

Quality Properties Evaluation for Software Requirements
Specifications: An Exploratory Analysis

Roxana Saavedra1, Luciana Ballejos2, Mariel Ale3

1CIDISI – UTN – Facultad Regional Santa Fe – rsaavedra@frsf.utn.edu.ar
2CIDISI- UTN - Facultad Regional Santa Fe – lballejos@santafe-conicet.gov.ar

3CIDISI- UTN - Facultad Regional Santa Fe – male@frsf.utn.edu.ar

Abstract. Most software problems arise from deficiencies in the manner in
which software requirements are elicited and expressed. Ensuring that the Soft-
ware Requirements Specification document (SRS) has the necessary quality is
crucial to the success of any software development project, since its information
is used across all project stages. However, assessing the quality of a SRS is not
a simple process, mainly by the multitude of proposals, often contradictory, of
the attributes to be evaluated and the methodologies used for that purpose. This
work is intended to be a compendium of the most important tendencies and
strategies in the field that serves as a starting point for developing comprehen-
sive models and tools for quality attributes evaluation in a SRS.

Keywords. Software Requirements Specification, quality attributes evaluation,
quality models

1 Introduction

The primary measure for an information system to be successful is the degree in
which it meets the intended purpose. Requirements Engineering (RE) is a subtask of
Software Engineering which deals with the discovering of that purpose by identifying
stakeholders and their needs, and documenting them for their future analysis, commu-
nication, and subsequent implementation [1].

In RE processes there is a continual need for efficiently managing the great volume
of information and knowledge generated and used during all activities which compose
the software development process. Thus, diverse are the challenges that must be con-
sidered when managing requirements-related information in software development
projects. In this sense, ambiguous requirements must be minimized since they pro-
duce waste of time and repeated work.

Related to this, there exist in the literature diverse proposals in order to give guid-
ance in the assessment of different attributes or properties for requirements, which
helps in controlling if their specification is made in a correct way. Some of them also
propose quality models to be considered when evaluating a Software Requirements
Specification (SRS), the main deliverable produced in RE, which is used throughout
the project [2,3].

The main goal of this paper is to analyze the state-of-the art in this area, in order to
give a more consistent support for software engineers when generating requirements

2 Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis

specifications. Moreover, the results might be considered for the future development
of tools for supporting automate or semi-automate evaluation of SRS quality.

The paper is organized as follows: Section 2 describes the research methodology
used for the study. Section 3 presents diverse proposals in SRS quality properties,
analyzing their similarities and differences. Meanwhile, Section 4 discusses and ana-
lyzes diverse proposals or approaches for evaluating the attributes described in the
previous section. Related to this, Section 5 describes influences between these proper-
ties. Finally, Section 6 is devoted to discuss future trends in this area and the conclu-
sions of the paper.

2 Research Methodology

The purpose of this study is to understand the trend of quality-related attributes as-
sessment for SRS by examining published articles and offering, at the same time,
insights and future directions in this area.

To this end, the following electronic journal databases were searched to provide an
exhaustive bibliographic revision of research papers in the area:

• EBSCO Discovery Service,
• EconPapers,
• Compendex. Engineering Village,
• Engineering Village 2: Referex Engineering ,
• National Digital Library of Theses and Dissertations (NDLTD),
• NTRS: NASA Technical Reports,
• Scopus. Elsevier,
• Social Science Research Network (SSRN),
• ACM Portal,
• IEEE Library.

The search process was performed based on three descriptors: “Software Require-
ments Specification”, “Quality Models” and “Quality Attributes Evaluation”. The
selection of the descriptors was performed according to their different levels of gener-
ality, which allows refining the search results. The search process started from more
general (e.g. "quality models") to more specific (e.g. "Software Requirements Speci-
fication") phrases, using the facilities of “search within the results” offered by most
search engines. Despite the above, and due to the large quantity of papers returned by
the databases, the following exclusion criteria were used:

• Given the limited number of indexed publications addressing this particular
subject, the consideration of publications only in English. This was done in
order to ensure that these articles have been accessed and validated by the
widest possible audience. For the same reasons, non-refereed conference pa-
pers, unpublished master and doctoral dissertations were excluded.

• Because the idea of evaluating quality attributes for the SRS is relatively
new, the search was restricted from 1990 onwards.

• Only research papers referring specifically to SRS quality attributes were
chosen.

Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis 3

3 Quality Attributes

In general, quality attributes for a SRS are part of a quality model and should be used
to assess the quality of a requirements document, or individual requirements con-
tained in a SRS [4]. Thus, each attribute might be related to the entire SRS or to each
requirement defined in it. This is due to, since for many attributes to be attained by
the SRS, they have previously to be achieved for each requirement defined in it. Re-
lated to this, many of the authors proposing the same property coincide in their con-
siderations, some issues regarding particularities in the analysis deserve to be pointed
out. In the next subsections diverse definitions and proposals for each property are
presented.

3.1 Unambiguous

A SRS is unambiguous if every requirement stated therein has only one possible in-
terpretation [2,5,6]. Some authors give similar definitions for unambiguous require-
ments [7,8,9,10,11]. Pohl [7] states that a requirement is unambiguous if all stake-
holders with approximately the same knowledge about the system and its context
interpret the requirement in the same way. It also requires that, at least, each charac-
teristic of the final product be described using a single unique term [5], and those
terms that could have multiple meanings in a particular context, should be included in
a glossary where its meaning becomes more specific [5,8].

3.2 Complete

The IEEE 830:2009 Standard [5] establishes that a SRS is complete if it contains the
following elements: 1) all significant requirements; 2) definition of the responses of
the software to all realizable classes of input data in all realizable classes of situations;
3) complete labels and references to all figures, tables and diagrams in the SRS and
definition of all terms and units of measure. Some authors also add the rule that all
pages must be numbered and all referenced material must be present in SRS
[2,12,13].

Furthermore, a SRS is complete if all relevant requirements are specified
[2,7,8,10], and, therefore, irrelevant requirements should be absent [7,14]. Some au-
thors [2,5], consider that a SRS is not complete if there are unfinished sections, i.e.,
there are marks "To Be Determined" (TBD). A requirement is complete if it is fully
specified [7,6,8] and does not omit any piece of information that is relevant to some
stakeholder [7].

3.3 Consistent

Some authors treat internal and external consistency as different quality properties
[2,9], others seek only the internal consistency [5,7,14,15,16,17,18], and others con-
sider the internal and external consistency as a same quality attribute [3,6,8,19].

4 Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis

3.3.1 Internally Consistent

A SRS is considered internally consistent if not subset of requirements outlined in it
have conflicts [2,5,7,9,10,14]. Moreover, a requirement is consistent if the statements
within it do not contradict each other [7].

3.3.2 Externally Consistent

A requirement in the SRS is considered externally consistent has no conflicts with any
project documentation (i.e., system requirements specifications, statements of work,
white papers, an early SRS version with which the new version must be compatible,
and system requirements specifications of other systems to which this system must
have interface). Thus, a SRS is considered externally consistent if the requirements
described in it have no conflict with any project documentation [2,6,8,9,19].

IEEE 830:2009 [5] states that if a SRS disagrees with some superior-level docu-
ment, such as a system requirements specification, then, this is not correct rather than
externally inconsistent (see section 3.4).

3.4 Correct

A SRS is considered correct if every requirement is something required to build the
system, i.e., each requirement contributes to the satisfaction of some need [2,5,6]. The
SRS should be compared with any superior specification to ensure that it agrees. The
customer or user can also determine whether the SRS correctly reflects the actual
needs [5,8]. Instead, some authors define the quality attribute validability/valid when
they establish that the client should be able to confirm that SRS requirements describe
the system that meets their needs [10,14]. Pohl [7] states that a requirement is correct
if the relevant stakeholders confirm that it is correct and require the system to perform
the requirement completely. Thus, a requirement is incorrect if it unnecessary adds
some functionality or quality property (gold platings).

3.5 Traceable

A SRS is considered traceable if each requirement has a clear source and is easily
referenced in subsequent development phase or documentation [5,6]. IEEE 830:2009
[5] recommends two types of traceability: 1) Backward traceability, i.e., before the
development stages. This is achieved when each requirement explicitly reference to
its source in earlier documents. Some authors define this attribute as "Traced"
[2,12,13,20]; 2) Forward traceability, i.e., all documents generated from the SRS.
This is achieved when each requirement has a unique name or reference number.
Some authors define it as "Traceable" [2,10,12,13,20]. A requirement is traceable if
the origin and evolution as well as its impact and use in later stages of development is
traceable [7,8].

Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis 5

Some authors treat separately Traceable and Traced quality properties [2,12,13,
20], others try these attributes together in Traceable [5,6,7,8], and others only con-
sider Traceable attribute [10,14].

3.6 Verifiable (Testable)

A SRS is considered verifiable if every requirement stated therein can be verified
[2,5,6]. A requirement is verifiable if there is a finite and cost-effective process with
which a person or machine can check that the software product meets the requirement
[2,3,5,6,7,8,14]. Pohl [7] states that if a requirement is underspecified, it is not objec-
tively possible to decide if the requirement is realized as defined or not. It also states
that, to facilitate verifiability, some acceptance criteria must be defined.

3.7 Modifiable

A SRS is considered modifiable if its structure and style are such that allow introduc-
ing easily, completely, and consistently any change, without affecting the structure
and style [2,5,6,7,13]. To achieve modifiability a SRS must: 1) have a coherent and
easy to use organization, a table of contents, an index, and explicit cross-references
(see sections 3.11 and 3.14); 2) avoid redundancy (because problems can arise when a
redundant requirement is altered in only one of the places where this occurs, resulting
in a inconsistent SRS) (see section 3.12); 3) express each requirement separately (see
section 3.13) [5,7,8].

3.8 Annotated by Relative Importance, Relative Stability or Version

A SRS is considered ranked by importance if each requirement in it has an identifier
to indicate its importance [2,5,6,14]. One way to classify requirements is to distin-
guish classes of them as essential, conditional, and optional [2,5].

A SRS is considered ranked by stability if each requirement in it has an identifier
to indicate the stability of that particular requirement [2,5,6,14]. Requirements stabil-
ity can be expressed with the number of expected changes for any requirement [2,5].

A requirement is rated if its relevance has been determined and documented [7].
A SRS is considered annotated by version if a reader can easily determine which

requirements will be satisfied in which program versions. One way of annotating
requirements by version is to add a column in the SRS for each version of software to
be produced and mark with an "X" next to each requirement in the respective columns
[2].

Some authors distinguish the quality properties Annotated by Relative Importance,
Annotated by Relative Stability and Annotated by Version [2,12,13]. Others consider
Annotated by Relative Importance property as Prioritized [8], while others consider
Annotated by Relative Importance and Annotated by Relative Stability as joint proper-
ties called Ranked for Importance and/or Stability or Rated [5,6,7,14].

6 Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis

3.9 Understandable

A SRS is considered understandable if its readers (customers, users, project manag-
ers, software developers, testers, and others) can easily comprehend the meaning of
all requirements with a minimum of explanation [2,3,10].
According to Pohl [7], a requirement is comprehensible if its content is easy to under-
stand. The comprehensibility of a requirement depends, among other things, on the
selected document format and the stakeholders involved. Pohl [7] distinguishes be-
tween Comprehensible and Readability, while others define Understandable as part of
Readability definition [2,3,10,20,21].

Furthermore, Pohl [7] defines that a SRS is readable if the reader can extract and
easily understand its content. The readability and modifiability of a SRS is influenced
by the structure and style of the document, so, in this sense, the SRS should have a
coherent structure, each requirement should have a unique identification, redundan-
cies should be avoided, and the requirements defined should be atomic. In order to
reach these characteristics, diverse authors propose the use of IEEE Standard 830-
2009 [5], which describes recommended practices for Software Requirements Speci-
fications.

3.10 Concise

A SRS is considered concise if it is as short as possible without adversely affecting
any other document quality. So, if there exist two SRS describing an identical system
with identical quality measures, then the shorter the better [2,20].

3.11 Organized

A SRS is considered organized if its content is organized, that is, readers can easily
locate information and logical relationships between adjacent sections are evident [2,
12,13,20]. According to Davis et al. [2], to achieve a useful organization: 1) a stan-
dard must be followed, and 2) one of the five organizational models must be used:
group the functional requirements by user class, common stimulus, common response,
feature or object. Some authors define the quality property Organized [2,12,13,20]
and others only describe it as a required feature for achieving other quality attributes,
such as Modifiable [5].

3.12 Not Redundant

A SRS is redundant if the same requirement is declared more than once [2,5,6,8].
Unlike other quality attributes, the redundancy is not necessarily bad. It is often used
to increase readability of the SRS. However, it causes problems when a SRS is re-
vised. If all occurrences of a redundant requirement are not modified, then the SRS
becomes inconsistent [2,5,6,7,8]. If redundancy is necessary in the SRS, it should
include explicit cross-references [5,7,8].

Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis 7

Some authors define the quality property Not Redundant [2,9]. Others treat this
quality attribute as a guideline to be considered in requirements documentation [6],
and others only describe it as a required feature for achieving other attribute quality
as: Modifiable [5,7,8] and Readability (Understandable) [7].

3.13 Atomic

Each requirement in a SRS should be clearly determined and identified, without being
mixed with other requirements [10]. A requirement is atomic if it describes a single
and coherent event. A requirement is not atomic if it describes multiple isolated or
just loosely coupled events which can be divided into several requirements [7].

Other authors treat this attribute similarly to the quality property Not Redundant,
i.e., as a guideline to consider in requirements documentation [6] and as required
feature to achieve the quality properties Modifiable [5,7,8] and Readability (under-
standable) [7].

3.14 Cross-Referenced

A SRS is considered cross-referenced if it cross-references are used to relate sections
containing requirements to other sections containing: redundant requirements, more
abstract or more detailed descriptions of the same requirements or requirements that
depend on them or on which they depend [2].

3.15 Design Independent

A SRS is design independent if there are more than one system design and implemen-
tations that implement all requirements stated in it [2]. Génova et al. [10] call this
quality property Abstraction, and state that requirements must tell what the system
must do without telling how it must do it. Thus, a SRS should avoid excessive techni-
cal details about the implementation.

3.16 Electronically Stored

A SRS is considered electronically stored if the entire document has been produced
with a word processor, was generated from a requirements database, or has been oth-
erwise synthesized from some other form [2].

3.17 At Right Level of Abstraction/Detail

A SRS can provide different levels of detail [2,20]. A SRS being used as a contract
between customer and developer should be relatively specific to ensure that the cus-
tomer knows what is being acquired [2]. It is considered good practice to write the
SRS requirements at a consistent level of detail [6].

8 Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis

3.18 Precise

The precision quality property is accomplished when all used terms in the SRS are
concrete and well-defined [10]. Particularly, an SRS is considered precise if: 1) nu-
merical quantities are used whenever possible, and 2) all numerical quantities have
appropriate levels of precision [2].

3.19 Achievable

A SRS is achievable if there is at least one system that correctly implements all re-
quirements stated in it [2]. Wiegers [8] calls this quality attribute Feasible, and de-
fines it as the possibility to implement each requirement within the capabilities and
limitations of the system and its operating environment.

3.20 Others Attributes

A SRS is considered Prototypable if there is a software tool capable of inputting it
and providing a dynamic behavioral model that simulates the system behavior to
build. This quality property is given only by Davis et al. [2].

A SRS is considered Reusable if it is possible to easily adopt or adapt their sen-
tences, paragraphs and sections for use in a subsequent SRS [2]. This quality property
is only described by Davis et al. [2].

A requirement is Up to date if it reflects the current status of the system and its
context, such as the current stakeholders desire or current legal regulations [7]. It
should be noted that this quality property was only proposed by Pohl [7].

4 Quality Properties Evaluation Analysis

There are many proposals for evaluating SRS quality attributes [2,3,6,10,11,12,13,14,
15,16,17,18,19,20,21]. The approaches found in the literature considering vocabulary
or language include: use of domain vocabulary, related to the use of user vocabulary
(glossary) in requirements descriptions [10,12,13]; use of domain knowledge, which
considers interpretation and domain semantic knowledge (some authors use ontolo-
gies as knowledge resource) [2,15,16,17,18,19], and natural language patterns detec-
tion using keywords, key phrases and/or symbols as evidence of the occurrence for
certain quality attributes [3,6,10,11,12,13,14,20,21].

Other approaches analyze relations between requirements and artifacts in SRS,
in order to evaluate diverse attributes [10,15,16,17,18,19]. Among them, those pro-
posing overlapping between requirements consider requirements referring to the same
subject where contradictions between requirements, redundancy when there is a un-
necessary repetition, and simple coupling when there is none of the above (and that
implies some kind of dependency relationship) can be distinguished
[10,15,16,17,18,19]. Also, other approach considers the evaluation of requirements

Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis 9

dependencies with other requirements or other artifacts of the development process
[10].

Diverse approaches are based in the analysis of SRS structure for evaluating some
attributes [2,10,12,13,14,20,21]. Between them, text structure in the SRS considers
requirements found in each hierarchical level of the SRS [10,14,20], while specific
characteristics of SRS document includes presence of sections, table of contents and
index, SRS size, etc. [2,12,13,14,20,21]. Meanwhile, achievable features from SRS
document approach includes the evaluation of actual solution system designs, single
system, etc. [2].

The analysis of the requirements themselves also is performed by diverse propos-
als [2,3,10,12,13,20]. In this sense, the specific characteristics of a requirement ap-
proach consider the use of explicit references, unique identifier, cross-references,
versions and size for a requirement [2,3,10,12,13,20]. Moreover, the analysis of de-
ductible features from a requirement includes the evaluation of cost and time required
to verify a requirement [2].

 Finally, as general approaches which consider the jointly evaluation of groups of
requirements, approaches proposing metrics that calculate the percentage of re-
quirements that meet the analyzed attribute [2], and tools that use correct-by-
construction paradigm (where certain quality attributes are satisfied by the mere fact
that tool be used to generate the SRS) are included in the analysis [12,13].

Thus, while Table 1 resumes which references have a concrete proposal on the
evaluation or assessment techniques for each attribute, the approaches found together
with the attributes evaluated by them are summarized afterwards.

The use of domain vocabulary is proposed for the evaluation of Unambiguous and
Understandable [12,13], Atomic and Precise [10]. On the other hand, The use of do-
main knowledge, is included in assessment techniques proposed for Unambiguous
[2,15,16], Complete [2,15,16,17,18,19], Internally Consistent [2], Correct
[15,16,17,18], Understandable [2] and Atomic [18] quality attributes.

Moreover, the use of natural language patterns is proposed for evaluation tech-
niques related to Unambiguous [11,13,14,20,21], Complete [3,12,13,20,21], Verifi-
able [3,21], Annotated by Relative Importance and Relative Stability [13], Under-
standable [3,10,14,20,21], Atomic [6,10], Design Independent and Precise [10] qual-
ity attributes.

Furthermore, within the use of overlap between requirements approach, proposals
exist for the evaluation of Internally Consistent [15,16,17,18,19], Not Redundant [17],
Unambiguous, Traceable, Understandable and Atomic [10] quality attributes.

Within the use of requirements dependencies with other requirements or other arti-
facts of the development process approach, evaluation techniques are proposed for
quality attributes such as Traceable, Understandable and Atomic [10].

Also, the use of text structure in the SRS approach is considered when proposing
evaluation techniques for quality attributes such as Understandable (considering the
degree of nesting between requirements) [10], Organized (number of requirements at
each hierarchical level) and Right level of Abstraction/Detail (considers the specifica-
tion depth, i.e., the number of imperatives in each level of the SRS text structure)
[14,20].

10 Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis

Table 1. References with Concrete Proposal on Attribute Evaluation Techniques

The use of specific characteristics of the SRS document approach, is applied in as-

sessment techniques related to quality attributes like Complete (considering that cer-
tain sections are present in the SRS) and Organized (considering whether the required
sections are present in the required order and with the content required) [12,13], Con-
cise (considering the size of the SRS) [2,14,20,21], Modifiable (considering the pres-
ence of table of contents and index, and the degree of cohesion and coupling of SRS
sections), Electronically Stored (considers SRS volume that has been electronically
stored) and Reusable (considers paragraphs in the SRS that exhibit reuse properties)
[2].

Moreover, within the achievable features from SRS document approach, a set of
evaluation techniques for diverse quality attributes is proposed. The attributes are:
Design Independent (number of actual solution system designs that satisfy all re-
quirements of SRS), Achievable (considering the existence of a single system), Proto-
typable (considers whether SRS can be partially written in a executable, interpretable
or prototypable language) Reusable (considering whether the content of the SRS has
been used in subsequent SRS) [2].

Also, the use of specific characteristics of a requirement approach is used for eva-
luating quality attributes like Internally Consistent (considering the use of explicit
references in a requirement) [3], Traceable (considering using requirement unique
identifier) [2,12,13,20], Traced (considering the use of cross-references) [2], Correct
and Verifiable (considering the number of versions of a requirement) [10], Atomic
(considering the size of a requirement) [10].

Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis 11

Moreover, in the use of requirement deductible characteristics approach, Davis et
al. [2] propose assessment techniques for the quality attribute Verifiable (considering
the cost and time required to verify the requirement).

In the using metrics that calculate the percentage of requirements that meet the at-
tribute in question approach, Davis et al. [2] propose diverse metrics for evaluating
quality attributes such as Externally Consistent, Correct, Annotated by Relative Im-
portance, Relative Stability and Version, Not Redundant. The metrics proposed, in
general, consider the ratio between the requirements satisfying some specific attrib-
ute, over the total number of requirements in the SRS. However, no concrete propos-
als are described by the authors, in order to give guidance over how considering or
identifying the requirements which satisfy each attribute.

In the case of the use of tools in the correct-by-construction paradigm approach,
evaluation techniques are proposed for Traced [12,13], Modifiable, Annotated by
Version and Electronically Stored [13] quality attributes.

Finally, Davis et al. [2] indicate that Organized, Cross-Referenced, and Right Lev-
el of Abstraction/Detail attributes cannot be measured for different reasons. The au-
thors affirm that “organization” is purely subjective and, thus, it cannot be measured.
On the other hand, Cross-Referenced cannot be measured because there is no way to
determine how many cross-references are appropriate in an SRS. In relation to Right
Level of Abstraction/Detail, measuring the appropriateness of the SRS level of ab-
straction is highly scenario-dependent. Moreover, for Up to Date attribute was not
found in the literature any evaluation proposal.

5 Influences between Quality Attributes

The possibility of creating a SRS of reasonable quality exists, but it has to be consid-
ered that most of the quality properties mentioned in this paper have positive or nega-
tive effect on other properties (see Figure 1). Because of this, it is necessary to deter-
mine which quality attributes are most important to the project, in order to achieve
them. Below, the effects between attributes found in the literature analyzed are de-
tailed:

• Generally, requirements considered unverifiable are ambiguous [5,8,10], incomplete

or inconsistent [8,10], or infeasible requirements [8].
• The elimination of ambiguity in the SRS requires adding formality, which is not

understood by people who are not computer experts, for example, users or custom-
ers [2,8,10].

• The less ambiguous is the SRS, the easier its modification [10].
• If a SRS is not complete in terms of objectives, rules, facts, and constraints of the

problem domain, then it is considered incorrect for that domain [9,10].
• Exceeding the completeness of the SRS causes losing conciseness [2].

12 Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis

Fig. 1. Influence between quality properties.

• It is not always possible to significantly reduce the SRS size without negatively

affecting other quality attributes [2].
• If a SRS is inconsistent, then the client cannot confirm that requirements effectively

express the system that responds to their needs, i.e., its correctness [10].
• A SRS is more modifiable if it is traceable, organized, cross-referenced and stored

electronically [2].
• Traceability facilitates correctness [5] and verifiability [10].
• Requirements not understood are not verifiable and its correctness may not be vali-

dated [10].
• The redundancy is often used to increase readability of the SRS. Furthermore, re-

dundancy can negatively affect the modifiability, since not changing all occurrences
of a redundant requirement generates an inconsistent SRS [2].

• A non-atomic requirement has the risk of excessive detail, and thus, may affect
design independence [10].

• Atomicity influences requirements precision and traceability [10].
• Design independence can help verifiability. The presence of requirements technical

details is more difficult to verify and modify [10].
• A more precise language helps to write more complete, consistent, understandable

and unambiguous requirements [10].

Figure 1 resumes the influences among quality attributes previously described. In
addition, it can be noted that no dependencies can be found for some attributes, due to

(+)

(+)

(+)

(+)

(+)

(+)

(+)
(‐)

(+)

(+)

(+)

(+)
(+)

(+)

(+)

(+)(+)
(+)

(‐) (+)(+)
(+)

(+) (+)
(+)

(+)

(+)

(‐)

Understandable

Organized

Achievable

Right Level
of Detail

Not
Redundant

Modifiable Verifiable Correct

Traceable

Design
Independent

Consistent

Complete

Cross
Referenced

Atomic

Unambiguous

Concise

Electronically
Stored

Reusable
Up to
Date

Precision
Prototypable

Annotated

Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis 13

it is possible to reach them without affecting other attributes. They are: Reusable, Up
to Date, Annotated, Prototypable and At Right Level of Detail.

6 Conclusions

In this work, an exploratory analysis of various proposals for quality attributes evalua-
tion of a SRS was performed. On the one hand, there exist different quality models for
SRS. In the ones analyzed, some characteristics are worth to note. Firstly, some of the
attributes are used by most models, for example, unambiguous and complete. Sec-
ondly, there are attributes which are considered separately by some authors, while
others use them together, aggregated in a single attribute, e.g., Traced and Traceable.
Additionally, other attributes, although being the same, are differently referenced by
some authors: for example, Independent Design is also called Abstraction. Finally,
some attributes are only used by the author who defines it, for example, Up to Date.
Furthermore, it is clear that some attributes are applicable to the entire SRS, while
others apply only to individual requirements.

On the other hand, there are many proposals describing approaches for SRS quality
attributes evaluation. Some of them are only conceptual and, therefore, difficult to
automate, since they require a high degree of human reviewers intervention. Other
proposals describe tools implementations in different technologies that pose heuristics
or metrics for just some quality attributes. Usually, this assessment only can be
achieved with the technology used and, in many cases, does not cover all possible
cases or have certain shortcomings that require optimization.

To conclude, is important to note that the definition of heuristics, metrics and/or
objectively measurable indicators is needed in order to cover all possible cases for
requirements and SRS quality attributes evaluation in a software project. It is also
required the construction of a supporting tool for implementing these defined heuris-
tics, metrics and indicators, so an automatically assessing can be performed for ob-
taining quality SRS. This constitutes the main goal for future research in this area.

7 References

1. Nuseibeh, B.; Easterbrook, S.: Requirements engineering: a roadmap. In: Proc. Conference
on The Future of Software Engineering, pp. 35-46. (2000).

2. Davis, A.; Overmyer, S.; Jordan, K.; Caruso, J.; Dandashi, F.; Dinh, A.; Kincaid, G.; Le-
deboer, G.; Reynolds, P.; Sitaram, P.; Ta, A.; Theofanos, M.: Identifying and measuring
quality in a software requirements specification. In: Proc. 1st International Software Met-
rics Symposium, pp. 141-152. (1993).

3. Fabbrini, F.; Fusani, M.; Gnesi, S.; Lami, G.: An Automatic Quality Evaluation for Natural
Language Requirements. In: Proc. 7th International Workshop on Requirements Engineer-
ing: Foundation for Software Quality, Interlaken, Switzerland. (2001).

4. Gnesi, S.: Analysis of Software Requirements. IEI-CNR Pisa
http://www.iei.pi.cnr.it/ERI/iei/qmslideseri.ppt (2000).

5. IEEE Recommended Practice for Software Requirements Specifications. IEEE Standard
830-1998 (R2009), Institute of Electrical and Electronics Engineers. (2009).

14 Quality Properties Evaluation for Software Requirements Specifications: An Exploratory Analysis

6. Swathi, G.; Jagan, A.; Prasad, Ch: Writing Software Requirements Specification Quality
Requirements: An Approach to Manage Requirements Volatility. Int. J. Comp. Tech.
Appl., 2(3), 631-638. (2011).

7. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer-
Verlag Berlin Heidelberg. (2010).

8. Wiegers, K.: Software Requirements, Second Edition. Microsoft Press. (2003).
9. Loucopoulos, P.; Karakostas, V.: System Requirements Engineering. McGraw-Hill, Inc.

New York, NY, USA. (1995).
10. Génova, G.; Fuentes, J.M.; Llorens, J.; Hurtado, O.; Moreno, V.: A Framework to Measure

and Improve the Quality of Textual Requirements. Requirements Engineering, 18(1), pp
25-41 (2013).

11. Tjong, S.F.: Avoiding Ambiguity in Requirements Specifications. PhD Thesis. University
of Nottingham Malaysia Campus, Faculty of Engineering & Computer Science, Malaysia.
(2008).

12. Durán, A.; Bernárdez, B.; Ruiz, A.; Toro, M.: An XML–based Approach for the Auto-
matic Verification of Software Requirements Specifications. In: Proc. 4th Workshop on
Requirements Engineering, pp. 181-194. (2001).

13. Durán, A.; Ruiz-Cortés, A.; Corchuelo, R.; Toro, M.: Supporting requirements verification
using XSLT. In: Proc. IEEE Joint International Conference on Requirements Engineering,
pp. 165–172. (2002).

14. Wilson, W.M.: Writing Effective Requirements Specifications. Software Technology Con-
ference Proceedings. (1997).

15. Kaiya, H.; Saeki, M.: Ontology Based Requirements Analysis: Lightweight Semantic
Processing Approach. In: Proc. 5th International Conference on Quality Software, pp. 223-
230. (2005).

16. Kaiya, H.; Saeki, M.: Using Domain Ontology as Domain Knowledge for Requirements
Elicitation. In: Proc. 14th IEEE International Requirements Engineering Conference, pp.
189-198. (2006).

17. Dzung, D.; Ohnishi, A.: Ontology-based Reasoning in Requirements Elicitation. 7th IEEE
Int. Conf. on Software Engineering and Formal Methods, pp. 263-272. (2009).

18. Hu, H.; Zhang, L.: Ye, C.: Semantic-based Requirements Analysis and Verification. In: In-
ternational Conference on Electronics and Information Engineering, pp. 241-246. (2010).

19. Verma, K.; Kass, A.: Requirements Analysis Tool: A Tool for Automatically Analyzing
Software Requirements Documents. In: Proc. 7th International Conference on The Seman-
tic Web, pp. 751–763. (2008).

20. Ali, M.J.: Metrics for Requirements Engineering. Master’s Thesis. Umea Univ. (2006).
21. Rosenberg, L.; Hammer, T.; Huffman, L.: Requirements, testing, and metrics. In: 16th Pa-

cific Northwest Software Quality Conference, Utah, USA. (1998).

