

A Semi-Automatic Strategy to Identify Crosscutting

Concerns in PL-AOVgraph Requirement Models

Maíra Medeiros1, Lyrene Silva1, Ana Luisa Medeiros1

1 DIMAp – Departamento de Informática e Matemática Aplicada

UFRN – Universidade Federal do Rio Grande do Norte

Campus Universitário Lagoa Nova, Natal, RN, Brasil.

{mairafbmedeiros, analuisafdm}@gmail.com,

lyrene@dimap.ufrn.br

Abstract. The Requirements Engineering area faces problems because the re-

quirements are often ambiguous, incomplete or confusing. These points are

commonly obscured by the natural language, which abstracts the complexity of

interactions among requirements. However, these interactions need to be ana-

lyzed because they influence on how the software development life-cycle ac-

tivities can be modularized from a well formulated and concise requirements

description. In this context, PL-AOVgraph is an aspect-oriented requirement

modeling language, which offers support to represent relationships among con-

cerns and provides separation of crosscutting concerns. However, in order to

identify these crosscutting concerns in PL-AOVgraph, there are only some heu-

ristics, which help analysts to perform this activity manually. Therefore, this

paper proposes a semi-automatic strategy to identify crosscutting concerns in

PL-AOVgraph models. This strategy is based on analysis of an adjacency ma-

trix composed of the relationships among requirements. In order to evaluate this

strategy, a case study is applied.

Keywords: Crosscutting concerns, crosscutting concern identification, PL-

AOVgraph, ReqSys-MDD tool.

1 Introduction

The requirements engineering activity is responsible for discovering, documenting

and maintaining software requirements [17]. Some of the artifacts produced during

these activities are written in natural language. Hence, the requirements engineering

faces problems due to the fact that the requirements are often ambiguous, incomplete

and confusing. These problems happen because there are many ways to describe the

same requirement using natural language, and also, it abstracts the complexity of

interactions among requirements.

One way to deal with these problems is by using the separation of concerns. It de-

composes software systems into smaller modular units, each one is related to one

concern. In this context, the Aspect-Oriented Software Development (AOSD) [7] is

particularly interesting because the modularization is achieved by encapsulation of

crosscutting concerns through specific abstractions of language used. Crosscutting

concerns are parts of a system which are strongly related, scattered or tangled, influ-

encing or restringing each other, making the system complex and difficult to analyze.

The aspect-oriented requirements engineering area proposes methods and tech-

niques to identify, to separate and to compose crosscutting concerns focusing on re-

quirement artifacts.

In the context of the aspect-oriented requirements engineering, there are some ap-

proaches of identification, modeling and analysis of crosscutting concerns. Among

these, PL-AOVgraph (Product Line – Aspect-Oriented Vgraph) is a goal-oriented

requirement modeling language which supports the description, composition and

visualization of requirements. Regarding PL-AOVgraph models, the crosscutting

concern identification is performed in an ad hoc way, based on some general heuris-

tics, such as quantity of input or output relationships (fan-in or fan-out), or the possi-

bility of reusing a particular concern [16], leaving to the analyst the subjective deci-

sion to model some requirements as crosscutting concern or not. Additionally, even

deciding to model a particular concern as crosscutting, the analyst may do it incom-

pletely, not modularizing such concern in the most appropriate way.

Therefore, the objective of this paper is to present a semi-automatic strategy to

identify crosscutting concerns in PL-AOVgraph models and to report a case study

which evaluates if this strategy is efficient. This strategy was inserted in ReqSys-

MDD tool, which is an Eclipse plug-in to validate requirement specifications (in PL-

AOVgraph) and execute automatic bi-direction transformations between PL-

AOVgraph models and Features Models [14][15]. The motivation for attaching our

strategy to ReqSys-MDD is the reuse of some ReqSys-MDD functionalities, such as

the validation of PL-AOVgraph documents and the parsers Xtext and Acceleo, which

transform text to model and model to text, respectively. Furthermore, our aim is to

integrate into ReqSys-MDD tool all functionalities about PL-AOVgraph.

This paper is organized as follows. Section 2 presents PL-AOVgraph and its fea-

tures; Section 3 defines our semi-automatic strategy to identify crosscutting concerns

and to write the crosscutting relationships. Section 4 specifies how this strategy was

inserted in PL-AOVgraph tool. Section 5 describes the results achieved using our

approach with Crisis Management System (CMS) case study [9]. Section 6 summa-

rizes some related works. Section 7 presents our final remarks and future works.

2 PL-AOVgraph

PL-AOVgraph [14] is an extension to the AOV-Graph goals model [16] with support

to the variability. In other words, PL-AOVgraph is a requirement modeling language

which inherits all the AOV-Graph features. These models consist of oriented graphs

composed by the following element types: (i) task – functional requirement; (ii)

softgoal – non-functional requirement; and, (iii) goal – organizational goal. The

relationships among the PL-AOVgraph elements may be one of three types:

contribution; correlation; and, crosscutting [12]. Although these models are graphics,

we have worked in their textual representation, which is more easily manipulated.

Correlation relationships indicate the influence, whether positive or negative, from

a goal to a softgoal (one-to-one relation). This influence is labeled as follows: Make,

Break, Help, Hurt or Unknown.

Contribution relationships are represented by the hierarchical relationships (one-to-

one) between child and parent elements, respectively, source and target of the rela-

tionship. These contributions may be labeled as one of the following types: And, Or,

Xor, or Inc-or.

In opposition to contributions and correlations, which are one-to-one relationships,

crosscutting relationships represent many-to-one relations. These relationships can

modularize many interactions in one relationship, decreasing the quantity of contribu-

tions. The amount of contributions must be specified and also it must be determined

which concerns are crosscutting each other [14]. The description of the crosscutting

relationship is based on elements of Aspect-Oriented Software Development (AOSD)

proposed by AspectJ language, so, it is composed of: (i) Source – which is the origin

of the relationship, i.e., what concern influences other requirements; (ii) Pointcut –

which is the target set of the relationship, i.e., the requirements which are affected by

the source; (iii) Advice – which specifies what requirements (child of source) are

scattered or tangled on the pointcuts; (iv) Intertype Declaration – which defines new

instances (if it is element type) or types of elements (if it is attribute type) to the mod-

el.

Additionally, PL-AOVgraph allows the insertion of new properties to a model by

using “property” elements. There are six pre-defined properties to support the varia-

bility and the transformation between feature models and PL-AOVgraph [14]. How-

ever, these properties are not used in this work.

We use the Crisis Management System (CMS) [9] like a demonstrative example in

next sections. This system was defined with purpose to create a common case study

for aspect-oriented modeling community and it was presented like special issue in the

Transactions on Aspect-Oriented Software Development journal. The CMS domain

helps in the identification, evaluation to handle a crisis situation, allowing the com-

munication among all parties involved.

Figures 1 and 2 illustrate a small part of the CMS PL-AOVgraph model. Figure 1

illustrates its graphical representation and Figure 2 is its textual representation. In this

example, the task “Manage [Communication]” (line 5) contributes to two tasks (lines

5 and 10) and four softgoals (lines 15, 20, 25 and 30). These contributions are showed

by the “and” pointers between the nodes shown in Figure 1, and included in the labels

in parenthesis in Figure 2.

Fig. 1. Contribution relationships in PL-AOVgraph graphic mode.

Fig. 2. Contribution relationships in PL-AOVgraph textual mode.

As requirement models are usually extensive, insofar as the model is evolving and

growing it becomes difficult to maintain its readability as well as its understanding.

Therefore, the crosscutting relationships are a strategy to separate concerns, reduce

the number of contribution relationships and tangled and scattered elements. Figure 3

shows a crosscutting relationship example, which replaces those relationships repre-

sented by task references (task_ref) showed in Figure 2(lines 10, 15, 20, 25 and 30).

Figure 3, line 2, represents the source of this crosscutting relationship, it is the goal

“Crisis resolved”, because it is the parent of the elements which are scattered or tan-

gled. The pointcut block (lines 03 to 08) defines the elements which are affected by

the advice: the two tasks, “Use [alternate communication channels]” and “Manage

[Crisis]”; and four softgoals “Reliability [Communication]”, “Communication, coor-

dination, info Access from rescue resources = 20000”, “Time of delay in communica-

tion <= 500ms” and “Deterioration factor on communication <= 0.0001/1000km”.

The advice block (lines 09 a 11) defines the elements which are scattered or tangled

with pointcut elements, referenced by “PC1”, in this case, the task “Manage [Com-

munication]” (line 10).

Fig. 3. Crosscutting relationship in PL-AOVgraph textual model.

3 Crosscutting Concerns Identification in PL-AOVgraph

The identification strategy presented in this paper is based on the fan-out analysis of

relationships among requirements. For this analysis, it is used an adjacency matrix to

identify and to account these output relationships. In this context, the identification

process is comprised of three major steps, as illustrated in Figure 4. A PL-AOVgraph

requirements model is the input of this process. From it, a matrix with the

relationships among requirements is created. After that, crosscutting concerns may be

identified by accounting how many contribution relationships are sourced at each

requirement. Hence, crosscutting concerns may be specified, considering the data of

the matrix and the data of the input model. Finally, the PL-AOVgraph model is

updated by substituting contributions by crosscutting relationships. This process is

detailed and exemplified below.

Fig. 4. Process to identify and specify crosscutting relationships.

The first stage is the creation of an adjacency matrix, considering that it shows the

relationships among requirements. This activity takes as input a PL-AOVgraph

requirement model from that it generates an adjacency matrix. This matrix is built

from contribution relationships among the PL-AOVgraph elements. As soon as the

PL-AOVgraph model is read by the tool, the matrix is fulfilled in a way that the

horizontal lecture indicates the relationships which the element, refered by the matrix

lines, originates.

In order to illustrate this activity, Figure 5 shows a small part of the requirement

specification in PL-AOVgraph of CMS. In this Figure, there are two major concerns,

represented by the goal “Crisis resolved” (line 03) and by the softgoal “Security” (line

24), as well as contribution relationships between them and other (sub) tasks (lines 04

to 22 and lines 25 to 31), “Authenticate [User]” is a task that contributes, besides to

the softgoal “Security” (line 24), to the tasks “Manage [External Resource]” and

“Manage [Internal Resource]” and it is represented by task_refs elements (lines 09

and 19).

Based on this PL-AOVgraph model, the adjacency matrix is fulfilled, see Table 1,

where its horizontal lecture indicates the direction of the contribution relationships,

for instance, “Select [Employee]”, “Receive confirmation of acceptance mission” and

“Inform [Mission info]” (lines 13 to 15 in Figure 5) contribute to “Assign [Internal

Resource]” (line 12 in Figure 5).

Fig. 5. Example of PL-AOVgraph textual model

Once the relationships between the requirements are identified and added to the

matrix, the second step of the process takes place, which consists on analyzing this

matrix to identify crosscutting concerns.

This analysis consists on evaluating the scattered and tangled phenomenon. This

phenomenon is identified when a requirement affects (or is affected by) several other

requirements. Therefore, how much more a requirement contributes to other, more

scattered and tangled it is. Hence, the crosscutting concern identification can be

achieved by counting these relationships. For example, using our adjacency matrix

(Table 1), we can quickly visualize that “Authenticate [User]” contributes to three

other requirements while the others only contributes to one (highlighted in Table 1). It

is important to mention that some cells, in which the element did not generate output

relationships, were removed to improve the visualization.

It is important to remark that we do not determine a minimum value to the amount

of contributions that a requirement must have to be considered a crosscutting concern.

We prefer to make this value configurable, once this quantity depends on the context

and it varies from one system to another, so, the requirements engineer must set it.

Because of this, our strategy is not completely automatic. For example, considering

the example of Table 1, if the requirements engineer set this value with three (it can

be any number greater than two – the minimum defined by literature), then it can be

inferred that the task “Authenticate [User]” is a crosscutting concern, whereas if the

requirements engineer set this value with four (or more) then it would not be consid-

ered a crosscutting concern in this model, because there is not any element which

generates this quantity of relationships.

Table 1. Example of adjacency matrix

 Once the crosscutting concerns are identified, it is necessary to represent them in

crosscutting relationships, it is the third and last step of the process. Therefore, to

specify crosscutting relationships, it is indispensable to define the elements that form

this kind of relationship: source, pointcut, advice and/or intertype declaration.

It is important to emphasize that if there are crosscutting relationships defined in

the input specification, then they need to be updated with other pointcuts and advices.

Furthermore, there must never be relationships with the same source otherwise, there

will not modularization.

The source is the crosscutting relationship origin that is represented by the parent

requirement of the crosscutting concern. The Table 1 illustrates that the task “Authen-

ticate [User]” was identified as crosscutting concern by analysis of matrix. Therefore,

to define the source of the relationship, it is necessary to analyze the specification

(Figure 5) to identify its parent requirement. Analyzing this specification, we can

notice that the softgoal “Security” is the parent requirement, consequently, it is the

source of the crosscutting relationship (line 25).

Pointcuts indicate the requirements which are affected by crosscutting concern,

then in our example, the tasks “Manage [External Resource]” and “Manage [Internal

Resource]” compose the elements of the pointcut. As explained in Section 2, advice

and intertype declaration indicate requirements, which affect other requirements.

However, the pieces of advice are stated in the model while intertype declarations are

not stated in the model. So, this strategy cannot identity intertype declarations. There-

fore, in our example, the advice is composed of the task “Authenticate [User]”.

It is worth highlighting that since each crosscutting relationship accommodates

many contributions, then these contributions are replaced by crosscutting relation-

ships. This reduction and modularization of the relationships aids traceability and

consistency management, because each part involves only one feature, thus it makes it

easier to locate changes and to deal with one important issue at a time.

Finally, concluding these stages, a new requirement specification is created which

removes some contributions and adds crosscutting relationships. The Figure 6 shows

the crosscutting relationship (lines 01 a 08) created to represent that “Authenticate

[User]” is a crosscutting concern and it crosses to “Manage [External Resource]” and

“Manage [Internal Resource]”.

Fig. 6. Example of Crosscutting Relationship

4 Extending ReqSys-MDD Tool to Identify Crosscutting

Concerns

ReqSys-MDD [15] implements a bi-directional mapping between PL-AOVgraph and

Features Model, using MDD approach. This tool was coded at Eclipse environment,

which offers the Plug-in Developer Environment (PDE) and the Eclipse modeling

framework (EMF), both needed for the elaboration of metamodels, and the ATL

(ATLAS Transformation Language) Development Tool, needed for implementation

of mapping rules.

Furthermore, Xtext and Acceleo plug-ins are utilized and integrated to the EMF in

order to transform text into model and model into text, respectively. In ReqSys-MDD,

Xtext is responsible for transforming a PL-AOVgraph textual specification (or a Fea-

ture Model described in XML), in a XMI model, which is the input to ATL transfor-

mation rules. The Acceleo, on the other hand, is responsible for doing the inverse

process, that is to transform a XMI model, produced by ATL transformation, in a PL-

AOVgraph textual specification (or in a Feature Model) described in XML.

ReqSys-MDD also helps to edit PL-AOVgraph specifications, offering keyword

coloring and lexical and syntactic analysis, certifying that input models are conformed

to their metamodel.

In this context, the method proposed in this paper was implemented as an addition-

al module to the ReqSys-MDD plug-in. This module was coded using the Java pro-

gramming language, this choice occurred because ATL did not present support to

strategy implementation proposed in this paper.

Figure 7 shows the crosscutting concern identification flow in an additional mod-

ule of ReqSys-MDD tool: (i) the input PL-AOVgraph textual specification is analyzed

by the Xtext module and thus transformed in a XMI model; (ii) from this XMI model,

Java objects are created and through analysis of adjacency matrix the crosscutting

relationships are identified and written, generating a new XMI model; (iii) this XMI is

transformed, through Acceleo, in a PL-AOVgraph textual specification.

Fig. 7. The crosscutting concern identification flow in ReqSys-MDD.

5 Case Study

We have used in this case study the same system used like a demonstrative example

in this paper – the Crisis Management System (CMS). This system was selected

because it has many of the PL-AOVgraph elements which are fundamental for an

accurate analysis.

As mentioned in this paper, the CMS system aims to help in identifying, assessing,

and handling a crisis situation by orchestrating the communication between all parties

involved, by allocating and managing resources, and by providing access to relevant

crisis-related information for authorized users [9].

The case study reported here aimed to compare the crosscutting concerns obtained

from the manual technique and the results from the strategy described in this paper. It

was consisted of 3 stages:

1. Manual crosscutting concerns identification and specification – this stage is re-

sponsible to model a PL-AOVgraph model before and after the composition pro-

cess, based on [9]. It is important to remind that composition process generates a

specification whose crosscutting relationships are disunited in contribution rela-

tionships. So, firstly, it is modeled a specification using heuristics to identify cross-

cutting relationships (model 1), defined in [16]. After that, a version without cross-

cutting relationships of this model was generated (model 2) (by the composition

process explained in [16]) in order to be used as input to the ReqSys-MDD. It is

important to remark that these models were not created by the authors of this strat-

egy. However these models were created by a person that was expert in PL-

AOVgraph because of this we assumed that these models are correct;

2. Crosscutting concerns identification using ReqSys-MDD – the second model

cited on stage 1 was used as input in ReqSys-MDD in order to identify crosscutting

concerns. It was set that a requirement is scattered or tangled if it affects 3 or more

elements. ReqSys-MDD generate another model with crosscutting relationships

(model 3); and

3. Results comparison – the output generated in the stage 2 (model 3) was analyzed

and compared with the first model created in the stage 1. Therefore, we compare

the results presented by the manually case study with the result of applying the

semi-automatic strategy proposed in this paper.

Table 2. Statistics about CMS Case Study

 Manual case study
Semi-automatic case

study

Elements

Quantity of ele-

ments - Model 1,
stage 1

Quantity of ele-

ments - Model 2,
stage 1

Quantity of elements –

Model 3, stage 2

Goals 6 6 6

Softgoals 27 27 27

Tasks 79 79 79

Contribution relationships 108 156 106

Correlation relationships 20 20 20

Crosscutting relationships 6 0 4

Crosscutting concerns 17 0 12

Table 2, summarizes the results achieved; columns 2 and 3 present the quantity of

elements comprised in models created in stage 1, while the last column present the

quantity of elements created in the stage 2. The CMS PL-AOVgraph model is com-

prised of 27 softgoals, 6 goals, 79 tasks and 20 correlations. These elements are the

same in all models. On the other hand, the amount of contributions and crosscutting

relationships are different in each model: in model 1, there are 108 contributions and

6 crosscutting relationships; in model 2, there are 156 contributions and zero crosscut-

ting relationships; and in model 3, there are 106 contributions and 4 crosscutting rela-

tionships.

The elements showed like crosscutting concern in Table 2 are the advice elements,

i. e., the elements which are repeated along the model.

Comparing the results presented by manual case study and semi-automatic case

study (see Table 2), the main difference is the quantity of crosscutting relationships.

In the semi-automatic case study were identified 4 crosscutting relationships, while in

the manual case study were showed 6 crosscutting relationships; and the quantity of

crosscutting concerns, in the semi-automatic case study were identified 12 crosscut-

ting concerns, while in manual case study were identified 17 crosscutting concerns.

Analyzing these relationships, it was noticed that: 5 of the 6 crosscutting relation-

ships manually identified were covered by semi-automatic case study. It could be

observed due the level of hierarchy used in both case studies. Hereinafter, it will be

explained clearer.

Thus, 2 of them were written in the same manner. However, in one of them, the

manual case study presented one additional element of advice than the semi-automatic

case study. Figure 8 shows the crosscutting relationship identified by ReqSys-MDD

that was equivalent in both case studies, i.e., the source, pointcut and advice elements

were equals in both case studies.

In this perspective, 3 of these 5 elements were not written in the same manner, be-

cause the semi-automatic strategy defines the source of this relationship with the ele-

ment which is at the top of the hierarchy and, the manual case study, defines the se-

cond level of hierarchy, but they are equivalents. Additionally, these 3 relationships

represented 2 relationships in semi-automatic case study, and also the semi-automatic

case study identified one more advice element than the manual case study. This ele-

ment was not identified by manual case study because it was not used only the quanti-

ty of relationships, but also the possibility of reuse.

Fig. 8. Example of crosscutting relationship identified

Finally, 1 of the 6 crosscutting relationships manually identified was not covered

by semi-automatic case study. The reason for this is that the amount of output

relationship was not equal to or greater than 3. This relationship grouped 4 elements

in advice, i.e., 4 crosscutting concerns.

Therefore, in general, we consider which the crosscutting concerns identified by

ReqSys-MDD are correct, but the insights of the requirement engineer can identify

other elements, which the semi-automatic strategy could not do.

 Thus, this strategy facilitated the crosscutting concerns identification since it iden-

tified almost all crosscutting relationships. In this perspective, semi-automatic strate-

gy proposed to help efficiently in the crosscutting concerns identification. More de-

tails for this case study can be found in [10].

6 Related Work

In order to respond to the necessity of identifying crosscutting concerns early in the

software development lifecycle, some methods were created to systematize and make

the execution of this activity easier. Therefore, we made a literature review, which

aimed to seek methods and techniques for identifying crosscutting concerns in

requirements documents to guide the development of the approach presented in this

paper. Then, we could describe two major groups of identification approaches: (i)

those which process textual requirements documents; and (ii) those which deal with a

specific type of model, for instance, Use Cases and I* models.

Among the methods which process textual documents, we can highlight CCCINPL

[1], Theme/Doc [6], DISCERN [11] and Early-AIM [13]. The first difference among

them is the identification technique: Theme/Doc performs lexical analysis and the

other three perform semantic analysis. Although these three approaches perform the

same identification technique, each one is performed in a different way, such as using

natural language processing or aspect mining. Other difference between them is the

requirement type that is identified as crosscutting concern: Theme/Doc and CCCINPL

identify crosscutting concerns in functional or non-functional requirements, but

DISCERN and Early-AIM only identify in non-functional requirements.

Among the method which process specific models, we can highlight the approach-

es which extend UML [4][5] and the approaches which use I*[2][3]. They perform

the crosscutting concern identification by different techniques: those which extend

UML use semantic analysis and those which work with I* use rules (considering the

intrinsic elements of those languages). Furthermore, other difference between them is

the requirement type that they identify as crosscutting concern. Only those which

work with I* identify crosscutting concerns in both requirement types, the other iden-

tify only in non-functional requirements.

This strategy proposed by this paper is in this second group, because it process PL-

AOVgraph model and like those process I* models, this strategy identifies

crosscutting concern in both requirements types – functional or non-functional

requirements. Furthermore, this strategy uses the fan-out analysis as identification

technique.

Above all, some of these works, or parts of them, were used as a base to define the

strategy proposed here, among them CCCINPL, Theme/Doc and those which works

with I*. The first, by the use of a relationship matrix to identify the verbs that

influence each requirement; and the others by the heuristics used to identify

crosscutting concerns.

Therefore, the contribution of the strategy and tool presented in this paper is to

make semi-automatic some heuristics to identify and define crosscutting concerns in

PL-AOVgraph models. This application makes a good use of its natural

characteristics, such as, the modeling of both functional and non-functional

requirements, the ability to make explicit the relationships between the requirements,

and then, help to analyze them.

Table 3 presents a summary of the related works, showing the identification

technique used by the approach and in what type of requirement it identifies

crosscutting concern.

Table 3. Summary of related works

Approaches that process textual requirements documents

Approach Identification technique Requirement types

Theme/Doc Lexical analysis
Functional Requirements

Non-Functional Requirements

DISCERN Semantic analysis Non-Functional Requirements

Early-AIM Semantic analysis Non-Functional Requirements

CCCINPL Semantic analysis
Functional Requirements

Non-Functional Requirements

Approaches that process specific models

Approach Identification technique Requirement types

Crosscutting concern identi-
fication with UML

Semantic analysis Non-Functional Requirements

Identifying crosscutting

concern with I*
Rules

Functional Requirements

Non-Functional Requirements

7 Final Remarks

This paper presents, briefly, a semi-automatic strategy for crosscutting concerns

identification in PL-AOVgraph models. This strategy aims to help the requirement

engineer to identify crosscutting concerns and to write the crosscutting relationships

properly early in the software development process. This strategy is supported by a

tool, named ReqSys-MDD. This support makes the PL-AOVgraph models better

modularized and then, it makes them more easily analyzed and mapped to other

stages of software development.

The Crisis Management System (CMS) [9] was used as a case study in this paper

in order to evaluate the heuristics defined to identify crosscutting concerns and their

implementation. This strategy facilitated the crosscutting concerns identification since

it identified almost all crosscutting relationships. This result can be due the crosscut-

ting concern identification in manual way is not only by output relationships but also

by requirements engineer’s insights.

As future works, it is suggested to carry out other studies case to evaluate the effi-

ciency of the tool and, consequently, of the method proposed here, in different con-

texts. Furthermore, we intend to perform controlled experiments to compare the re-

sults obtained by this method and the results obtained by other crosscutting concerns

identification approaches. And also, we aim to make our strategy more generic, allow-

ing its use with others goal-based languages.

Acknowledgements. This research was performed with support from The

Brazilian National Council for Scientific and Technological Development – CNPq.

References

1. Ali, B.S., Kasirun, Z. M. Crosscutting concern identification at requirement level. In: Ma-

laysian Journal of Computer Science, vol. 21(2), pp.78-87 (2008).

2. Alencar, Fernanda; et al. “Identifying Candidate Aspects with I-star Approach”. In: Inter-

national Conference on Aspect-Oriented Software Development. (2006).

3. Alencar, Fernanda; et al. “Using Aspects to Simplify i* Models”. In: International Confer-

ence on Requirements Engineering. (2006).

4. Araújo, J.; Moreira, A. An Aspectual Use Case Driven Approach. In: VIII Jornadas de In-

geniería de Software y Bases de Datos (JISBD 2003), Alicante, Spain. (2003).

5. Araújo, J.; et al. Aspect-Oriented Requirements with UML. In: Workshop on Aspect-

Oriented Modelling with UML (UML 2002). Dresden, Germany. (2002).

6. Baniassad, E., Clarke, S. Finding Aspects in Requirements with Theme/Doc. In: Proceed-

ings of Early Aspects 2004 (AOSD 2004). Lancaster, United Kingdom, (2004).

7. Filman, Robert E., et al. Aspect-Oriented Software Development. Boston: Pearson Addi-

son-Wesley (2005).

8. Kiczales, G.; et al. Aspect-Oriented Programming. In: ECOOP 1997 - Proceedings of the

11th European Conference on Object-Oriented Programming, p.p. 220–242. Finland

(1997).

9. Kienzle, Jörg; Guelfi, Nicolas; Mustafiz, Sadaf. Crisis Management Systems: A Case

Study for Aspect-Oriented Modeling. Technical Report. McGill University, Montreal,

Canada (2009).

10. Medeiros, Maíra de Faria Barros. Identificando Interesses Transversais em Modelos de

Requisitos PL-AOVgraph. Master Dissertation – Federal University of Rio Grande do

Norte, Natal, RN (2013).

11. Rosenhainer, L. The DISCERN Method: Dealing Separately with Crosscutting Concerns.

In Proceedings of OOPSLA Early Aspects 2005. San Diego, USA (2005).

12. Sampaio, Américo; et al. EA-Miner: a tool for automating aspect-oriented requirements

identification. In: International Conference on Automated Software Engineering (2005).

13. Sampaio, Américo; Rashid, Awais; Rayson, Paul. Early-AIM: An Approach for Identify-

ing Aspects in Requirements. In: International Conference on Requirements Engineering

(2005).

14. Santos, Lidiane Oliveira dos. PL-AOVgraph: uma extensão de AOV-Graph para linha de

produto de software. 84 f. Monograph in Computer Science – State of University of Rio

Grande do Norte, Natal (2010).

15. Santos, Lidiane Oliveira dos. ReqSys-MDD: Uma ferramenta para mapeamento entre mo-

delos de features e requisitos em linhas de produto de software. 113 f. Master Dissertation

– Federal University of Rio Grande do Norte, Natal, RN (2012).

16. Silva, Lyrene Fernandes da. Uma estratégia orientada a aspectos para modelagem de requi-

sitos. 222 f. PhD Thesis – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Ja-

neiro (2006).

17. Sommerville, Ian. Engenharia de Software. 8. ed. São Paulo: Pearson Addison-Wesley,

552 p. (2007).

