
Design Rationale Representation in Requirements

Engineering using the KAOS meta-model

Ernani Gaspar Santos
1
, Adriana Pereira de Medeiros

2
,

1 Universidade Candido Mendes, Av. Anita Peçanha, 100, Pq. São Caetano 28030-335,

Campos dos Goytacazes, RJ, Brasil

egsantos@acm.org

2 Depto de Ciência e Tecnologia, Universidade Federal Fluminense (UFF), Rua Recife,

28890-000, Rio das Ostras, RJ, Brasil

adrianamedeiros@puro.uff.br

Abstract. Requirements specifications made in a poor or incorrect manner have

been recognized as a source of problems in software development. Recording

design rationale in this activity may contribute to a better reasoning about

requirements and how to model them, since the software engineers need to

carefully evaluate the justifications for their decisions. This work investigates

the design rationale representation for requirements models using the Kuaba

approach and the KAOS meta-model. It shows that representing design

rationale taking advantage of the design meta-models’ semantics can favor

improvements in requirements models quality, working as design feedback. It

also contributes to requirement changes management by giving semantics to

requirements tracing and supporting impact analysis.

Keywords: Design Rationale; Requirements Engineering; Meta-model.

1 Introduction

Many Design Rationale (DR) approaches have been used in Software Engineering

since the late '80s [1], such as DRL (Decision Representation Language) [2] and

RATSpeak [3]. Regardless of the approach, DR is the description of the reasoning

employed to determine the design of an artifact. It typically includes explanations of

the alternatives for solving design problems, the reasons behind the decisions made

regarding the alternative that best solves them and which options were rejected.

Although there are many different DR approaches, capturing and representing it

remains a challenge in Software Engineering, especially in Requirements Engineering

(RE) due to the volatility and high level of abstraction of domain concepts, usually

obtained from statements in natural language.

During the RE activity the domain provides to software engineers those concepts

related to the real world upon which the software will operate, and its environment,

bringing value to their users. These concepts represent abstractions that must be

expressed in a way that preserves its semantics. The meta-models, from which the

mailto:egsantos@acm.org
mailto:adrianamedeiros@puro.uff.br

models are obtained, usually meet this requirement whenever they are rich enough to

represent these abstractions, maintaining meaning and creating a bridge to

implementation artifacts. In RE the meta-model provides the semantics for the

representation of abstractions related to the stakeholders needs, whether functional or

non functional, leading to the Requirements Model. Requirements specifications

performed in a poor or incorrect manner have been recognized as a source of

problems in software development, making the RE critical in software process, since

all development is based on knowledge gained in this activity [4]. Recording DR in

this activity may contribute to a better reasoning about requirements and how to

model them, since the design alternatives and the decisions are carefully evaluated.

Usually, the semantics provided by the meta-model used to describe the artifacts is

not exploited in the DR approaches reported in the literature, such as IBIS - Issue

Based Information System [5] and DRL. The content of the DR produced using these

approaches are mostly informal and incomplete. This prevents the computational

processing of such knowledge and its use to support the design of new artifacts. In

these approaches the knowledge applied to the design is not represented in a

standardized way, since they generally do not incorporate the design meta-model’s

semantics. The recorded DR also lacks common properties, since a common

taxonomy is not used in its description. This fact precludes its use in a comparative

way, since the DR contents, manually expressed using text and concepts of different

taxonomies, chosen by the designers, are not formally equivalents. In this case, one

can only use the recorded DR for each model, separately.

Kuaba [6] is an argumentation-based approach that incorporates the semantics

provided by the design meta-models in the DR representation. The use of this

semantics formalizes and enriches the DR contents, allowing their computational

processing to support the design of new artifacts. The Kuaba approach has been used

so far to represent DR in conceptual modeling (analysis), using the UML meta-model

[7], and navigational modeling for Web applications (design) using the meta-model of

the OOHDM - Object Oriented Hypermedia Design Method [8]. Requirements are

notoriously volatile, the product of a negotiation process inherently difficult, usually

because they represent different interests declared ambiguously. Therefore, the DR

representation during the requirements modeling can be a more difficult task than in

those (conceptual and navigation modeling), where the level of abstraction and

susceptibility to change is usually lower. This work investigates the usage of the

KAOS meta-model [9] in the Kuaba approach to represent the knowledge used by

software engineers to model requirements, adding thus its semantics to the recorded

DR. It also shows that this approach can favors improvements in requirement models

quality, since careful argumentation must be done for each possible solution for the

artifact design, working as a design feedback. In addition, it discusses how the

approach can contribute to requirement changes management by giving semantics to

requirements tracing and supporting impact analysis.

The Kuaba approach and the KAOS meta-model are presented and discussed in

Section 2. Section 3 discusses the investigation framework and planning, showing

how the requirements design tests were conducted, also presenting and discussing the

DR representation examples. Conclusions, contributions and future works are

presented in Section 4.

2 Kuaba Approach and KAOS Meta-Model

Kuaba is an argumentation-based approach for representing DR in model-based

designs. Its main purpose is to allow DR computational processing to support design

reuse, particularly in software designs. Model-based design is a category of design

problems that can be viewed as a process of instantiating a meta-model. This meta-

model represents the semantics used to describe the produced artifacts. Kuaba differs

from other DR approaches, such as IBIS and DRL, because it incorporates the

semantics provided by the design meta-models to the DR representation, generated

from its ontology instantiation. Fig. 1 illustrates part of the Kuaba ontology

vocabulary. The diagram is presented as a UML class model to aid visualization.

Fig. 1. Kuaba ontology vocabulary.

An artifact design involves a series of reasoning elements that include questions

related to the design problem, the solution ideas addressing these questions and the

arguments for or against the ideas presented. The “is version of” relationship defined

for the elements “Question”, “Idea” and “Argument” allows representing that a

reasoning element is obtained from the DR of another design. This instance may be of

an earlier version of the design, which is being used to improve the artifact design, or

from a different design that is being reused in a new situation. The acceptance or

rejection of an idea as a solution to a design question is registered by the “Decision”

element. A decision must have a justification for the acceptance or rejection of an idea

proposed and is always derived from one or more arguments. The Kuaba ontology

vocabulary also includes elements to represent information about the artifacts

produced from the accepted ideas, the design method applied and the meta-model

prescribed by it to describe these artifacts. The current version of ontology and its

instances are represented in OWL - Web Ontology Language [10].

The usage of the design meta-model’s semantics proposed by the Kuaba approach

allows representing DR in a standardized way and consistent with the chosen design

method. The questions and design ideas that form the DR structure are defined using

the concepts established by the meta-model prescribed by the design method. So, the

DR of artifacts produced in different projects by different software engineers, but

using the same meta-model, has a common structure of questions and ideas. It also

allows performing inferences and computable operations to support the use of

recorded knowledge in the design of new artifacts. An example of these operations is

the DR integration, in which DR related to different artifacts designed with the same

meta-model and representing the same domain can be automatically combined to

produce new artifacts [6]. This integration enables the design reuse in a higher level

of abstraction, since the designer can initiate a new artifact design from the resultant

DR, accessing a larger set of solution alternatives and taking advantage of the

knowledge and experience of other designers, recorded as arguments and

justifications. In addition, the meta-model’s semantics usage as part of the DR

approach enables the semi-automatic capture and representation of this knowledge in

design tools, since many questions and design ideas that form the DR structure can be

obtained from the design meta-model used by the tool. When all DR structure

(questions, ideas and arguments) is represented manually, as occurs in the majority of

DR tools such as Compendium[11] and SEURAT [3], each designer can record the

questions and the solution alternatives using their own terms, not considering the

taxonomy defined by the meta-model or its restrictions. This makes the computational

processing of DR difficult, allowing only queries to the recorded knowledge.

Furthermore, it entails a considerable time and cost increase in a software project,

making the designers desist from using these tools and, consequently, recording DR.

A software design tool, called KSE - Kuaba Software Engineering, is being developed

as an extension of the ARGOUML to support the semi-automatic capture and

representation of DR using the Kuaba approach. In its current version, KSE

automatically generates part of the DR structure (questions and design ideas) during

the design of models represented by UML class diagrams.

The history of meta-modeling in RE shows a semantics enrichment process in

meta-concepts, since RML - Requirements Modeling Language [12] to GRL - Goal

Representation Language1 [13]. The goal-oriented meta-models present semantics that

can represent abstractions of the RE complex concepts. The KAOS meta-model was

chosen for the modeling tests in this research because it has been used in several

projects in Europe and is stable enough to support DR recording in the RE. This meta-

model includes four models: Goal Model, Object Model, Responsibility Model and

Operation Model. Fig. 2 illustrates the complete meta-model in its own graphical

representation. The models are related through associations between concepts of

different sub-models. For example, an agent may be responsible for “Requirement”

instances, and “Entity” instances are inputs for or outputs from operations.

Fig. 2. The four models of KAOS meta-model [14]

1 http://www.itu.int/rec/T-REC-Z.151/en

http://www.itu.int/rec/T-REC-Z.151/en

AbstractProperty

Expectation

GRefinement

Goal

NamedRelationship

ORefinement

ObjectiveObstacle

Obstruction

Requirement

Resolution

SoftGoal

TerminalGoal

DomainProperty

DomainDescription DomainHypothesis

0..*

0..1
0..* 0..*

0..*

0..*

0..1

0..*

0..*

0..1
0..1

0..*

0..*

0..*

0..1

0..* 0..*

0..1

Fig. 3. KAOS meta-model concepts for the Goal Model [14].

During the Goal Model design, goals are refined according to a defined discovery

strategy, from the root goal unto indivisible concepts. Refinements can be either

“AND” or “OR”. “AND” refinement types are satisfied when all goals refining some

goal are satisfied. Otherwise, in “OR” type refinements, satisfying just one refining

goal is enough. The Object Model is a conceptual model that is very similar to an

UML class model for domain classes. The Operations Model describes the behavior

of agents in order to realize their responsibilities in satisfying requirements or

expectations while performing operations. In other words, requirements are satisfied

through “operationalization”. The sub-models answer questions about the system

(How, Why, Who, What to do, When and Upon what) [14]. The models that arise as

answers to these questions show the rationale of one possible design instance of the

problem in hand. DR, otherwise, shows the reasoning about all the possible design

alternatives envisioned by requirements engineers during such a task, where each of

them is analyzed thoroughly as a possible design solution.

The partial KAOS meta-model is illustrated in Fig. 3, showing the concepts of the

Goal Model using UML notation. Ideas from Kuaba ontology vocabulary are

instantiated using the meta-model’s concrete classes. The concepts describing

relationships and attributes within the meta-model are usually instantiated as

questions. For instance, the concepts Goal, GRefinement (goal refinement), Obstacle,

Softgoal, Expectation and Requirement are used to define ideas, and Obstruction and

Resolution, along with refinements relationships, are used to define questions in the

DR representation (Fig. 4). In this way the semantics of the meta-model, or the

navigational possibilities in that semantic network, is incorporated to represent

reasoning elements in the DR for Goal Models. These elements can be automatically

generated from the meta-model in a design tool.

3 DR in Requirement Engineering using Kuaba and KAOS

In software development, the definition of the design problem must be obtained from

a set of disconnected knowledge and intentions. Software engineers, together with

other stakeholders, have the mission to collect this information and define the

problem to be solved, as well as formulate its solution. The DR representation during

the requirements modeling creates the possibility of using this knowledge in RE tasks.

The examples studied in this research, although not exhaustive, are intended to

simulate real design tasks undertaken by software engineers in RE. They are designed

to explain how Kuaba ontology instances (DR) are created incorporating the KAOS

meta-model’s semantics for representing DR. The framework of the investigation was

based on two major constructs: (a) simulate a real requirements modeling task of a

software engineer and (b) design a set of modeling tests that could exploit the DR

representation for requirement models using the most important KAOS concepts in all

of its sub-models. This framework allows to verify how the captured DR can support

the RE activity as well. Although the framework covers all the research work, this

section discusses mostly goal models due to their relevance within goal-oriented

paradigm, and also because of size constraints of this paper.

The design test fixtures were divided in three categories. The first one uses the

usual approach of representing DR during the modeling task. In this approach the best

solution for the artifact is chosen and its respective DR is recorded. The process of

argumentation to justify this choice leads the software engineer to evaluate other

solution possibilities, considering the design options available in the meta-model.

Therefore, DR brings a careful and thoughtful approach to modeling. The second

category is about first modeling and, after finishing the modeling task, recording DR.

The software engineer works on the DR representation as if documenting the

reasoning used in the choices for the artifacts produced. In this case, part of the

knowledge invested in the modeling can be lost, since the software engineers may not

remember all their reasoning. The third category is about don´t model at all, or

modeling using a different approach, just representing DR directly from stakeholders

reported needs. This situation presupposes a deep understanding of the design meta-

model used, since it goes directly to instantiate Kuaba ontology using the meta-model

semantics.

In order to simulate real modeling sessions, a list of statements about a library

system domain was chosen [15]. For the purpose of this paper, only the item “The

Library lends books and magazines, which must have been catalogued, for

registered users”, which is the main process that will be supported by the system, is

used. Fig. 4 graphically illustrates the DR recorded during the design of a partial goal

model for this library domain.

The DR representation is always initiated by the question (represented as a

rectangle on top of Fig. 4) which asks about which domain concepts are known. The

domain ideas addressing this question are shown as ellipses just below it. These

domain ideas suggest questions of how to model those concepts. The design ideas

considered as possible solutions to model them are derived from the KAOS meta-

model’s semantics (Fig. 3). According to the Kuaba approach, all design options

available in the meta-model can be considered to address this question in the DR

representation. However, for a better visualization, just some of these ideas are

illustrated in Fig. 4. For instance, to address the question “How to model this

concept?” suggested by the domain idea “Loans of books and magazines are made”

are illustrated only the ideas “Goal” and “Goal Refinement”.

The meta-model defines that a goal refinement is also a goal. Navigating the meta-

model illustrated in Fig. 3, it can be observed that the refinement association has two

endings. They are expressed as the questions in the DR representation: “Which is the

refinement?” and “Refined from which?”. In this case the idea “Loans of books and

magazines are made” is accepted as a goal and as a refinement of “The library lends

books and [...]”, as other ideas, if shown in this illustration, would be rejected.

Justifications (not illustrated in Fig. 4) for these decisions are also recorded and must

take arguments into account. There are still questions regarding the type of refinement

(AND/OR) in order to define the rule of the goal fulfillment. Concerning the ideas

above, in Fig. 4 the question about which is the refinement termination is addressed

by that goal itself and the question about which goal it is refined from is addressed by

“The library lends books and [...]”. The arguments given for the refinement type take

into account that this goal, as well as others that refine this goal, must be satisfied for

this one to be fulfilled. Thus, the decisions is to accept the “AND” type and reject the

“OR” type.

What are the

model concepts?

The Library lends books

and magazines, which must

have been catalogued, for

registered users
Loans of books and

magazines are made

Loan information

supplied

Borrower's eligibil ity

verified

How to

model this?

Goal

Refinement

Goal

Refined from

which?

Which is the

refinement?

How to

model this?

Goal

What type of

refinement?
AND

Requirement

How to

model this?

Goal

Refinement

Refined from

which?

Which is the

refinement?

How to

model this?

Requirement

Expectation

Goal

Refinement

Refined from

which?

Which is the

refinement?

What type of

refinement?

AND

Supplied by the

librarian

The refinement

must be satisfied to

satisfy the refined

objective

There´s no

possibil ity to

refine further

It is of mandadory

satisfaction

It´s not mandatory.

The librarian is

expected to to fulfi l l

«accepted»

«accepted»

«accepted»

«accepted»

«accepted»
«accepted»

«suggests»

«suggests»

«suggests»

«suggests»

«accepted»

«suggests»

«suggests»

«suggests»«suggests»

«accepted»

«accepted» «accepted»

«suggests»

«accepted»
«in favor»

«in favor»

«in favor»

«in favor»

«in favor»

«in favor»
«against»

«accepted»

«accepted»

«in favor»

«suggests»

«suggests»

«suggests»
«accepted»

«accepted»

«rejected»

«accepted»

«accepted»

«accepted»

Fig. 4. Design rationale representation for refinements in a Goal Model.

Goal refinements may be terminal, indicating the end of the refining process, also

according to the meta-model shown in Fig. 3. In this case the ideas “Requirement” or

“Expectation” should address the question “Which is the refinement?”. The semantic

difference between the concepts of requirements and expectations is significant.

Requirements are the responsibility of software agents, having their satisfaction

guaranteed. By contrast, expectations are the responsibility of environment agents, as

humans are classified in the KAOS framework, meaning that agents are expected to

fulfill their responsibility, although this is not guaranteed. The verification of the

borrowers’ eligibility, which is shown just below the root question in Fig. 4, must be

guaranteed. This implicates that the idea of a requirement to model this concept is

accepted, in contrast with "Loan information supplied” that is modeled as expectation,

since it can be registered by the user or not. This is also explained by the arguments

shown in this example. It can be noticed that these concepts, requirements and

expectations, are not refined further. These concepts are represented in Fig. 7 as

parallelograms with thicker contour lines. Requirements are shown in light grey and

expectations in a darker tone.

The obstacle analysis is an important task during the goal modeling with KAOS, in

which one is able to foresee situations that obstruct or impede goal satisfaction. These

situations might be related to architectural, implementation or even functional design.

The obstacle analysis reveals technical risks for the project, which may be solved or

worked around still in the RE activity, bringing benefit to the whole development.

The strategy whenever modeling with KAOS is to test every goal or requirement to

look for obstructions. With the aid of DR, the arguments may help to identify these

obstructions easier, since the arguments mean the reasoning about possible solutions

and therefore may entail discussions about obstructions to that proposed solution.

What are the

model concepts?

Librarian notified

about the closure of

the operation

Dialog

informing closure

shown
Dialog notification

unintell igible

Dialog box

too small

Dialog box with

scroll control and

10"x7" supplied

How to model

this?

Goal

How to model

this?

Obstacle

Refinement

Goal

Refinement

Goal

Refined from

which?

Which is the

refinement?

How to model

this?

Obstacle

Obstruction of

whom?

Obstacle

How to model

this?

Refined from

which?

Which is the

refinement?

How to model

this?

Requirement

Resolution of?

Refines

notification goal

Obstructs the

notification goal

Refines obstacle

preventing intellegibilty

(just one of the reasons)

Gives one solution

to the intell igibil ity

problem

Which type of

refinement?

OR

Each refinement

obstacle may obstruct

satisfaction of the goal

«suggests»

«suggests»

«accepted»

«accepted»

«accepted»

«suggests»

«accepted»

«suggests»

«suggests»

«suggests»

«accepted»
«accepted»

«accepted»
«accepted»

«accepted»
«accepted»

«accepted»

«in favor»

«in favor»

«in favor»

«in favor»
«in favor»

«in favor»«accepted»

«accepted»

«accepted»

«accepted»

«accepted»

«accepted»

«accepted»

«suggests»

«in favour»

«accepted»

Fig. 5. Design Rationale Representation for the Obstacle Analysis.

Fig. 5 shows the reasoning about the situation where the satisfaction of the

transaction closure notification is obstructed. It is caused by the unintelligibility of the

presented closure message. The problem may relate to many situations like the

contrast of text and canvas colors, or the box may be too small. It is important to

notice that the obstacle refinements are of type “OR”, which means that if any of

them holds, the goal satisfaction condition would be compromised. The DR of Fig. 5

does not show all these obstacle ideas in order to prevent cluttering the illustration.

The relationship “suggests” from the obstacle idea to the root question means that the

designer at the time of this obstruction discovery needed to add new domain ideas to

cover for the situation. These ideas prove to be proposed solutions for refinement of

the obstacle itself and its resolution, shown from the top center to the right of Fig. 5.

This example also poses a new experience about the DR representation and KAOS

meta-model semantics, showing that obstacles may also be refined, as goals are, and

their relationships with goals and requirements represented as question: “Obstruction

of whom?” and “Resolution of?”. The requirement presented that addresses the size

and features of the dialog box is the resolution for the obstruction.

The evaluation of the tests showed that the DR representation and the requirements

model itself are more complete when working in parallel. This happens because no

argument is overlooked, even those apparently thought obvious or common sense are

captured when DR is recorded during the modeling. Each new element added to the

model leads to reasoning about the arguments and the decisions, which in turn can

result in a revision in the model itself, thus creating cycles of improvement during

modeling and DR representation process. During this first situation, which is

capturing the DR during the modeling task, it was noticed that the requirement

“Borrower’s eligibility is verified” is neither complete nor correct. The DR of the

original partial goal model of Fig. 4 shows that the “requirement” idea associated to

the question about “How to model this concept” is an accepted idea due to the

argumentation in favor of this solution. However, a more thorough analysis of the

domain idea and its arguments presented that this solution is more generic than

needed, since there is a declared need stating that “The borrower must be registered to

make loans”, which is not taken into account. This situation implies changes in DR,

given that “Borrower´s eligibility verified” actually may be refined further, thus being

modeled as a goal. Fig. 6 shows these changes of goals and requirements although it

illustrates an Operations Model. The verification and validation using DR considers

the recorded arguments and the all proposed solutions to aid the decisions about

completeness and correctness issues. About the DR recording done after the model

has been finished, it was observed that the representations are poorer and the models

may have errors, because there is no way to remember every argument and solution

alternatives that might have been envisioned at the time of modeling, even though the

recording is held almost immediately after completion of the model. Another

noticeable aspect is that when the software engineer has sufficient knowledge of the

design meta-model’s semantics, the DR can be produced without building the model

in advance. This practice led to more complete representations, i.e., with careful

argumentation, better choices and greater detail. In this case, the model itself could be

computationally obtained from the DR, since it uses the design meta-model’s

semantics, according to the Kuaba approach.

3.1 Design Rationale in Requirements Evolution

It is accepted that requirements are volatile and the impact of changes can be very

large depending on the project stage. Therefore, supporting the management of the

requirements evolution, allowing the tracking and evaluation of changes, and

measuring the impact they may have on the project, is an important contribution to

RE. Tracing artifacts usually takes into account a dependency between artifacts with

limited semantics, which may limit the effectiveness of impact analysis. Once

identified the source of change, namely, that certain requirement will be changed, the

trace just indicates the amount of artifacts that may be changed in each development

activity. In mechanisms for versioning control, the log recorded is a textual

description of the changes in natural language. The DR representation with Kuaba

takes into account the decisions made during the design of artifacts, based on

arguments and justifications that reflect the reasoning of software engineers about the

problem domain and the use of the meta-model concepts to express the abstractions of

this domain. These arguments may support the impact analysis through the possibility

of using semantic elements in the analysis. Moreover, as DR representations have

common structure and semantics provided by the ontology and the meta-model, they

can be compared and measured, as well as the impact of requirements changes

through tracing mechanisms of their own semantic network (DR representation).

Fig. 6 shows changes in the DR for the operations models provoked by a new need

posed by stakeholders during a business process revision. This change adds a new

rule to borrower verification, stating that borrowers must not have overdue loans to be

able to make others. The accepted requirement solution for the idea “Borrower’s

eligibility is verified” was changed to goal due the argument about the borrower’s

existence in the database. This reasoning introduces the accepted solution that there is

a new requirement refining the changed goal. This illustration also shows that a new

need is brought to attention. As the refining structure of the former need is already in

place, the new idea is introduced and accepted as a requirement refining “Borrower’s

eligibility is verified”. This is illustrated in Fig. 7 that shows the partial KAOS goal

model with the three concepts changes (center to bottom). Fig. 6 shows the impact in

the DR representation of the operations model and the evolution when the operation

“Verify borrower’s eligibility” is deleted, because the KAOS’s semantics does not

allow “operationalization” of a goal concept. “Verify borrower existence in database”

and “Verify overdue loans […]” operations are added “operationalizing” the also new

requirements added in the goal model. This means that these operations make possible

the satisfaction of those requirements through the performance of a software agent

“Loan Transaction Component”, not show in the illustration.

What are the

model concepts?

How to model

this concept?

The operationalization

guarantees the

fulfi l lment of this

requirement

Borrower's

eligibil ity is

verified

Restrictions to

borrowers must be

applied in order to

make loans

Borrower existence in

the database is verified

Overdue loans

are verified

The borrower should

be registered to

make loans

The borrower

should not have

overdue loans

Requirement

How to model

this concept?

Goal

How to model

this concept?

Requirement

Verify the existence of the

borrower in database
Verify overdue loans

for the borrower

How to model

this concept?
How to model

this concept?

OperationOperation

Operationalize?
Operationalize?

Guarantees database

verification

Garantees

overdue loans

verification

«suggests»

«accepted»«in favor»

«accepted»«accepted»

«accepted»
«accepted»

«accepted»

«in favor»

«suggests»

«accepted»

«accepted»

«in favor»

«accepted»

«suggests»

«suggests»

«suggests»

«suggests»

«accepted»

«suggests»
«accepted»

«accepted»

«in favor»

«in favor»

«in favor»

«in favor»

Fig. 6. Impact in DR representation of Operations Modeling, after the introduction of two new

domain ideas, related to quality and new stakeholders’ needs, were introduced in the Goal Model.

This idea now
turns out to be
a goal

New ideas accepted as
requirements

DR offers another way to perform the analysis of changes, since the analysis is

made over recorded knowledge in a formal language (OWL) incorporating the

semantics of the meta-model used to describe the artifact. Moreover, the visual

analysis of recorded DR also offers a way to devise the mechanism for impact

analysis, as can be observed in the presented examples.

4 Conclusions

The DR application in Software Engineering and RE has been an active area of

research for the past two decades [1]. However, the complexity and the vastness of

the subject, ranging from RE to cognitive science, limited its evolution in this period.

It reflects the difficulties and the size of research space. Specifically in RE, most of

the research work is more focused on negotiation processes and initial activities of

software development, than in the techniques used in requirements modeling and

specification. The research presented in this paper focuses on the DR representation

for the requirements modeling incorporating the design meta-model’s semantics,

according to the Kuaba approach. The goal is investigating how the explanations

about design decisions made in requirements modeling (DR), can contribute to the

practice of RE. It contributes to the research field, since that the usage of the design

meta-models’ semantics in the DR representation in RE has not been addressed

previously.

The tests performed in this work simulate software engineers’ day-to-day modeling

tasks and show how DR can be represented during the requirements modeling

incorporating the semantics of the KAOS meta-model. This means that the knowledge

and the experience of the software engineers employed in the requirements modeling

can be represented in the DR using the Kuaba approach, even though the DR

representation in this activity seems to be a more difficult task than in those

(conceptual and navigation modeling) where the approach already was tested.

A general aspect observed during the tests is that the recording of DR for software

requirements design favors the quality improvement of the models created, since the

meta-model’s semantics is taken into account when Kuaba approach is used. This

approach avoids syntax mistakes and prevents semantics inaccuracies in the

requirements specification. In addition, it leads to a careful analysis of all modeled

concepts as they are scrutinized by argumentation for or against until a decision is

Fig. 7. Design revision caused by quality improvements and new stakeholders’ necessities.

Loans of books and
magazines are made

The Library lends books and
magazines, which must have been
catalogued, for registered users

Loan information

supplied The librarian is notified

of the operation closure
Borrower eligibility

is verified

The borrower
existence in the

database is verified
Overdue loans

are verified

made. Moreover, as DR representations have a common structure and semantics

provided by the ontology and the meta-model, they can be computationally compared

and measured. Also, they can be used to support the impact analysis of requirements

changes through tracing mechanisms or their own semantic network (DR), as they

preserve not only the decisions and justifications related to the chosen design solution,

but their design history.

A relevant future work is to carry out a case study involving a group of software

engineers using measuring criteria for quality and productivity in order to evaluate

their work involving the DR representation with Kuaba. These results can contribute

to a better evaluation of the analytical observations obtained in the present work about

improvements in the models due to the usage of the Kuaba approach to represent DR.

Adapting the design tool that is being developed to support the semi-automatic

capture and representation of DR from the KAOS meta-model is another important

future work. It can make the achievement of the case study viable. The DR

representations produced by this design tool are generated in the OWL formal

language. So, the application of the operations implemented in [6] using these DR

representations to assess the possibility of reusing requirements models from the

recorded DR is also an interesting work. It could ratify the observations made in this

research on the use of DR to support the requirements evolution.

References

1. Dutoit, A.H., McCall, R., Mistrik I., Paech, B.: Rationale Management in Software

Engineering: Concepts and Techniques. In: Rationale Management in Software

Engineering. Springer-Verlag, pp. 1--48 (2006)

2. Lee, J., Lai, K.: What's in DR? In: Hum-Comp Interaction,vol. 6,no. 3, pp. 251--280 (1991)

3. Burge, J., & Brown, D. C. “An Integrated Approach for Software Design Checking Using

Rationale”, Design Computing and Cognition, Kluwer Acad. Publishers, 557- 76 (2004)

4. Lamsweerde, A.: Requirements Engineering. John Wiley & Sons Inc. (2009)

5. Kunz W., Rittel H.W.J.: Issues as Elements of Information Systems. Inst. of Urban and

Regional Dev. Working Paper 131, Uni. of California, Berkeley, CA, USA, (1970)

6. Medeiros, A., Schwabe, D.: Kuaba Approach: Integrating Formal Semantics and Design

Rationale Representation to Support Reuse. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing. 2008-22, pp.399--419. Cambridge University Press (2008)

7. OMG: Unified Modeling Language 2.0: Infrastructure and Superstructure. (2006)

8. Scwabe, D. and Rossi, G.: An object-oriented approach to Web-based application design.

In: Theory and Practice of Object Systems (TAPOS), pp. 207--225 (1998)

9. Dubisy, F., Lamsweerde A., Dardenne, A.: The KAOS Project: Knowledge Acquisition in

Automated Specification of Software. Proc. of the AAAI. Spring Symp. Series USA (1991)

10. W3C: Web Ontology Language Reference. February. (2004)

11. Conklin, J., Selvin, A., Buckingham, S. S., Sierhuis, M. “Facilitated Hypertext for

Collective Sensemaking: 15 Years on from gIBIS”, In: LAP'03: 8th International Working

Conference on the Language - Action Perspective on Comm. Modeling, Tilburg (2003)

12. Greenspan, S. J.: Requirements Modeling: A Knowledge Representation Approach to

Software Requirements Definition. Ph. D. Thesis - University of Toronto, Canada. (1984)

13. IUT-T: International Union for Telecommunication. IUT-T Z.15 Recommendation. (2008)

14. Respect-IT: KAOS Tutorial. Version 1.0. (2007)

15. Erikson, H. and Penker, M.: UML Toolkit. John Wiley & Sons, Inc., 1st Edition. (1998)

