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Abstract. Most adaptive systems have compensation mechanisms for
recovering from or preventing failures. However, sometimes a compensation is
not essential. Hence, diagnosing and compensating each and every one of their
failures may be ineffective. Rather than polluting a requirements specification
with fine grained definition of failure-handling conditions, this work aims to
increase the flexibility of failure handling in self-adaptive systems using
tolerance policies. We allow the expression of conditions in which certain
failures may be ignored — i.e., conditions on which a failure will not be
compensated. Such policies may lead to reduced costs and performance
improvement. The FAST framework consists of the definition of a tolerance
policy, the mechanisms to evaluate this policy and a tool to aid the creation of
policies.
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1 Introduction

Adaptive systems are systems that are able to change their behavior in response to
changes on the environment and on the system itself [5]. Similarly to autonomics
systems [12], these systems should be able to change their behavior at runtime with
minimal human intervention [14][17], even in dynamic environments. In such a
system, failures are handled with compensations — or recovery activities. At design
time, possible failures are identified and responses to the respective failures are
defined. However, these responses may have a significant impact on non-functional
requirements, such as performance and cost. For instance, the failure of a free web-
service may be compensated through the usage of a similar but paid service.
Therefore, it is important to allow some flexibility on the definition of which failures
are to be compensated and on which scenario.

The notion that different failures have different impacts on different users and
contexts is widespread on the literature [4][11][21]. So, rather than defining this as
static requirements, we propose the usage of policies defined during the system
deployment or at run time. The concept of policies is used in Software Engineering to



allow users or system administrators to control some characteristics of a system,
without having to deal with implementation details [8]. In particular, this concept has
often been used by the network community [25][24]. In this work we are defining a
policy to enable the customization of the way that a system handles its failures.

The FAST Framework — Failure hAndling for Autonomic Systems — comprises the
policy specification, algorithms to process the policy and a supporting tool. This
framework was initially aimed to provide this flexibility for autonomic systems, more
specifically with a self-configuring architecture [19]. In this paper we are going to
present a generic version of this framework. Hence, a large variety of systems could
borrow the concepts and mechanisms presented here to enhance its failure handling.

This paper is organized as follows. Section 2 presents our approach for expressing
conditions in which a failure may be ignored — namely, the Tolerance Policy. The
algorithm for processing this policy is presented in Section 3. Section 4 describes an
agent that implements the policy algorithms and the tool developed to support the
policy. In section 5 we compare our research with related works. Finally, Section 6
summarizes our work and points out open issues.

2 Tolerance Policy

A policy may be seen as an set of policy rules [24], which is formed by a condition
and its corresponding actions [24][18]. When the conditions apply, the respective
actions are performed. The tolerance policy is concerned with the definition of
conditions for failures to be ignored. An excerpt of the conceptual model for this
policy is presented on Fig. 1.

Policy TolerancePolicy ] 1 ContextModel 1 1 ContextEntity
1 1
1.% 1.*
PolicyRule 1 1 Condition ContextCondition 1 ContextAttribute
1 4& 1
1 | :
Action 1 1.* Failure LimitCondition ; ContextExpression

Fig. 1. Conceptual model excerpt of the Tolerance Policy

A failure may be a high-level failure — such as the non-achievement of a goal — or a
low-level failure — such as an error reported by a software component. As default, for
all failures that have a recovery action this action will be performed when the failure
happens - only those failures explicitly mentioned in some rule of this policy will
have its failures disregarded, i.e., will not trigger a compensation. Failures may be
ignored depending on conditions that may be related to the system's context or to the



amount of occurrences of a failure. For each of these types of conditions, there is a
specific rule type: t.context (ContextCondition) and t.limit (LimitCondition). The 't' in
these type names stands for 'tolerance’.

Besides the list of failures that have recovery actions, another input for this policy
is the context model, or environmental model. The context model specifies the data
that will be monitored by the system. In self-adaptive systems this data is used to
identify when an adaptation should be performed and to identify the occurrence of
failures themselves [7]. In the FAST framework we are considering a context model
in the form of entities and their attributes [3], expressed in XML. When an attribute is
an enumeration, this XML also define its possible values. In Fig. 2 we show an
example of a context model. In this case, there are two context entities: Internet and
Calendar. The Internet entity has the attribute Speed, which possible values are zero,
low, average and high. The Weekday of the Calendar may be Sunday, Monday, and
so on, while the Hour is a number.

In the following sub-sections it will be described the two tolerance rule types —
t.context and t.limit. The regular expressions that precisely define the rules syntax are
presented in Appendix A.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <root>

3 <ContextEntity name="internet">

4 <Attribute name="speed" type="enum">
5 <Value>zero</Value>

6 <Value>low</Value>

7 <Value>average</Value>

8 <Value>high</Value>

9 </Attribute>

10 </ContextEntity>

11 <ContextEntity name="calendar">

12 <Attribute name="weekday" type="enum">
13 <Value>sunday</Value>

14 <Value>monday</Value>

15 <Value>tuesday</Value>

16 <Value>wednesday</Value>

17 <Value>thursday</Value>

18 <Value>friday</Value>

19 <Value>saturday</Value>

20 </Attribute>

21 <Attribute name="hour" type="number">
22 </Attribute>

23 </ContextEntity>

24 </root>

Fig. 2. A context model example. This XML excerpt shows two context entities — internet and
calendar — and their attributes.

2.1 Tolerance Rule Type t.context

In order to express in which contexts certain failures may be ignored we use
t.context rules. This rule type has the following structure:



failuresSet isAllowedToFaillf contextExpression

failuresSet is a set of failure identifiers divided by a colon (:), and that has at least
one failure - i.e., it cannot be an empty set. The allFailures reserved word may be
used to refer to all the recoverable failures of a system, without the need to name them
one by one.

isAllowedToFaillf is a fixed string to identify the rule type. contextExpression is a
logic expression, with the following structure:

contextEntity.attributeName operator attributeValue

contextEntity is any entity of the system's context model, and attributeName is the
name of an attribute of that entity. operator is a logic comparator, among the
following: equals (=), greater than (>), greater equals than (>=), lower than (<), lower
equals than (<=) and different (<>). AttributeValue is any possible value that entity’s
attribute may have. During the system execution, this value will be compared with the
actual value of that attribute, in order to evaluate if this context applies or not.

A rule of the t.context type has the following meaning: if a failure that is an
element of the failuresSet occur and the contextExpression currently applies, then that
failure will be ignored. In other words, no compensation will be performed for that
failure.

Usual situations in which a failure can be ignored are those related to date and
time, as in examples 1 and 2. Example 1 states that if a certain failureX occurs but it is
before 8 am, this failure will be ignored. The same applies for failureY. In Example
2, we express that the occurrence of any failure of that system will be ignored on
Sundays.

Ex.1: failureX: failureY isAllowedToFaillf calendar.hour<=8
Ex.2: allFailures isAllowedToFaillf calendar.day=Sunday

2.2 Tolerance Rule Type t.limit

In this rule type we are not concerned in defining specific conditions in which a
failure will be ignored. Instead, the concern is to define a maximum number of times
that some failure will occur without being compensated. This type has the following
structure:

failuresSet isAllowedToFailAtMost limit

failuresSet is defined as in t.context. The isAllowedToFailAtMost uniquely
identifies this rule type. limit is a positive integer number that indicates how many
consecutive occurrences of each failure of the failuresSet will be ignored, before a
compensation is triggered.

A rule of this type means that each failure of the failuresSet will have a limit
number of occurrences ignored. The failure number limit + I will be compensated,



and the occurrence counting of that failure will be reset. However, the failures that are
ignored due to a t.context rule are not included on this counting, as it will be explaind
in Section 3.

Note that, when using more than one failure in the failuresSet, we do not define a
limit of occurrences for a set of failures, but the limit for each failure of the
failuresSet. For instance, in Example 3 the limit of 4 occurrences is not for the two
failures altogether, it is for each failure separately (failureX and failureY). The rule in
Example 3 can be split in other two rules (examples 4 and 5), keeping the same
meaning.

Ex.3: failureX: failureY isAllowedToFailAtMost 4
Ex.4: failureX isAllowedToFailAtMost 4
Ex.5: failureY isAllowedToFailAtMost 4

3 Policy Processing Algorithm

The goal of the Tolerance Policy processing is to define all failures that will be
ignored. For that, the procedure described in Fig. 3 is used. The parameters are the
failure itself - i.e., a failed that actually occurred -, a list of tolerance rules, from the
policy, and a list of context entities, from which we can get the current attribute
values of that entities. The result of this procedure is the status of the current failure
occurrence: ignored or not ignored.

The first step is to check if there is a rule of the type t.context which failuresSet
contains that failure (line 1). If there is such a rule, we need to analyze each one of
these rules (line 2). If the rule is of the type t.context and its context expression
applies, we will label that element as ignored (lines 3 to 9). The analysis of the
context expressions is performed by the procedure EvaluateContext. The
EvaluateContext procedure trivially checks if the rules conditions apply [20]. After
analyzing all t.context rules for the failure occurrence, if it is not yet marked as
ignored (line 12), we will check if there is a rule of the type t.limit which failuresSet
contains that element (line 13). If there is such a rule, we will check if the limit for
that failure has already been reached (line 14). If the limit has not been reached yet,
we will increase the occurrence counter of that failure and mark it as ignored (lines 15
and 16). If the limit has been reached, we cannot ignore that occurrence - i.e, the
compensation will be required - and we reset the failure counter (line 18) for that
failure. As a result we return the status of the failure occurrence, indicating if it should
be ignored or not (line 22).

In summary, the t.context rules define conditions when the occurrence of a given
failure may be ignored, and t.limit rules define the maximum number of consecutive
occurrences of a given failure that can be ignored. However, the amount of
occurrences defined with a t.limit rule does not take into account the occurrences
already ignored by the t.context rules. In this sense, we can state that the rule type
t.context prevails upon the type t.limit. Given a t.context rule, the occurrence of a
failure in its failuresSet will always be ignored if its context expression is satisfied, in
despite of how many times this failure had been ignored before.



Data: f : Failure, TR : ToleranceRule[], CE : ContextEntity[]

1 if 3tr; € TR tr).type = tcontext and tr.failuresSet.contains(f) then
2 foreach tr; in TR do

3 if tr;.failuresSet.contains(f) then

4 if tr;.type = tcontext then

5 if EvaluateContext(tr;.expression, CE) then
6 f.status < ignored

7 end

8 end

9 end

10 end

11 end

12 if f.status # ignored then
13 if 3 try € TR try.type = tlimit and tr,.failuresSet.contains(f) then

14 if f.failure Counter < tr,.limit then

15 f.status < ignored

16 f.failureCounter <« f.failureCounter + 1
17 else

18 f.failureCounter < 0

19 end

20 end

21 end

22 return f.status

Fig. 3. Algorithm for processing the Tolerance Policy at runtime

The t.limit rules are concerned only with the failures that were not ignored during
the evaluation of the t.context rules. Note that the failures ignored due to a t.context
rule will not change the occurrence counting of a failure.

Rules can interact. Table 1 for example shows a log of occurrences for the failure
failureX, considering the two rule types expressed in examples 6 (a t.context rule) and
7 (a tlimit rule). That table shows the number of each failure occurrence and the
value of the calendar.day attribute, which is required to assess if any of these rules
apply. It also indicates if the failure occurrence was ignored as well as the rationale
for ignoring it — i.e., the rule that made the failure be ignored.

Ex.6: failureX isAllowedToFaillf calendar.day=sunday
Ex.7: failureX isAllowedToFailAtMost 3

In this example, the failure occurrences for which the rule of the example 6
applies are failures number 2 and 3. However it is not applicable for occurrences
number 1, 4, 5, 6 and 7, hence we have to evaluate the rule of the example 7. The
occurrences 1, 4 and 5 were ignored, since they were below the limit of 3 failure
occurrences expressed in the rule. The occurrence number 6, being the fourth
occurrence of that failure that were not ignored by a t.context, shall be compensated,
and the occurrence counter for that failure shall be reset. Since the occurrences
counter was reset, the occurrence 7 was also ignored for being below the limit of three
occurrences.



Table 1. Occurrence log of the failure failureX

Occurence

Calendar.day Ignore failure? Rationale

number

1 Saturday Yes Ex. 7 (1" occurrence)
2 Sunday Yes Ex. 6

3 Sunday Yes Ex. 6

4 Monday Yes Ex. 7 (2" occurrence)
5 Monday Yes Ex. 7 (3" occurrence)
6 Monday No

7 Tuesday Yes Ex. 7 (1" occurrence)

4 Application

In order to use our approach we developed a policy manager component that
implements the algorithm presented in Section 3. This component is responsible for
loading the policy rules, presented in Section 2, and the context model. Besides, it
receives updates on the context and assess if a given failure should be ignored or not,
upon requests of other components.

For illustration purpose, on this paper we are presenting the Policy Manager
component encapsulated as an agent - the FAST Agent. This is a way of showing the
generic characteristic of this framework. We also envision the usage of the FAST
implementation as a crosscutting aspect [10], in synergy with works about aspectual
modeling on multi-agent systems [2][23].

The exchange of messages between a system using the FAST framework and the
FAST Agent itself is depicted in Fig. 4. The first two messages are related to the
initialization of the FAST Agent, by providing the Uniform Resource Locator (URL)
of the files that contain the policy and the context model for that system. Then it is
expected to occur some messages of the third kind, in order to inform an initial state
of the context. During the rest of the execution of the system, there will be an
exchange of messages to update the context (message 3) and to check if a failure shall
be ignored (message 4). Therefore, the agent is not responsible for identifying context
changes or the occurrence of failures - it receives this information from the system
itself, or from a monitor system.

The policy file is a text file in which each line contains a policy rule. The syntax of
the rules is described in Appendix A as Java regular expressions. The context model
is a XML file containing the context entities and their attributes. The context model
defines the data that will be monitored by the system, and that will be informed to the
FAST agent. This way it will be possible to assess if a given t.context rule applies on
a specific moment during the execution.

Besides the FAST Agent, we developed a tool for making it simpler to create the
policy rules. With this tool we are able to prevent syntax errors that could otherwise
occur. Fig. 5 shows an example of the creation of a t.context rule. The user selects
failures, from the list of failures that have recovery actions, and then defines in which
context that failure can occur without compensation. In this example, the failures are
regarding the updating of data on a movie system.
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Fig. 4. Communication between a system and the FAST Agent

In order to prevent the user from deciding to ignore a critical failure, the list of
possible failures informed for this tool may be a partial model. Therefore, the reserved
word allFailures will not include the omitted failures.

The rule defined in the example of Fig. 5 is downloadPictures isAllowedToFaillf
calendar.weekday=saturday. This policy editor tool makes it easier for the user to
create and maintain the rules of a policy.

We performed a simulation of the execution of this system, considering two
variables: the amount of failures occurrence (low, medium and high occurrence) and
the context on which the failures occur. All simulations were performed considering
one t.context rule and one tlimit rule. The average result was a decrease of
approximately 41% on the number of required compensations, preventing the
computational resources waste of performing these unnecessary compensations. This
gives a general idea of the suitability of this approach. However, these results cannot
be generalized to every system. Hence, an analysis of the adoption of this framework
needs to be performed system-by-system.

5 Related Work

There is a series of languages for policy definition in the communication networks
domain. The CIM-SPL language [1] is a standard proposed by the Distributed
Management Task Force to specify network policies. Rei [13] is a policy definition
language based on deontic logic, on the same domain. Other languages include
Ponder [9], ACPL [22] and PDL [16]. These policies, besides targeting specific
domains, are far more computationally costly and complex than it was required for
the framework, motivating the creation of a language of our own.
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Fig. 5. Wizard for creating a t.context rule

A more strongly related kind of policies are the policies for deteriorating systems.
They basically define conditions on which a software component should be repaired,
based on their age, failure rate [16] and their technological obsolescence [17]. Our
tolerance policy complements these policies, in the sense that we deal with another
aspect of failures.

Another way of providing the flexibility to the user would be by including the
failure handling in an options or a settings menu. This approach is potentially more
user-friendly, however it lacks in generalization, since not every system has a
graphical interface and, in those that have one, the user interfaces are usually
specifically designed for each system. Moreover, the inclusion of a new category of
options in the already overloaded options menu [15] could harm the usability of the
software as a whole.

6 Conclusion and Future Work

In this paper we present a generic version of the FAST framework, which provides
system users and administrators with the capability of defining conditions on which a
failure may be ignored. The contribution of this framework is twofold:



a) It enhances the failure handling on software systems by including a degree of
flexibility. This way the impact of a failure is not defined only by software engineers,
but also by users or system administrators;

b) It reduces the resources wasted when compensating failures, by reducing the
amount of failures that require compensation.

In this paper the policy itself was described, with its two rule types, as well as the
algorithm used to assess the rules at runtime. Using a policy is far different from
expressing these conditions directly on the requirements model, in the sense that the
model is designed by software engineers, whereas the policy is possibly designed by
the user.

The feasibility of the algorithm was shown by coding it as the behavior of a
software agent. A Policy Editor tool was also developed, making it easier for the user
to create and maintain the rules of a policy. Despite initial experiments showing an
overall suitability, further experiments on real-world software system need to be
performed, to analyze the usefulness and the effectiveness of our approach.

We also plan to increase the expressiveness of the policy rules, allowing the usage
of logic operators like AND, OR and XOR to create more complex conditions.
Furthermore, we want to be able to handle more complex rules, which can mix
different types of a rule. Lastly, we intend to incorporate a priority policy, to define
the priorities for the compensation of each failure.
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Appendix A: Regular expressions

This Appendix presents the Java regular expressions used to define the syntax of

the policy rules.

BASIC EXPRESSIONS:

Failure identifier: [a—z] [a—zA-Z]*

Failures set: [a-z] [a—zA-Z]* (: [a—-z] [a—zA-Z]*)*
Positive integer: [0-9]*[1-9] [0-9]*

Undefined amount of whitespaces: \ \s+

Context expression (structure): ContextEntity.AttributeName operator
AttributeValue

Context expression (regular expression): [a-zA-Z]+\\. [a—-zA-Z]+
(=]>|>=|<|<=|<>) [a-zA-20-9]+

RULE TYPES:

T.context (structure): failuresSet isAllowedToFaillf contextExpression

T.context (regular expression): ~ [a-z] [a—zA-Z]1* (: [a-z] [a—zA-Z]*) *
\\s+isAllowedToFailIf\\s+[a—-zA-Z]+
\\.[a-zA-Z]+(=|>|>=|<|<=|<>) [a—zA-Z0-9]+5S

T.limit (structure): failuresSet isAllowedToFailAtMost limit

T.limit (regular expression): ~ [a-z] [a—zA-Z]* (: [a—z] [a—zA-Z]*)*
\\s+isAllowedToFailAtMost\\s+[0-9]1*[1-9][0-9]*$




