Semantic Documentation in Requirements Engineering

Ricardo de Almeida Falbo, Carlos Eduardo C. Braga, Bruno Nandolpho Machado

Ontology and Conceptual Modeling Research Group (NEMO), Federal University of Espirito
Santo, Brazil
falbo@inf.ufes.br, {caducbraga, brunonandolpho}@gmail.com

Abstract. Currently, most requirements documents are prepared using desktop
text editors. These documents are intended to be used by human readers. In this
paper, we discuss the use of semantic annotations in requirements documents,
in order to make information regarding links between requirements and other
software artifacts, such as other requirements, use cases, classes and test cases,
interpretable by computers. To do that, we extend a semantic document man-
agement platform to the requirements domain, and explore the conceptualiza-
tion established by the Software Requirements Reference Ontology in order to
provide features to support some activities of the Requirement Engineering
Process, namely: prioritizing requirements, analyzing impacts from require-
ments changes, tracing requirements through traceability matrices, and verify-
ing requirements using checklists.

Keywords: Requirements engineering, requirements documentation, semantic
documentation, semantic annotation, semantic document, ontologies.

1 Introduction

Documents are the dominating format for knowledge communication and storage, and
they tend to continue to be for the foreseeable future [1]. Documents provide a rich
resource that describes what organizations know about their processes, application
domains and products. According Uren et al. [2], documents account for 80-85% of
the information stored by many companies.

Document repositories generally are large, and the demand for efficient search and
retrieval techniques increases insofar the amount of documents increases. Efficient
document management is an important part of the knowledge management strategy in
an organization, mainly in the case of software development. However, most
knowledge in electronic documents is available only for human interpretation and not
for computer systems. This makes tasks related to indexing and retrieving knowledge
items complex.

In the Semantic Web community, researchers advocate that ontology-based
metadata can be added into the web content so that this content becomes available for
machine interpretation [3, 4]. By adding ontology-based annotations into web con-

mailto:falbo@inf.ufes.br
mailto:caducbraga,%20brunonandolpho%7D@gmail.com

tents, it is possible to enrich these contents, and to allow semantic computing of them
[3]. The act of adding ontology-based metadata into syntactic information resources
making them semantic information resources is named semantic annotation. Ontolo-
gies play an important role in semantic annotation, because they provide a basis for
capturing the intended meaning of a portion of shared knowledge.

The semantic annotation approach can also be used in documents generated by
desktop tools, such as Open Office Writer or Microsoft Word. This is an important
finding because, despite the advances on electronic documentation, desktop text edi-
tors are still the most used solution for documenting software development [5, 6].

Several tools have been developed intending to support semantic annotation. The
Infrastructure for Managing Semantic Documents (IMSD) [7], AktiveDoc [8],
PDFTab [9], SemanticWord [10] and KIM [11] are some examples. These tools use
domain ontologies for semantically annotating documents, and provides a set of gen-
eral features for managing semantic documents, such as features for annotating, stor-
ing, indexing and retrieving documents.

Despite these tools can be used in different domains, only general features are pro-
vided, not taking advantage of the particularities of the domain conceptualization.
However, in order to provide a more effective support to domain tasks, we advocate
that it is useful to explore the specific conceptualization provided by the ontology. In
other words, it is useful to explore the ontology elements (concepts, relations and
properties), and use them to develop domain-specific functionalities. We achieve this
conclusion by applying IMSD in the software requirements domain [12]. As a conse-
quence of this study, we glimpsed an opportunity to extend IMSD to provide specific
features supporting the Requirements Engineering (RE) process.

Requirements documents register and formalize the results of the RE process, be-
ing the basis for several subsequent activities in the software process, such as design,
coding, testing, and maintenance [13, 14]. Thus, we decided to extend IMSD, intro-
ducing requirements-specific features, giving rise to IMSD-Req. Using the facilities
provided by IMSD, IMSD-Req introduces new features for: (i) supporting require-
ments change impact analysis; (ii) evaluating consistency of requirement priorities,
(iii) generating traceability matrices; and (iv) verifying requirements using checklists.

In this paper we present IMSD-Req, and discuss how it supports requirements pri-
oritization, requirements management and requirements verification. The remainder
of this paper is organized as follows. Section 2 regards the theoretical background of
the paper, discussing briefly Semantic Documentation, ISDM, and its initial use to
support the RE process. Section 3 presents ISDM-Req and its features. Section 4 dis-
cusses related works. Finally, Section 5 presents our conclusions and future work.

2 Semantic Documentation

In the context of the Semantic Web, in order to make Web content available to com-
puter systems, metadata are added to Web information resources [3]. In general,
metadata concern “data about data”. Metadata are used as a mechanism for expressing
the semantics of information, in order to facilitate information seeking, retrieval, un-

derstanding, and use [4]. Semantic annotation is about assigning to the entities in the
text links the corresponding semantic descriptions using metadata [15].

Since the notion of semantic annotation has arisen in the Semantic Web communi-
ty, usually it is associated with the act of annotating Web resources with metadata.
However, its applicability goes beyond the Web Semantic context and can also be
applied to documents generated using desktop text editors, like MS Word or Open
Office Writer [2, 7, 16]. By adding semantic annotations to desktop documents, we
can reach “intelligent” documents. In sum, a semantic document knows about its own
content so that automated processes can know what to do with it [2].

Both in Semantic Web and in Semantic Documents, we need shared representa-
tions of knowledge to establish the basic vocabulary from which metadata statements
can be asserted [4]. Since ontologies aim at capturing the intended meaning of a por-
tion of shared knowledge, many researchers defend their use to semantically annotate
information resources (web pages or desktop documents) [2, 3, 4, 9]. Semantic docu-
ments aim at combining documents and ontologies, and allowing users to access their
knowledge in multiple ways. The ultimate goal of semantic documents is not merely
to provide metadata for documents, but to integrate documentation and knowledge
representation in a way that they use a common structure [9]. Based on domain ontol-
ogies, semantic annotations can be added to documents. Once annotated, we can ex-
tract knowledge and link contents from different documents according to the shared
ontology. Merging the content extracted from several documents, we are able to
achieve a more holistic view of the knowledge available in the organization [7].

However, the successful use of semantic documents strongly depends on the cost
and effort dispended to manipulate them, since document authors cannot daily suffer
with the overhead associated with annotating them. Thus, it is necessary to provide
tools to reduce the effort needed to create the document contents and to semantically
annotate them [2, 10]. Several tools have been developed intending to support seman-
tic document management [7,8,9,10,11]. As discussed in the Introduction of this pa-
per, this work uses the Infrastructure for Managing Semantic Document (IMSD) [7].

IMSD [7] supports creating document templates with semantic annotations. It uses
Subversion, a version control system, to store the semantic documents and the content
extracted from them (in RDF format). In addition to the Semantic Document Reposi-
tory, IMSD has three main modules [7]:

e Semantic Annotation Module (SAM): responsible for allowing users to semanti-
cally enrich document templates written in the ODF format (Open Office). The
annotations should be based on ontologies codified in OWL. The documents in-
stantiated from an annotated template keep the annotations inserted in the last.

o Data Extraction and Versioning Module (DEVM): responsible for extracting the
content from a semantic document whenever a new version of it is checked in
the Semantic Document Repository (a Subversion repository). After extraction,
the semantic content of the new version is stored in OWL in another repository,
the so called Data Repository, which is also part of DEVM.

e Search and Traceability Interface Module (STIM): responsible for providing
features that allows performing ontology-based queries in SPARQL in the Data
Repository of DEVM.

IMSD was initially applied for supporting the Requirements Engineering (RE) pro-
cess of seven projects developed in NEMO (Ontology and Conceptual Modeling Re-
search Group) [12]. NEMO follows a classical RE process, including activities for
requirements elicitation, analysis (conceptual modeling), documentation, verification
and validation. In parallel, activities of requirements management are accomplished.
Two types of documents are used for documenting requirements: Requirements Doc-
ument and Requirements Specification. The first is directed to clients and users, and
captures user requirements. It is written in natural language, following rules defined
for writing requirements statements. The second details the user requirements into
system requirements, and serves as basis for further development. It is mainly com-
posed by models (use case diagrams, class diagrams, state diagrams, among others),
although there are also textual parts, especially the ones related to use case and class
descriptions [12].

A striking feature of IMSD for supporting the RE process is the fact that annota-
tions are added into document templates that, when instantiated, give rise to semantic
documents. This is an important feature for the RE process, because the use of tem-
plates is pointed out as a practice that contributes to the success of a software project
[13, 14, 17]. The use of templates is fundamental to ensure homogeneity and to avoid
omission of relevant information related to requirements [14, 18]. Moreover, once
annotated the document templates, the corresponding requirements documents pre-
pared using these templates are also annotated, diluting the efforts spent in the annota-
tion process among the various documents that are prepared using them.

Although IMSD was considered useful, some improvement opportunities were
identified by the developers that used it, especially concerning some RE activities.
These improvement opportunities motivated us to extend IMSD by developing re-
quirements-specific features, giving rise to IMSD-Req.

3 Extending IMSD to support the RE Process

From the preliminary evaluation of IMSD in the RE domain [12], we identified,
among others, the following improvement opportunities:

101. As the amount of documents and requirements increase, it becomes more dif-
ficult to analyze the impact of a requirement change using the general func-
tionalities provided by IMSD. Even though IMSD has information available
to help this analysis, it is not easy to use them, since the general features pro-
vided are not properly adjusted for this purpose, requiring making several
SPARQL queries to the Data Repository.

102. IMSD has enough information for generating traceability matrices, but it was
not possible to automatically generate them. Traceability matrices should be
manually produced by the requirements engineer, using as basis the answers
to several SPARQL queries. The requirements engineer has to define the
SPARQL queries in the Search and Traceability Interface Module (STIM),
submits them to Data Repository, and gets the answers, in a tiresome and er-
ror-prone process.

103. In several projects, requirements engineers have had difficulties in prioritiz-
ing requirements. Requirements depend on others and, many times, those re-
lations are not properly considered during priority establishment, leading to
inconsistencies. For example, it was common to find high priority require-
ments depending on low priority requirements.

104. Again, to perform requirements verification, it was necessary to elaborate
complex SPARQL queries via STIM. Moreover, IMSD did not store the
SPARQL queries, requiring the requirements engineer to enter the questions
via STIM every time he/she wants to verify the requirements.

Based on the improvement opportunities identified, IMSD was extended to provide
requirements-specific features, giving rise to IMSD-Req. Our premise is that IMSD-
Req can better support the RE process by exploring the conceptualization provided by
the Software Requirements Reference Ontology (SRRO). Following, we present the
fragment of SRRO that is used in this paper.

3.1 Software Requirements Reference Ontology

Figure 1 shows a fragment of the conceptual model of the current version of SRRO
written in OntoUML [19], a UML profile that enables modelers to make finer-grained
modeling distinctions between different types of classes and relations according to
some ontological distinctions put forth by the Unified Foundational Ontology [19].
This version extends the version presented in [20] by including some properties of
requirements, and integrating this ontology with the Reference Ontology on Software
Testing (RO0ST) [21].

depends on »

0.r 0.r
cakind>> < produced in <<category>> |9
Project 1 0" Artifact
P
[[[\
<<kind>> <<kind>> <<kind>> addresses P> <<kind>> 1."
Document Entity Type Use Case | « I Requirement
JAN o+ 0 id
<<subkind>> | | orore t 1. sentence
Requirements Document refers to priority
<<subkind>> | | lﬁ
Requirements Specification <<subkind>> ‘ ‘
Class <<subkind>> <<subkind>>
<<subkind>> | | Functional Requirement Domain Requirement
Design Specification 1.
<<subkind>> A

<<subkind>> Non Functional Requirement

defined to test

Test Case | definegl to test defined toest
T 0
[I]]
<<role>> <<role>> <<role>> 0
Class Test Case Use Case Test Case Requirement Test Case

Fig. 1. A fragment of the Software Requirements Ontology

As shown in Figure 1, requirements, use cases, classes and documents are artifacts
produced in the context of a software project. Artifacts can be composed by other
artifacts. A Requirements Document (or Requirements Definition Document) contains
a list of requirements written in a way that is easy for customers to understand [22],
and thus the following axiom holds: if an artifact a is part of a requirements document
rd, then a should be a requirement: Vv a: Artifact, rd: RequirementsDocument
(partOf(a,rd) — requirement(a)). A Requirements Specification, in turn, restates the
requirements definition in technical terms appropriate for developers [22]. It typically
contains several diagrams, including use case and class diagrams, as well as descrip-
tions of use cases and entity types. Other sub-kinds of documents considered in this
work are Design Specifications and Test Cases.

Requirements are features of the system or descriptions of things that the system
should be capable of doing in order to fulfill its purpose [22]. Usually, requirements
are classified in three main categories: functional, non functional and domain re-
quirements [13, 14, 18, 22]. Functional requirements are statements of services or
functions that the system must provide, describing how the system must behave given
certain stimuli [18, 22]. Non-functional requirements describe constraints on the func-
tions offered by the system, and overall properties that the system must present [13,
18], and that limit the options for designing a solution to the problem [22]. Finally,
domain requirements, also referred as business rules, are derived from the application
domain or from the business being supported by the system. They reflect domain or
business characteristics and constraints [18].

Requirements must be uniquely identified in order to be referred and traced during
requirements management. They are typically written as sentences in structured natu-
ral language. Moreover, requirements must be prioritized, in order to establish their
relative importance when compared to other requirements [13, 14, 18]. Concerning
priority establishment, the following axiom holds: if a requirement r2 depends on
another requirement rl1, with priority p1, then the priority p2 of r2 should be less than
or equal to pl: ¥V (rl, r2: Requirement) (priority(pl,rl) A priority(p2,r2)a
dependsOn(r2, rl) — pl >=p2).

A use case describes a set of actions performed by the system (or by means of in-
teracting with it) that yields an observable result that is typically of value for one or
more actors of the system [23]. Use cases are typically defined to address functional
requirements. However, they also take domain and non-functional requirements that
apply to a specific functionality into account.

When the structure of the system is being conceptually modeled, entity types are
represented in a conceptual schema in order to describe domain concepts [23]. Entity
types are referred in use cases, since use cases deal with these concepts. Class is a
sub-kind of entity type.

Finally, test cases are defined to test the system or small parts of it, including re-
quirements, use cases and classes. A test case aims at testing a portion of code (code
to be tested), and specifies the test case inputs and the expected result (see [21] for
details concerning the testing domain).

Artifacts can depend on other artifacts. More specifically requirement can depend
on other requirements. Use cases depend on the requirements that they address: v (r:

Requirement, uc: UseCase) (addresses(uc,r) — dependsOn(uc,r)). And requirement
test cases depend on the requirements for which they are defined to test: v (r: Re-
quirement, rtc: RequirementTestCase) (definedToTest(rtc,r) — dependsOn(rtc,r)).

The “depends-on” relation is transitive: ¥ (al, a2, a3: Artifact) (dependsOn(a3,a2)
A dependsOn(a2,al) — dependsOn(a3,al)). The “required-by” relation is the inverse
of “depends-on”: V (al, a2: Artifact) (dependsOn(a2,al) — requiredBy(al,a2)).
Moreover, if an artifact is composed by other artifacts, then it also depends on them:
v (al, a2: Artifact) (partOf(a2,al) — dependsOn(al,a2)). For instance, if a require-
ment r is part of the requirements document rd, then rd depends on r.

Considering the transitivity property of the “depends on” relationship, we can es-
tablish indirectly dependency relationships between requirements and other artifacts.
Since classes and use case test cases depends on the use cases that they refer to, they
also depends on the corresponding requirements. This also applies to class test cases,
which depends on the classes to which they are defined to test.

SRRO is a reference domain ontology, i.e. a domain ontology constructed with the
goal of making a clear and precise description of domain entities for the purposes of
communication, learning and problem-solving [24]. A reference ontology is a special
kind of conceptual model, representing a consensual model within a communi-
ty. From the conceptual model of SRRO shown in Figure 1, we designed and coded
an operational ontology in OWL, which is in fact used to semantically annotate re-
quirements documents in IMSD-Reg.

3.2 Domain-specific features of IMSD-Req

In order to address the improvement opportunities (10s) pointed out in the beginning
of this section, ISDM-Req relies on the conceptualization provided by SRRO. Tem-
plates for the four sub-types of Document shown in Figure 1 were developed. These
templates were semantically annotated with SRRO concepts, relations and properties.

Concerning 101 (analyzing impacts from changes in requirements), ISDM-Req
provides a functionality to support visualizing the impact from a change in a given
requirement, based on the “depends on” relationship and the axioms related to it, de-
scribed in the previous subsection. Figure 2 illustrates this feature.

Based on the requirement id informed by the user, a list of the documents that are
impacted by a change in the corresponding requirement is presented. Moreover, two
change impact analysis trees are presented: the one on the left concerns with vertical
traceability, while the other, on the right, regards horizontal traceability. In the verti-
cal impact analysis tree, artifacts that are directly and indirectly related to the re-
quirement are presented. Directly related artifacts are: use cases and requirement test
cases. Indirectly related artifacts are: classes, class test cases and use case test cases.
As described by SRRO, classes and use case test cases are related to use cases, which
in turn are related to requirements; and class test cases are related to classes.

To address 102 (automatically generating traceability matrices), we again explored
the “depends on” relationship and related axioms to generate several types of tracea-
bility matrixes. Requirements x Requirements traceability matrices can be generated
for allowing horizontal traceability. Vertical traceability is contemplated by three

types of traceability matrices: Requirements x Use Cases, Requirements x Classes,
and Requirements x Test Cases matrices. Figure 3 shows a Requirements x Use Cases
traceability matrix.

Report~ Support~

Requirement Type: 9 Functional © Non-Functional) Domain
Requirement: IFRO1 X

Impacted Documents:
[[¥] ReqODE_Design.odt] [5] RerDE_Requirements_Documem.odt] [5] RerDE_Requirements_Speciﬁcation.odtJ

7] Vertical Traceability [/ Horizontal Traceability
Z Us:éase Requirement_CRUD 2 Require.d.By

< claEss AplRequirementCRUD Requirement FRO4

g B ; X

- R remen y - R05
CIESS equirementCategory Requirement

A = ; A

& Class Project . FROG

7 = Reauirement

* Slacs HumanResource

n o : RO7

4 it Requirement Regquirement

Fig. 2. Supporting Impact Analysis of a Requirement Change

Report~ Support~
@ Requirementx Use Case
Matrixes: [FIRequirementx Class

[Tl Requirement x Test Case

Relation between Requirements and Use Cases
- Requirement_CRUD Class_CRUD Package_CRUD
FRO1 X
FRO2
FRO3 X X
FRO4

Fig. 3. Requirements x Use Cases Traceability Matrix

To address 103 (requirements prioritization), we developed a functionality that allows
user prioritize requirements taking the priorities of dependent requirements into ac-
count. The SRRO axiom constraining how priorities can be established on require-
ments were enforced. Figure 4 illustrates this functionality. In this example, when the
requirements engineer is establishing the priority of the functional requirement FRO1,
IMSD-Req retrieves the requirements that depend on it (FRO1 is required by FRO4,
FRO5, FRO6 and FRO7), as well as their priorities. In this case, the requirements engi-
neer established a Medium priority to FRO1, but one of the four dependent require-
ments has a High priority. Then a message is presented, and the invalid priority values

for this requirements are shown in red (Low and Medium), warning him/her that only
a High priority is valid..

Functional Requirements

Requirement Current Priority New Priority

FRO1

Depends on: DR01 DR02 DR03 DR05 Medium Medium b
Required by: FR04 FR05 FRO6 FRO7

= This is not a valid priority to this requirement. Check P s
FRO2 when defining a new priority. % High
Depends on: Medium e
Required by: FRO5 FRO6

Fig. 4. Supporting Requirements Prioritization

Finally, for treating 104 (support requirements verification), we developed a func-
tionality for grouping and storing the SPARQL queries to be used in checklists. First,
the queries should be defined to be used in the checklists. Once defined the queries,
these questions can be used to compose several checklists. Thus, we developed fea-
tures for both creating the checklist items (the queries) and grouping them in check-
lists. Figure 5 shows a checklist for verifying Requirements Definition Documents.

When this checklist is applied, if there is no problem in a specific item (e.g., all use
cases are implemented by a class), the result is just an informative message. On the
other hand, when there are requirements with problems (e.g., requirements without
priority established), the corresponding ids are listed.

4 Related Work

As discussed in the Introduction of this paper, many works, such as [7, 8, 9, 10, 11],
have been done intending to support the semantic annotation process, providing also
general functionalities to retrieve, index and store semantic desktop documents. How-
ever, at the best of our knowledge, none of them, except IMSD [7], was applied to
support Requirements Engineering (RE). For a general comparison between IMSD
and some of these other tools, see [7].

Regarding semantic documentation in RE, most works uses semantic wikis. In
general, lots of researchers committed themselves to enhancing wiki capabilities to
support RE [25]. In particular, semantic wiki has already proven to be a useful plat-
form for RE [26]. Thus, in this section, we briefly discuss some works that use se-
mantic wikis for supporting RE, namely: WikiReq [27], SOP Wiki [28], ReqWiki
[29], and SoftWiki [30]. We should highlight that the first three (WikiReq, SOP Wiki
and ReqWiki) are based on the Semantic Mediawiki (SMW) platform [31], and use an
extension of it called Semantic Forms, that allows for the creation of forms to add and
edit pages that contain templates that themselves hold semantic data. The last is based
on OntoWiki [32]. Thus, all of the RE-specific semantic wikis extend general purpose
semantic wikis for supporting RE.

New~ Report~ Functionalities~

Checklist: Requirements Y.
Checklist - Quality Assurance

ltems Considered? [¥]
Are all requirements prioritized? [V
Are all the requirements linked to a use case? [¥
Are all the use cases implemented by a class? v

I

Are all the requirements linked to a test case?

<

Are all the requirements described?

Check
Requirements without priority established

NFRO1
NFRO2
NFRO3

Requirements not linked to a use case

NFRO1
NFR02
NFRO3
NFRO4

Use cases not implemented by a class

All use cases are implemented by a class.

Requirements not linked to a test case
NFR02

Requirements not described

NFRO5
NFRO06
NFRO7

Fig. 5. Using Checklists to Support Requirements Verification

WikiReq [27] has been developed in order to support stakeholders in acquiring re-
quirements in terms of the concepts defined by Si*, a goal-oriented language. These
concepts are: actors, goals, sub-goals, tasks and resources. First, requirements are
acquired by means of a set of pre-defined forms, built using the SMW Semantic
Forms. Using the annotations incorporated in the Semantic Forms, requirements can
be automatically transformed into graphs that can be used by the developers as a basic
input in order to define a formalized version of a requirements specification. Another
feature of WikiReq is to allow debating about requirements in a specific tab page.

In SOP Wiki [28], users can add properties to pages and define typed links be-
tween them. A striking feature of SOP Wiki is the ability to export wiki content (e.g.,
requirements) to Open Office documents.

RegWiki [29] extends the SMW platform by means of an ontology and Natural
Language Processing (NLP) services. ReqWiki is targeted for use case-driven re-

quirements engineering. Thus, its ontology includes concepts such as actors, goals,
use cases, test cases, features, as well as the relationships between them. Semantic
Forms are used to add content to the wiki, automatically annotating requirements
specifications with elements of the ontology. Using the semantic metadata, in-line
queries can also be inserted in wiki pages. The NLP services include services for: (i)
finding spelling and grammatical mistakes; (ii) detecting SRS defects, such as weak
phrases in a requirement description; (iii) creating a back-of-the-book style index of
the wiki content and storing it in the wiki as a page; (iv) automatically extracting
named entities, such as persons, organizations or locations.

SoftWiki [30] extends OntoWiki to support requirements engineering according to
an ontology for requirements engineering, called SWORE. SWORE defines core
concepts of requirement engineering, and the way they are interrelated. For instance,
SWORE defines types of relationships between requirements such as details, con-
flicts, and depends on. Each requirement gets its own URI making it a unique instance
on the semantic web. Then, it is linked to other resources using semantic web stand-
ards such as RDF and OWL.

IMSD-Req shares several characteristics of the aforementioned wikis. First, IMSD
provides a feature for semantically annotating document templates that are similar to
Semantic Forms in the SMW platform, in the sense that efforts for annotating a Se-
mantic Form in SMW or a template in IMSD are taken only once. Then, several se-
mantic documents can be produced, as the form/template is filled.

ISMD-Req, ReqWiki and SoftWiki use ontologies for the requirements domain to
semantically annotate documents. The underlying ontologies include several common
concepts and relations, such as requirement, document, use case, and dependency
relationships. Moreover, ontology-based reasoning facilities are available both in
ISMD-Req and ReqWiki.

On the other hand, ISMD-Req has two striking features when compared to the
aforementioned wikis. First, it deals with desktop semantic documents, instead of
semantic wikis. Both desktop documents and wikis provide support for structuring
requirements in sections, and are also applicable in other development phases. How-
ever, wikis also provide support for collaboration, and support versioning and
baselining of requirements [25]. IMSD-Req addresses collaboration only partially,
and thus this is a weakness when comparing ISMD-Req with semantic wikis. Since
IMSD-Req is integrated to the control version system Subversion, it allows control-
ling requirement versions and baselines, and allows requirements engineers to edit
requirements documents in parallel. Moreover, we should take into account that desk-
top documents are still the dominant format used by software organizations for docu-
menting software development [5, 6]. Thus, it is important to provide facilities for
handling desktop semantic requirements documents. SOP Wiki [28] recognizes the
importance of desktop documents, so that it provides a feature for exporting wiki
content to Open Office documents.

Another striking feature of IMSD-Req is that it explores the conceptualization es-
tablished by the Software Requirements Reference Ontology to provide features to
support some RE activities, namely: prioritizing requirements, analyzing impacts
from requirements changes, tracing requirements through traceability matrices, and

verifying requirements using checklists. None of the aforementioned wikis do that.
ReqWiki also provides some requirements-specific services, but they do not explore
the conceptualization of its ontology (SWORE). They are Natural Language Pro-
cessing web services.

5 Conclusion

Requirements Engineering (RE) is a critical factor for software projects to succeed
[17]. Many problems that occur in software projects arise from shortcomings in the
way developers gather, document, agree on, and modify software requirements [14].
In this context, it is essential to provide computational support for RE.

IMSD-Req is an alternative to provide computational support for RE, keeping or-
ganizations’ culture of using text editors for documenting requirements. It is worth-
while to point out that IMSD-Req is an alternative to requirement CASE tools, since it
supports only partially the RE process. This alternative may be useful, once studies
related to RE practices and CASE tools adoption, such those conducted by Hoffman
and Lehner [17] and Wiegers [14], point out that the use of commercial tools some-
times has negative impacts on the RE process. Besides, in general, the acquisition cost
of these tools is prohibitive, especially for small companies [28]. So it is common that
companies use general-purpose tools (like text editors) to document requirements. In
this sense, such companies do not need to change the way they work. Requirements
documents continue to be produced using a text editor, and IMSD-Req features can be
used in a complementary way.

IMSD-Req extends IMSD [7], a general propose semantic document management
platform, to include RE-specific features that aims at addressing improvement oppor-
tunities identified during the use of IMSD for supporting a RE process [12]. For ad-
dressing these improvement opportunities, IMSD-Req explores the conceptualization
provided by the Software Requirements Reference Ontology, in order to provide fea-
tures for supporting requirements change impact analysis, evaluating consistency of
requirement priorities, generating traceability matrices, and verifying requirements
using checklists.

IMSD-Req was used in a pilot project developed in NEMO, and the new features
introduced by IMSD-Req showed to be useful. Some adjustments were also done in
IMSD-Req, in order to consider the feedback given by this pilot project. We are now
planning an experiment using IMSD-Req as a tool for supporting the RE process in a
Requirements Engineering course for graduate students. In light of the promising
results obtained so far with IMSD-Req, as a future work, we intend to extend IMSD
to the software project management domain. Moreover, several features of IMSD can
be improved. First, we plan to expand the elements of ODT documents that can be
annotated to include also figures. Second, we intend to develop an ontology on
documents, and use it to allow exploring annotations in specific parts of a document,
such as title, sections, subsections and so on.

Acknowledgments. This research is funded by the Brazilian Research Funding
Agency CNPq (Process Number 485368/2013-7).

References

1.

10.

11.

12.

13.

14.

15.

16.

H. Eriksson, M. Bang.: Towards Document Repositories Based on Semantic Documents,
Proceedings of Sixth International Conference on Knowledge Management and
Knowledge Technologies (I-KNOW ’2006), pp. 313-320, Austria (2006)

. V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, F. Ciravegna.: Se-

mantic Annotation for Knowledge Management: Requirements and a survey of the state of
the art, Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 4, pp. 14-28 (2006)

T. Berners-Lee, J. Hendler, O. Lassila.: The semantic web, Scientific American, 284 (5),
pp. 34-43 (2001)

M. Sicilia.: Metadata, semantics and ontology: providing meaning to information re-
sources. International Journal of Metadata, Semantics and Ontologies, vol.1, n.1, pp. 83—
86 (2006)

T. C. Lethbridge, J. Singer, A. Forward.: How Software Engineers Use Documentation:
The State of the Practice, IEEE Software, vol. 20, no. 6, pp. 35-39 (2003)

A. Forward, T.C. Lethbridge.: The relevance of software documentation, tools and tech-
nologies: a survey. Document Engineering (DocEng’2002) (2002)

L.O. Arantes, R.A. Falbo.: An Infrastructure for Managing Semantic Document, Proceed-
ings 14th International Enterprise Distributed Object Computing Conference Workshops
EDOCW 2010. Los Alamitos : IEEE Computer Society, pp. 235-244 (2010)

V. Lanfranchi, F. Ciravegna.: Semantic Web-based document: editing and browsing in
AktiveDoc. The Semantic Web: Research and Applications, v. 3532, pp. 93-89 (2005)

. H. Eriksson.: The semantic-document approach to combining documents and ontologies,

International Journal of Human-Computer Studies, vol. 65, Issue 7 (2007)

M. Tallis.: Semantic Word Processing for Content Authors, Proceedings of the Knowledge
Markup and Semantic Annotation Workshop, Florida, USA (2003)

B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, M. Goranov.: KIM - Seman-
tic Annotation Platform, Proceedings of the 2" International Semantic Web Conference
(ISWC2003), Florida, USA, pp. 844-849 (2003)

B. N. Machado, L.O. Arantes, R.A. Falbo.: Using Semantic Annotations for Supporting
Requirements Evolution, Proceedings of the 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE2011), pp. 185-190, Miami, USA (2011)
G. Kotonya, I. Sommerville.: Requirements engineering: processes and techniques. Chich-
ester, England: John Wiley (1998)

K.E. Wiegers.: Software Requirements: Practical techniques for gathering and managing
requirements throughout the product development cycle. Microsoft Press, Second Edition,
Redmond, Washington (2003)

A. Kiryakov, B. Popov, |. Terziev, D. Manov, D. Ognyanoff.: Semantic annotation, index-
ing, and retrieval. Web Semantics: Science, Services and Agents on the World Wide Web,
v.2, p 49-79 (2004)

B. Schandl, B. Haslhofer.: The Sile Model - A Semantic File System Infrastructure for the
Desktop. Proceedings of the 6th European Semantic Web Conference, Vienna, pp. 51-65
(2009)

17.

18.
19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

H.F. Hofmann, F. Lehner.: Requirements Engineering as a Success Factor in Software Pro-
jects, IEEE Software, pp. 58-66 (2001)

I. Sommerville, Software Engineering, 9" ed., Addison Wesley (2010)

G. Guizzardi.: Ontological Foundations for Structural Conceptual Models, Universal Press,
The Netherlands (2005)

R. A. Falbo, J. C. Nardi.: Evolving a Software Requirements Ontology, 34" Latin Ameri-
can Informatics Conference (CLEI 2008), Santa Fé, Argentina (2008)

E.F. Souza, R.A. Falbo, N.L. Vijaykumar.: Using Ontology Patterns for Building a Refer-
ence Software Testing Ontology, 8" International Workshop on Vocabularies, Ontologies
and Rules for the Enterprise and Beyond (VORTE 2013), Vancouver, Canada (2013)

S.L. Pfleeger, J.M. Atlee.: Software Engineering: Theory and Practice, Prentice Hall, 4™
Edition (2009)

A. Olivé.: Conceptual Modeling of Information Systems, Springer (2007)

G. Guizzardi.: On Ontology, Ontologies, Conceptualizations, Modeling Languages and
(Meta) Models. In: Vasilecas, O., Edler, J., Caplinskas, A. (Org.). Frontiers in Artificial In-
telligence and Applications, Databases and Information Systems IV. 10S Press, Amster-
dam (2007)

H. Lai, R. Peng, D. Sun, F. Shao, Y. Liu, A Survey of RE-specific Wikis for Distributed
Requirements Engineering, 2012 Eighth International Conference on Semantics,
Knowledge and Grids, pp. 47 — 55 (2012).

B. Hoenderboom, P. Liang, A Survey of Semantic Wikis for Requirements Engineering,
University of Groningen, The Netherlands, Tech. Rep. RUG-SEARCH-09-L03 (2009).

L. Abeti, P. Ciancarini, R. Moretti. Wiki-based Requirements Management for Business
Process Reengineering. In: Proceedings of the 4th International Symposium on Wikis
(WikiSym’08), pp. 45-50 (2008).

B. Decker, E. Ras, J. Rech, P. Jaubert, M. Rieth. Wiki-based stakeholder participation in
requirements engineering. IEEE Software, 24(2):28-35 (2007).

B. Sateli, S. S. Rajivelu, E. Angius, R. Witte. ReqWiki: a semantic system for collabora-
tive software requirements engineering. In: Proceedings of the Eighth Annual Internation-
al Symposium on Wikis and Open Collaboration (WikiSym '12) (2012).

S. Lohmann, P. Heim, S. Auer, S. Dietzold, T. Riechert. Semantifying requirements engi-
neering - the softwiki approach. In Proceedings of the 4th International Conference on
Semantic Technologies (I-SEMANTICS), pp. 182-185 (2008).

M. Kroétzsch, D. Vrandecic, M. Vélkel, H. Haller, R. Studer. Semantic Wikipedia. In Jour-
nal of Web Semantics, Vol. 5, No 4, pp. 251-261 (2007).

S. Auer, S. Dietzold, T. Riechert. OntoWiki — A Tool for Social, Semantic Collaboration.
Proceedings of the 5th International Semantic Web Conference, pp. 736-749 (2006).

http://www.sbc.org.br/clei2009/ing/clei.html
http://www.sbc.org.br/clei2009/ing/clei.html
http://semanticweb.org/wiki/Markus_Kr%C3%B6tzsch
http://semanticweb.org/wiki/Denny_Vrandecic
http://semanticweb.org/wiki/Max_V%C3%B6lkel
http://semanticweb.org/wiki/Heiko_Haller
http://semanticweb.org/wiki/Rudi_Studer
http://korrekt.org/page/Semantic_Wikipedia_%28JWS2007%29
http://www.websemanticsjournal.org/index.php/ps/issue/view/21

