objective of this paper is to propose a
systematic way of describing real-time tasks by means of
requirements elicitation. The process begins with the gathering
of user requirements through Use Case Diagrams. Then, those
use cases are refined to turn them into tasks descriptions.
Lastly, tasks descriptions are further refined and brought to
a detailed characterization of individual execution flows.This
final task characterization is made with Activity Diagrams.

A. Specific Contributions

The main contributions of this paper include:
N The adaptation of use cases to deal with real-time
systems needs.

N The presentation and discussion of a use case architec-
ture for real-time systems.

N A method for eliciting tasks through user requirements
and use cases.

N The adaptation of activity diagrams to deal with real-
time tasks.

N A method for describing the behavior of tasks.

B. Paper Organization

After this introduction, the rest of the paper is organized as
follows: in Section II, use cases are adapted to handle real-
time systems requirements. In addition, a use case generic
architecture is developed for this application domain and a
method to elicit tasks adjusted to that architecture is also
presented. In Section III, the previously mentioned tasks are



refined and their behavior is described in detail. An exampleof
a Line-Follower robot is presented in Section IV to illustrate
the proposed approach. Finally, conclusions are derived in
Section VI.

II. TASKS ELICITATION THROUGH REQUIREMENTS

In this section, a method for gathering user requirements
through use cases is developed. The method shares basic
aspects commonly found in the literature [4], [5], [6], [7],
[8], but introduces some improvements for dealing specifically
with real-time systems. In this sense, use cases are adapted
(restricted) to cope with real-time systems needs and a generic
use cases architecture is developed for this kind of problem
frame. Finally, real-time tasks are elicited from those gathered
requirements and briefly described.

A. Restricted Use Cases

Use cases are simply an alternative mean of specifying
requirements [9]. Afunctionalrequirement defines a function
of a software system; while anon-functional requirement
specifies criteria that can be used to judge the operation of
a system, rather than specific behaviors. In this sense, a Use
Case diagram (UC) [10] describeswhat the system does.

As was mentioned in Section I, applications with timing
constraints need a different treatment from other kind of
applications. In particular, uses cases as presented in [10] may
be too broad to capture requirements for them. Following, use
cases are adapted to cope with real-time systems needs.

Fig. 1. UC diagram modeling constructs

1) Drawing Use Cases:The easiest and fastest way of
using use cases is by drawing them. As stated in the UML
standard [10] a UC diagram has four modeling constructs, (see
Figure 1): system, actor, use case and communication lines,
that express relations between constructs. These constructs are
briefly analyzed for the case of real-time systems as follows:

1. System construct: For systems that are composed of
hardware and software, as the case of real-time systems, it is
more appropriate to consider theSystemto be the software and
hardware composite. The system construct restricts the scope
of the application and includes all of its functionalities.Within
the system construct is the purpose of the real-time system.

2. Actor construct: An Actor represents a specificrole
played by an entity that residesoutside the modelled system
and interactsdirectly with it [4]. As a rule of thumb, any
entity that interacts with the system but over which there is
no control is a possible actor.

3. Use case construct: The functionality of a system is
defined by differentuse cases, each of which represents a
specific flow of actions. A use case should focus on the

Item Description
NAME The use case name
ACTOR The actor involved
DESCRIPTION What does the use case do?
EXECUTION FLOW Normal execution flow
EXCEPTION FLOW Exception execution flow
MONITORED VARIABLES Explained in Section II-C
CONTROLLED VARIABLES Explained in Section II-C
NFR Non-functional requirements

(specially timing constraints)

Fig. 2. Use case template

purposes of the system. This way, the total collection of
use cases will actually form the complete functionality of the
system under specification.

It is worth noting, that a use case can be initiated internally
by the system (e.g., according to time) and not only externally
by an actor. And it can describe internal functionality of a
system and not only its external behavior.

4.a. Include relation: This stereotyped relation is used to
point out that a use case has some kind of dependency on
another use case to achieve its goal. Two kinds of dependencies
are identified in real-time systems analysis:functional depen-
dencyandsharing dependency. In the first case, the execution
of a task cannot begin until the execution of another task has
finished. While in the second kind of dependency, both tasks
can run concurrently, but they share a resource whose access
is allowed in a mutually exclusive way.

4.b. Extend relation: As explained in [11], extension use
cases allow to add new behaviors into existing use cases
(which are called the base, or extended, use case). The use-case
technique is formulated such that the new behavior is described
totally separate from the base use case. However, this may
not be entirely true in real-time systems, since generally the
extended use case covers the base one. Thus, the base use
case is only taken into account, in the modeling process, for
completeness and clarity reasons. In this sense, the extend
relation might be the more confusing one and its use is
encouraged only when the extension comes out naturally or
due to a refinement process of use cases.

4.c. Generalization relation: This kind of relation is only
allowed between actors and its semantics are similar to those
of the well-known inheritance relationship of object-oriented
programming.

2) Writing Use Cases:Use case diagrams presented above
lack of many details relevant to the analysis of the system
under construction. Although being extremely useful in a first
stage, diagrams need to be refine and expanded to fully get the
most out of use cases. The way of achieving a higher level of
detail is bywriting use cases. This way of viewing use cases
is further explained in [9], [5], [11].

Despite the fact of being some notations more accepted than
others, there is no standard when writing use cases. In this
paper, a template is proposed to cope with the requirements
of a real-time system. The template is shown is Figure 2.

B. Use Cases Architecture for Real-Time Systems



1) Real-Time Systems Generic Architecture:The function-
ing of a generic real-time system is depicted in Figure 3. The
framework is composed by one processor and a set of hardware
and software resources all of which are managed by the real-
time kernel. Real-time tasks require the processor and establish
a quality of service (QoS) contract to use it. It is worth noting
that the QoS contract represents non-functional requirements.
The resources may be used by the real-time tasks that request
them and the real-time kernel provides the mechanisms for
controlling those accesses. Finally, the kernel allocatesthe
processor to the real-time tasks according to its QoS contract.

Fig. 3. A Real-Time System Framework

Although the framework is expressed as a set of classes, the
model is not restricted to object-oriented technologies for its
implementation [12], [13], [14].

2) Capturing Non-Functional Requirements:As explained
in Section II-A, use cases capture the functional requirements
of a system. However, a system, in general, has certain
constraints that are not functional. These kinds of constraints
are Non-Functional Requirements (NFR). While functional
requirements describewhat the systemdoes, the set of NFR
describehowthe system is supposed tobe. With this in mind, it
follows that NFR must be taken into account when analyzing a
particular system. In this sense, the UML profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE)
[15] is adopted in this paper to capture NFR.

The MARTE profile is based onstereotypes, that provide the
necessary capabilities to model domain-specific concepts.In
addition, stereotypes may have typed properties calledtag def-
initions, that represent attributes or relations; andconstraints,
that represent restrictions.

When analyzing a particular system, generally an analysis
method does not map one-for-one to that particular system. In
this sense, all analysis methods use a simplified/abstract view
of the system to analyze, which focuses on those aspects that
are relevant to the associated analysis technique [16]. Thus, to
the aims of this paper, the MARTE profile is partially adopted,
just to express timing constraints typical in real-time systems.
The limitation on the usage of the MARTE profile is done
because this paper is focused on an early stage of the software
development lifecycle and there are aspects of the system that
might not be clear yet. Figure 4 shows the stereotypes used
in the proposed approach.

3) Use Case Architecture:In this section, the real-time
systems framework presented in Section II-B1 is mapped to

Stereotype Tag Example

Transaction
isSchedulable ≪transaction≫

RTTask1
{isSchedulable = true}

Trigger

pattern ≪trigger≫
period TaskTrig

{pattern = ’period’,
period = 10ms}

Response
deadline ≪response≫

RTTask1
{deadline = 9ms}

SaSharedResource

isPreemp ≪SaSharedResource≫
isConsum ShVariable

{isPreemp = False,
isConsum = False}

Fig. 4. Subset of the MARTE profile.

use case diagrams and a use case architecture for real-time
systems is presented.

Fig. 5. Use case architecture for real-time systems.

Figure 5 depicts the proposed use case architecture. On
the right-hand side of the figure, the actors that represent
the real-time kernel structure are shown. As can be seen,
the only actors that directly interact with the system are the
Resource Manager, which is in charged of handling shared
software resources, such as shared variables and inter-task
communication mechanisms; and theHardware Manager, that
provides the necessary services to interact with the hardware
platform.

On the left-hand side of Figure 5, an example of system
actor is depicted. This actor is in fact the one that requests
certain services from the system through the different use
cases. Concerning uses cases, they can be divided in two
groups. The first group (which is composed ofUC-1, UC-
Aux, UC-2, UC-3, UC-4 andUC-Ext) consists of the use cases
requested by the system actor. These use cases are the actual
functional requirements of the application being developed.
Whereas, the second group (i.e., UC-Res, UC-Dev1andUC-
Dev2) is responsible for providing real-time kernel services
to the first group of use cases. This last concept is a subtle
change in the point of view of use cases, since real-time kernel
actors are not benefit from the system through their use cases,
but they provide those benefits to the system by means of their
use cases. Nevertheless, this is just a different interpretation,
the semantics of use cases remain actually unaltered.

With respect to the relationships among use cases, five types
of them are distinguished (from the top of Figure 5 to its
bottom):



� The first type of relation is the one that expresses the
use of an auxiliary use case (UC-Aux) by a base use case
(UC-1). This relation models a common interpretation of
the include relation, which is the calling to an auxiliary
function. That is,UC-1 needsUC-Auxin order to achieve
its goal.

� When two or more use cases need to access the same
resource (as the case ofUC-1 andUC-2), that resource is
provided by theResource Manageractor. Thus, both use
cases include the use case related to that share resource
(UC-Res).

� The previous situation is analogous to that of a shared
hardware service. This relation is exemplified byUC-2,
UC-3 andUC-Dev1.

� When a use case (UC-3) requests for a hardware service
(UC-Dev2) that is not requested by any other use case,
the relation is straight. This relation is similar to that of
the first item, with the difference that in this relation both
use cases do not belong to the same group of use cases
(see the classification presented before this itemized list).

� Finally, there are analysis situations in which a use case
(UC-Ext) extends the capabilities of a base use case (UC-
4). This situation is to be handled carefully, since it is
very error prone.

C. Eliciting Real-Time Tasks from Use Cases

In a real-time system, generally there is no much interaction
between a human and the system. Nevertheless, if the system
has significant external visible behavior, then use cases are
useful to capture it. On the other hand, since real-time systems
are composed of many tasks that do not have an external
behavior, use cases can also be useful to describing an internal
functionality of the system and not just its external behavior.
Following, a series of steps are presented to build use cases
and elicit real-time task from them.

1) Define the system
The first thing that must be defined is what kind of
system is going to be built. By defining it in the first
place, the scope of the system can be narrowed. In order
to clearly and unambiguously define the system, the first
thing to do is naming it, then define its purpose and
finally write a short description of it.

2) Find the actors
Any entity that is outside the control of the system, but
interacts with the system is a possible actor. Usually, the
external entities that interact with a system are human
beings or external devices. The key to distinguish a user
from an actor is the role that the last one plays. A role
focuses on the responsibilities not in the person. On the
other side, not every external device is an actor. A sensor
or actuator do not use the system, consequently they are
not external systems and then are not actors.
In order to find actors, every external entity that needs
to interact with the system has to be identified. Then,
each actor must be named and described precisely.

3) Find the use cases

Each use case describes what the system does. Thus, the
key to find use cases is to identify the largest function-
alities of the system. Particularly, for real-time systems
a list of actor’s tasks must be created and visualized as
use cases. Tasks are characterized as goals that actors
want to achieve. In many cases, the completion of those
tasks has an effect in the environment.
Naming the use case is essential. The name of the use
case must reflect the intention of the actor. A simple and
effective way of naming use cases is following Zhang’s
rule [6]: “The<system’s name> is required[by the
<actor’s name>] to do<use case’s name>.”
As stated in Section II-B3, there are two groups of use
cases: the ones that benefit an actor and the ones that
an actor provides to benefit others use cases. In general,
the second group is mostly composed of those use cases
provided by the real-time kernel actor and its specialized
ones. However, there are some exceptions as the case of
auxiliary use cases or extended ones. Concerning the
first group, use cases that benefit actors, they are the ac-
tual tasks that compose the system. Whereas, the others
are auxiliary functions. When naming both use cases a
distinction must be imposed. Consequently, the follow-
ing rule is applied: for functions<object><verb> and
for tasks<verb><object>. Thus, the use caseSensor
read is a function andAdjust positionis a task.

4) Define inputs (monitored variables) and outputs (con-
trolled variables) for each use case
In general, monitored variables are associated to sensors
or external information and controlled variables are
associated to actuators or internal information. However,
some variables can be monitored and controlled at the
same time.

5) Solve overlaped use cases
Two or more actors can require the same use case from
the system. Mostly, the difference is that each actor has
a distinct interface or communication path. In order to
solve this situation, two alternatives are given:
� Leave one single use case, that is shared by many

actors. In this case, a mechanism to control the
access is needed, since there might be several paths
from several actors to reach the use case.

� Split the use case in as many ones as actors trying
to access the original one.

Note that this step is referred only to use cases belonging
to the group that benefits actors and not to those that
offer benefits.

6) Write use cases in textual form
A use case is a sequence of actions. This flow of actions
is complete and meaningful. Base on the template of
Section II-A to write a detailed description of each use
case. In this step try to be more specific than in any
previous one.

7) Refine tasks according to variables
Taking into account the monitored and controlled vari-
ables of Step 4, refine each use case text corresponding



to a task.
8) Define non-functional requirements

In this case, focus non-functional requirements only on
timing constraints and shared resources. Thus, define
for each task: deadline and period; and for each shared
use case in the diagram, characterize it. The definition
of non-functional requirements has to be done with the
MARTE profile.

9) Balance tasks
In order to balance the complexity of tasks, every
use case must be revisited and carefully analyzed. By
balancing tasks the system will not have some tasks
extremely complex and some almost trivial. But, they
will have an even level of complexity. This is, of course,
unless the system imposes to do the opposite.
A way to discover that a task is not actually one but
two different ones is through timing constraints. If a use
case has, for instance, two deadlines is natural to think
that the supposed task is not one but two. Thus, it is
necessary to refine it and rewrite it.

It is worth mentioning, that the proposed method is iterative
and must be repeated until reaching a satisfactory level of
detail.

III. TASK’ S BEHAVIOR DESCRIPTION

Once requirements are captured and tasks are identified, the
next step is to describe those tasks precisely and unbiguously.
This is, requirements must be specified by means of tasks
descriptions. In order to describe the behavior of a task, firstly
Activity Diagrams need to be adapted and restricted to satisfy
the needs of a real-time system. Once that new characterization
is done, use cases can be easily translated to Activity Diagrams
in order to precisely describe their behavior.

A. Restricted Activity Diagrams

An Activity Diagram is composed of several modeling
constructs and it describes a logical unit of work [10]. It can
be broken down inactions. An action is the smallest unit of
work that is not decomposed any further. The sequencing of
actions is controlled by control flow edges. Actions are joined
by edges that represent process flows or events.

Before presenting the restrictions imposed to Activity Di-
agrams, the why for thoserestrictionsmust be clarified and
explained. In the first place, there are certain functionalities
(constructs) that to the aims of this paper are useless. For
instance, object-oriented constructors. In the same line of
reasoning, there are situations not allowed in the approach.
For instance, those that imply sending or receiving signalsor
events.

In general, real-time tasks are a finite, sequential control
flow that has a particular purpose. Having this in mind,
in the approach proposed in this paper neither sending nor
receiving signals or events is allowed; since synchronization
is achieved by means of shared variables. In addition, anything
related to objects management is also not permitted, since
the approach is not restricted to object-oriented programming.

Concerningfork andjoin nodes, they are subjected to a special
treatment. This nodes are used to show the interaction between
the real-time tasks and the real-time kernel. This interaction
can be done basically because of a hardware system call or
because two or more tasks share a resource. Finally, in the
case of auxiliary procedures, the use ofsub-activitystates is
encouraged.

The main advantages of having restricted activity diagrams
are: simplicity in the model and ease in the automatic code
generation from the graphic model.

B. Describing Tasks

The process of describing tasks is divided in two parts.
In the first part, the mapping between situations that arise in
Use Case Diagrams and their corresponding ones of Activity
Diagrams is made. This is done by showing how the Use Case
Architecture for Real-Time Systems is translated to Activity
Diagrams. In the second part, the detailed process of mapping
each use case to an Activity Diagram and the description of
its behavior is done.

Figures 6 to 10 show the previously mentioned mapping.
In particular, the way of expressing the use of an auxiliary
function is depicted in Figure 6. In order to use a shared
resource or a device by two tasks, there must be some kind of
synchronization mechanism imposed by the real-time kernel.
Moreover, the real-time kernel is the one that actually carries
on the update on a shared resource or the hardware service
by means of its Application Programming Interface (API).
These two situations are depicted in Figure 7 and in Figure 8,
respectively. On the other hand, when only one task asks for a
kernel service, there is no need for synchronization. Thus,the
mapping is similar to that of an auxiliary function, but making
clear that the requested service belongs to the real-time kernel
(see Figure 9). Finally, the last mapping has to do with the
extension relation. In Figure 10 can be seen that the use case
that is in fact translated to an activity diagram is the extended
and not the base one. This follows from a previous discussion
about theextendrelation.

(a) Use case. (b) Activity diagram.

Fig. 6. Auxiliary function mapping.

Before starting with the process of describing behavior
itself, it would be interesting to classify the elicited tasks
that arise from the use case analysis phase. This classifi-
cation might be very useful in the following stages of the
development process and can also be helpful to detect the
occurrence of mistaken analysis choices. In this respect, Zhang
[6] identifies three kinds of objects that come from use cases:



(a) Use case. (b) Activity diagram.

Fig. 7. Shared resource mapping.

(a) Use case. (b) Activity Diagram.

Fig. 8. Shared device mapping.

1) control objects, to coordinate the interactions betweenthe
system and the actors; 2) entity objects, that execute actions;
and 3) interface objects, that communicate with external actors.
In this paper, there is no restriction to object-oriented pro-
gramming. However, Zhang’s classification can still be applied
with just some subtle adaptations. Thus, the classificationis as
follows: control objects are related to mutual exclusion among
tasks and task management (creation, destruction, scheduling,
activation, etc.). Those control objects are, in this paper, real-
time kernel primitives that deal with software issues. These
primitives differ from those of the interface objects in that the
last ones are related to hardware issues. Finally, Zhang’s entity
objects are actually tasks themselves.

The process of describing tasks is based on the one proposed

(a) Use case. (b) Activity diagram.

Fig. 9. Device usage mapping.

(a) Use case. (b) Activity di-
agram.

Fig. 10. Extension mapping.

by Kimour and Meslati [7], but having into account the
restrictions and characteristics of the model proposed in this
paper. The method is iterative. During the process, the use
cases texts may be looked through, changed and enhanced to
exhibit a greater degree of accuracy and details. In addition,
detected ambiguities, inconsistencies and errors are removed.

Kimour and Meslati proposed a three step method, in which
each step consists of an iteration. Following, the description
and necessary adaptations to that method are presented:

Activity Iteration: The use case text is transformed into an
activity diagram. It is important to model the normal flow of
actions first and then integrate the exception flow. Also, in this
iteration, possible concurrency between actions (i.e. the cases
of Figure 7, 8 and 9) are specified. Finally, guard conditions
on edges or within decision nodes are placed.

Action Iteration: Each action is specified according to the
criteria used to distinguish auxiliary functions from tasks and
enhancing the level of detail by taking into account the API
provided by real-time kernel. Besides, for each action it is
necessary to specify the input and output variables that are
involved. Guard conditions should be revisited and refined.It
is worth noting, that an action should refer to no more than
one system unit or one actor.

Consistency Iteration: The activity diagram is checked
for internal completeness and consistency. Moreover, timing
constraints are further checked and refined according to the
MARTE profile.

As was previously mentioned, the above is an iterative
method and as such each special iteration (i.e. activity, action
and consistency) must be further repeated until achieving a
satisfactory level of detail.

IV. EXAMPLE : L INE-FOLLOWER ROBOT

In order to exemplify the proposed approach, a simple
application is presented: a Line-Follower Robot. The purpose
of this system is to control a robot, so that it follows a black
line painted in a white floor. The robot has two light sensors
and two motors that are controlled by the application. In
addition, the robot has another sensor (a touch sensor) that
is used to check for obstacles and avoid them. The system
was actually implemented in a Lego Mindstorms platform. It
is worth noting, that the application to control the robot was
running on top of an Real-Time Operating System developed
by the authors [17]. Thus, the generic architecture proposed
in Figure 5 fits the needs of this particular application.

In Figure 11 the use case diagram of the Line-Follower
System along with its MARTE profile annotations is depicted.
As stated above, the analysis begins by capturing user require-
ments through use cases. From that analysis follows that there
are three main tasks in the system: 1)Adjust Position, 2) Check
Collision and 3)Move Forward. This last task,Move Forward,
is actually an initialization task. This is, the robot is supposed
to start with the black line below it and the light sensors
pointing at the white floor. So, the robot moves forward for a
certain amount of time following the black line.Move Forward
is in fact a one-shot task. Task number 2),Check Collision, has



an auxiliary procedure (Obstacle Dodge1), which is called in
case that the calling toSensor Crash Readreturns that there
is an obstacle. It is worth noting, that both use casesMove
Forward and Obstacle Dodgeinclude the use cases related
with the motors, however in order not to bother with so many
arrows they are omitted in the figure. The same criterion is
used to annotate the diagram with the MARTE’s stereotypes
(i.e., just a couple of use cases are annotated).

Fig. 11. Use case diagram of a Line-Follower System

During the process of tasks elicitation, it came up that task
Adjust Positionhad to be refined and balanced since its input
and output variables along with its time constraints demanded
it so. Thus, Adjust Positionwas actually refined into two
different tasks:Adjust Left PositionandAdjust Right Position.
They both do not share any of the two light sensor, so they
respectively call for the RT-Kernel servicesSensor Left Read
and Sensor Right Read. However, both task share the two
motors. This is because in order to, for example, turn left
the application must stop the left motor and advance the right
one. It is worth noting, that the mutual exclusion mechanism
for the two motors must be provided by the RT-Kernel since
it manages the hardware services.

The next step in the process is writing use cases. In
Figure 12 and Figure 13 two representative cases are shown:
CheckCollisionandAdjustLeftPosition.

Once use case texts are written, they are translated to
Activity Diagrams. Note the use of the slanted font style and
the removal of blank spaces in the task’s names. This is done
to distinguish an Activity Diagram name from use case name
(which uses an italic font style). The taskCheckCollision is
shown in Figure 14(a). Note that its execution flow is very
simple, but it has two noticeable characteristics. In the first
place,CheckCollisionuses a touch sensor to detect whether
the robot crashed or not. Thus, it needs to call the Real-Time

1Note the usage of the rule for naming tasks and auxiliary functions
presented in Section II-C.

Name: Check Collision
Actor: Lego Robot
Description: Detects whether the robot crashed into

an obstacle and if so avoids it.
Execution flow: 1.a. Determine whether an

obstacle was crashed.
2. Exit use case.

Exception flow: 1.b. The robot is crashing into an obstacle.
1.b.1 Avoid the obstacle.
1.b.2 Exit use case

Monitored variables: crashSensor
Controlled variables: None
NFR: • The checking for collision

should be done periodically with
a frequency lower than a second.
• The obstacle avoidance manuever should
be able to avoid an object of at most 32cm

2.

Fig. 12. Check Collision Use Case.

Name: Adjust Left Position
Actor: Lego Robot
Description: Adjusts the Lego robot left side

to be over the painted line.
Execution flow: 1. Determine whether the robot

is over the line.
2.a. The robot is correctly positioned.
3. Move forward.
4. Exit use case.

Exception flow: 2.b. The robot is not over the line.
2.b.1. Turn robot to the left.
2.b.2. Move forward.
2.b.3. Exit use case.

Monitored variables: leftSensor
Controlled variables: leftMotor

rightMotor
NFR: • Left position should be adjusted

periodically every 100ms.
• The turning left manuever should
not exceed 10 degrees.
• Moving forward should not exceed
a distance of 1cm.

Fig. 13. Adjust Left Position Use Case.

Kernel serviceSensorCrashRead. That interaction between the
user task and the Real-Time Kernel is shown by, the use of
partitions that separate the two different spaces. However, in
this case no synchronization mechanism is used since the touch
sensor is not shared by any other task. The second character-
istic has to do with the calling to an auxiliary function. The
calling is shown by the use a sub-activity state and the actual
auxiliary function is depicted in a separate Activity Diagram
(see Figure 14(b)). The functionObstacleDodgeuses a trivial
algorithm to avoid an obstacle. The interesting thing in this
function is the presence of synchronization mechanism (shown
by the usage of fork and join states in the Real-Time Kernel
partition).

The taskAdjustLeftPosition(see Figure 15) uses a variable
sensLftStat when calling the Real-Time Kernel service
SensorLeftRead. Based on the value of that variable it decides
whether to move forward, because the robot is correctly
positioned on its left side; or to turn a little to the left. The
word little might sound vague, but the numerical values shown
in the Activity Diagram were actually calculated based on the
speed of the robot and the width of the line. In the actual



(a) (b)

Fig. 14. TaskCheckCollision

implementation, the Lego Mindstorms robot slightly weaves
in and out of the black line while moving forward.

Fig. 15. TaskAdjustLeftPosition

V. RELATED WORKS

Several approaches and methods have been proposed to
describe the process of building use cases. Although, none
of them address the main topic of this paper, that is to elicit
real-time tasks from user requirements, those previous works

were very helpful to the development of this paper and served
as a starting point to the further working out of several of the
ideas here exposed.

Some of the first works on requirement engineering for real-
time systems can be found in [18], [19]. Particularly, in [19] a
formal model for analyzing requirements for real-time process-
control systems is presented. In the case of [18], formal
techniques for supporting the nature of real-time systems
are developed. Some interesting results from the practical
experience of applying use cases in the construction of real-
time system are shown in [6]. The outstanding contribution of
the previous paper had to do with the introduction of avirtual
actor, which is a well-defined role played by an ill-defined
user. Another report on practical experience, but focused on
the automotive domain is [8]. On the other hand, [4] makes
an extensive and deep analysis on the usage of use cases for
real-time embedded systems by describing their suitability to
this domain. In addition, the authors presented a method for
guiding the process of requirements elicitation. Finally,in [7],
the authors presented a method based on use case texts to
derive objects in a real-time environment.

VI. CONCLUSIONS

Scheduling theory is the branch of real-time theory in charge
of providing a designer with the necessary tools to make him
sure that the system meets its intrinsic timing constraints.
However, the theory is not very clear about how to define those
tasks. In this paper, Requirements Engineering concepts were
used to help the system analyst discover and characterize those
tasks. Thus, making it easier to apply the real-time scheduling
theory.

The analysis of any system begins with the gathering of
user requirements. In the case of real-time systems, those
requirements represents the functionalities of the system. This
is, the tasks that compose the system. In this sense, a method
for task elicitation from user requirements was developed
using use cases. In addition, a generic use case architecture
for real-time systems was also presented. This architecture is
useful, since it includes most of the situations that can arise in
this kind of systems and serves as a starting point for analyzing
any system in this application domain.

Once tasks are elicited, the next step is describing their
behavior. In order to do that, Activity Diagrams were restricted
and adapted to real-time systems needs. Then, a method to
turn use case texts into those restricted activity diagramswas
presented. With this, each task behavior can be precisely
described.

Finally, the proposed approach was empirically verified
by analyzing a Line-Follower robot. The case study was
implemented in a free real-time operating system and it was
used to exemplify the concepts introduced in the paper.

REFERENCES

[1] L. Sha, T. Abdelzaher, K.-E.̇Arzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,”Real-TimeSyst., vol. 28,
no. 2-3, pp. 101–155, 2004.



[2] M. Jackson,SoftwareRequirementsand Specifications:A Lexicon of
Practice,PrinciplesandPrejudices. ACM Press, 1995.

[3] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” inICSE ’00: Proceedingsof the Conferenceon The Future
of SoftwareEngineering. New York, NY, USA: ACM, 2000.

[4] E. Nasr, J. McDermid, and G. Bernat, “Eliciting and specifying
requirements with use cases for embedded systems,” inWORDS
’02: Proceedingsof the The Seventh IEEE International Workshop
on Object-OrientedReal-Time DependableSystems(WORDS 2002).
Washington, DC, USA: IEEE Computer Society, 2002.

[5] A. Cockburn, “Structuring use cases with goals,”Journal of
Object-OrientedProgramming, Sep-Oct, Nov-Dec 1997.

[6] D. D. Zhang, “Use case modeling for real-time application,” in
WORDS ’99: Proceedingsof the Fourth International Workshop on
Object-OrientedReal-Time DependableSystems. Washington, DC,
USA: IEEE Computer Society, 1999.

[7] M. Kimour and D. Meslati, “Deriving objects from use cases in real-
time embedded systems,”InformationandSoftwareTechnology, vol. 47,
no. 8, pp. 533 – 541, 2005.

[8] C. Denger, B. Paech, and S. Benz, “Guidelines - creating
use cases for embedded systems,” Frunhofer Institut
Experimentelles Software Engineering, Tech. Rep., 2003,
http://wwwagse.informatik.uni-kl.de/teaching/se1lab/ss2004/
SysAnfBearbeiten/GuidelinesShort Version.pdf Last visited: 12/09.

[9] “Usecases.org,” http://www.usecases.org/ Last visited: 05/09.
[10] “Unified modeling language,” http://www.uml.org.
[11] I. Jacobson and P.-W. Ng,Aspect-OrientedSoftwareDevelopmentwith

UseCases. Addison-Wesley Professional, 2004.
[12] M. Bakal, “Uml for c programmers,” I-Logix, Tech. Rep.,2005, http:

//www.ddj.com/web-development/184401948 Last visited:05/09.
[13] M. Bakal and J. Cohen, “Modeling c applications in uml with files

and structures,” Telelogic, Tech. Rep., 2008, http://www.dsp-fpga.com/
articles/id/?3637.

[14] B. P. Douglass, “Uml for c programming language,” IBM,
White paper, 2008, http://download.telelogic.com/download/paper/
RAW14058-USEN-00.pdf Last visited: 05/09.

[15] “Modeling and analysis of real-time and embedded systems,” http:
//www.omgmarte.org/ Last visited: 05/09.

[16] H. Espinoza, J. Medina, H. Dubois, F. Terrier, and S. Gerard, “Towards
a uml-based modeling standard for scedulability analisys of real-time
systems,” in International Workshop on Modeling and Analysis of
Real-TimeEmbeddedSystemsatMODELS’06, Genova (Italy), October
2006.

[17] D. Donari and L. Ordinez, “Server oriented operating system,” http:
//www.ingelec.uns.edu.ar/rts/soos Last Visited: 05/09.

[18] S. Goldsack and A. Finkelstein, “Requirements engineering for real-time
systems,”SoftwareEngineeringJournal, vol. 6, no. 3, pp. 101–115, May
1991.

[19] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart,
“Software requirements analysis for real-time process-control systems,”
IEEE Trans.Softw. Eng., vol. 17, no. 3, pp. 241–258, 1991.


