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Abstract. Software systems are being used in ever more diverse and dynamic 

environments where they have to routinely and efficiently adapt to changing en-

vironmental conditions. Therefore, they must detect variations in their operating 

context and adapt their behavior in response to such variations. However, speci-

fying monitoring and adaptation can be difficult due to their dependence on the 

contextual elements, which need to be made explicit. The variable nature of these 

systems calls for new approaches to create systems that can adapt to context 

changes. This paper proposes the GOals to Statecharts (GO2S) process to sys-

tematically derive the behavior of context-sensitive systems from requirements 

models. This is an iterative process centered on the incremental refinement of a 

goal model, obtaining different views of the system (design, contextual, behav-

ioral). We illustrate our proposal with the meeting scheduler exemplar and we 

conducted a controlled experiment in order to evaluate our process. The experi-

ment results show that the structural complexity of the group that used our GO2S 

approach was lower and the mean of behavioral similarity and the time spent was 

higher than control group. Besides, the subjects agreed that the GO2S process is 

easy to use indicating that it is possible to reproduce the process and it is under-

standable. 

Keywords: Behavior, Adaptation, Context-sensitive system, Goal Model, Mon-

itoring. 

1 Introduction 

There is a growing body of research on the use of context-sensitivity as a technique for 

developing computing applications. The sensitivity to context illustrates the possibility 

to react, according to certain predefined rules or based on intelligent stimulus. Thus, 

context-sensitive systems are flexible and capable of acting autonomously on behalf of 

their users. Such systems need to dynamically adapt their behavior. 

It is of paramount importance to specify and analyze the intended behavior of such 

systems before they are fully implemented. The behavioral specification is used as input 

to the analysis, which explores the range of possible orderings of interactions, opportu-

nities for concurrency, and time-based interaction dependencies among system ele-

ments [1]. Many notations may be used to capture behavioral information of context-
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sensitive systems such as Labelled Transition Systems (LTS), Petri Nets, and 

Statecharts. In this paper, we rely on Statechart [2], a popular visual formalism to rep-

resent the behavioral view of a system. 

It is important to note that Non-Functional Requirements (NFRs) affect both the 

structural and behavioral aspects of the system (architecture). Therefore, they need to 

be operationalized and refined. Besides, NFRs should be taken in consideration when 

deciding which variant is more appropriate in a given context. Therefore, NFRs are 

critical and must be elicited, analyzed, and properly handled.  

Goal models have been used as an effective means to capture the interactions and 

information-related requirements of adaptive systems [3]. A possible reason is that they 

incorporate a space of alternatives of operations sets, i.e. variants, which gives more 

flexibility to meet stakeholders’ goals in a dynamic environment [4]. 

It is well known that requirements (for example, described in terms of goal models) 

and behavior (expressed using statecharts) must be related. In fact, they are inter-twined 

[5]. 

In this work, we propose the GO2S process to obtain the behavior of context-sensi-

tive systems (expressed as statecharts) from requirements (described as goal models) 

and we illustrate our approach with the meeting scheduler exemplar. A key contribution 

is the proposal of the operationalization of softgoals, the monitoring and adaptation 

tasks in the same behavioral contextual design goal model. Therefore, our approach 

does not need any additional notation for adaptation modelling; it uses the elements of 

a contextual goal model, allowing the software engineer to visualize their impact on the 

system’s behavior. 

The experiment results show that the structural complexity of the group that used 

our GO2S approach was lower and the mean of behavioral similarity and the time spent 

was higher than control group. Besides, the subjects agreed that the GO2S process is 

easy to use indicating that it is possible to reproduce the process and it is understanda-

ble. 

The benefits of obtaining the behavior of context-sensitive are manifold [1]: the 

models can be used as a communication channel among stakeholders during system-

development activities; it will improve the confidence that the context-sensitive sys-

tem will be able to achieve its goals; and it will support the reasoning. Hence, it will be 

possible to analyze properties such as system’s completeness, correctness as well as the 

satisfaction of some quality attribute. Besides, since the resulting models are statecharts 

without any extension, they are amenable to simulation and code generation using ex-

isting tools. 

This paper is structured as follows. In Section 2, we overview the research baseline 

for this work. In section 3, we explain our proposal, and discuss its use with a running 

example. Section 4 presents the contributions of this work and points out some open 

issues. Later, we present related works in Section 5, and we conclude and present our 

future works in Section 6. 



2 Background 

The GO2S process proposed in this paper consists of an incremental refinement of a 

goal model, towards a statechart, following the twin peaks concept [5]. The following 

sub-sections provide a brief overview of these concepts. 

2.1 Contextual Goal Model 

Goal-Oriented Requirements Engineering (GORE) is concerned with the use of goals 

for eliciting, elaborating, structuring, specifying, analyzing, negotiating, documenting, 

and modifying requirements [6]. 

Goal models are a way to capture and refine stakeholder intentions to generate func-

tional and non-functional requirements. The notation used in this paper is based on the 

one described by [3] which has goals, tasks, softgoals and contribution links (Make 

(++), Help (+), Hurt (-) or Break (--)). 

A contextual goal model extends a goal model with context annotations in order to 

specify the variation points that are context-dependent. Context is defined as a partial 

state of the world that is relevant to an actor’s goals [4]. The notation used in this paper 

to represent contexts in goal models is based on [4]. Thus, contexts in our work can be 

associated with the following variation points in a goal model:  

 Or-refinement: the adoptability of a subgoal (subtask) may require a specific con-

text to hold as a pre-condition for the applicability of the corresponding goal model 

variant; 

 And-refinement: the satisfaction (execution) of a subgoal (subtask) in this refine-

ment is needed only in certain contexts. Although this is syntactically equivalent 

to an or-refinement, the semantic is different [4]. A context on an and-refinement 

influence the need for the reaching or executing the corresponding subgoal/subtask, 

while a context on an or-refinement is itself needed to hold before adopting the 

corresponding subgoal/subtask. This semantic difference is essential to decide 

which requirements and alternatives will be active when a context change occurs 

at runtime; 

 Contribution to softgoals: the contribution of softgoals can vary from one context 

to another. 

 

Each context identified in a contextual goal model must be refined [4] to allow it to 

be checked. The contextual refinement has a tree-like structure (Fig. 1.) in which the 

root of this model is the context, and statements and facts are its nodes. Statements 

cannot be verified directly in a context, e.g. “The meeting is not urgent”, and are sub-

jective assertions that do not have clear criteria to be evaluated against. Facts, on the 

other hand, are predicates which truth values can be verified in a context, e.g. “The 

meeting date is more two days away”. To obtain a verifiable context, all statements are 

refined into facts and sub-statements, until there are only facts left. Fig. 1. presents the 

refinement of the context related to Collect timetables by email task of our running 

example. It will be true if the number of participants is high, or the meeting is not urgent 

(which can be checked by the The meeting date is more than 2 days away fact), or the 



participants usually answer meeting requests by email (i.e. The participants answered 

more than 50% of timetables requests). 

 

 

Fig. 1. Refinement of the context Collect timetables by email. 

2.2 Statecharts 

Statecharts were proposed by David Harel [2] and became a popular visual formal-

ism for modelling reactive systems. It can be used to represent the behavioral view of 

a system. It is worth noting that they also support concurrency and hierarchy of states.  

The main elements of statecharts are states, events, transitions, actions and regions. 

States are conditions during the life of an object or an interaction during which it satis-

fies some condition, performs some action, or waits for some event. 

Transitions capture a change of state caused by the occurrence of some associated 

event. A transition may be guarded by some condition, represented by a condition name 

or an expression enclosed between brackets. A guard captures a necessary condition for 

transition firing. States are represented as boxes and transitions between states repre-

sented as arrows.   

An action is an auxiliary operation associated with a state transition that is applied 

when the transition is activated.  Statecharts also support the nesting of states. Concur-

rency is represented by dividing a composite state into regions that are shown separated 

by dotted lines. 

3 GOals to Statecharts (GO2S) Process 

We propose the GO2S process to systematically derive the behavioral view of con-

text-sensitive systems (modeled as statecharts), from system’s requirements (modeled 



as goal models). This process comprises six activities (see Fig. 2): Construction of de-

sign goal model; Specification of contextual variation points; Specification of monitor-

ing and adaptation; Specification of flow expressions, Statechart derivation and refine-

ment and Prioritization of variants. This is an iterative process that produces progres-

sively more detailed requirements and design specifications. The detailed explanation 

of the activities proposed in our process is presented in the following sub-sections. 

 

 

Fig. 2. GO2S process for deriving statecharts from goal models. 

3.1 Construction of design goal model  

In the GO2S process, we are concerned with the definition of the behavior of con-

text-sensitive systems. We assume that requirements elicitation and analysis activities 

were previously performed and a goal model was generated. Hence, the first step (see 

Fig. 2) consists of the construction of design goal model and receives a goal model as 

input. 

In order to illustrate our process, we consider the popular meeting scheduler system, 

which is based on the requirements described in [6]. Its purpose is to support the organ-

ization of meetings, that is, to determine, for each meeting request, a meeting date and 

location so that most of the intended participants can effectively participate. Its design 

goal model, which encompasses both requirements and design elements, is shown in 

Fig. 3.  

Note that besides the traditional goal models elements, the design goal model in-

cludes design tasks and design constraints [7], represented through dashed borders in a 



goal model. This differentiation is used to emphasize the phase of the software devel-

opment they appear – while requirements elements describe the stakeholders’ needs, 

design ones express a possible way to fulfill those needs. By including these elements 

in a goal model, it is possible to make use of the existing goal reasoning infrastructure 

when designing systems with specific needs like context-sensitive. 

NFRs are one source of design tasks and constraints. Therefore, it is important to 

consider their impact in the system, since they change or complement both the structural 

and behavioral aspects of the system architecture [8].  Therefore, in this first activity, 

the software engineer should check if there are any relevant NFRs in the system. For 

example, we can establish the relationship to the goal model using techniques for NFR 

analysis such as Softgoal Interdependency Graphic (SIG). If a NFR needs to be opera-

tionalized, a design task must be included in the goal model. Further, design constraints 

may also need to be included.  

In the meeting scheduler system, we have the usability, performance and security 

NFRs. To satisfy the security NFR, it was decided to perform access management, so 

a new functionality should be added to satisfy this requirement. This is expressed by 

the Manage Access design task (see Fig. 3).  

Moreover, the design goal model also allows the definition of assignments for its 

different elements [7]. In our running example, the Contact Participants design task 

(see task t10 in Figure 3) may be performed either by the meeting organizer or by a 

secretary, which is expressed through an annotation in that task. All the other tasks are 

either performed or assisted by the system-to-be. The output of this activity is the design 

goal model which could have the operationalization of NFRs. Next, we need to consider 

the variability of the model. 

3.2 Specification of contextual variation points 

In this activity, the contextual variation points are annotated in the design goal model 

to visually specify the effects of context in the system’s behavior. Accordingly, the 

software engineer has to define the points of the design goal model that are context-

dependent. In this work, we considered that contexts can be associated with the follow-

ing links in a goal model: or/and refinements and contribution to softgoals (see Section 

2.1).  

When a contextual variation point is identified, the variants at the design goal model 

are labelled with C1…Cn and annotated in the model, as shown in Fig. 3. We follow 

the notation of [4] that considers that each context specified in the contextual design 

goal model must be refined through a set of statements and facts. As an example of 

context refinement, see the refinement of context C4 related to Collect timetables by 

email task in Fig. 1. The contextual refinements are required in order to allow the sys-

tem be able to check the validity of context at runtime. Hence, if a context is true, the 

variant is enabled. 

The outputs of this activity are the contextual design goal model and the context 

refinements. Next, we need to consider how the monitoring and adaptation will be per-

formed. 



3.3 Specification of monitoring and adaptation 

Context-sensitive systems must monitor the context at runtime in order to decide 

which variant will be adopted. This can be done by the monitoring of Contextual Ele-

ments (CE). These elements can be defined as data or information in the domain whose 

instantiated values influence the truth values of facts. Each CE can be identified as 

regards its frequency or periodicity and classified as static or dynamic. Static CE indi-

cates information that is, in general, fixed or does not change very often (e.g. user's 

personal data - date of birth, number of rooms in the meeting scheduler system). Dy-

namic CE changes almost instantly, hence it needs to be constantly monitored and up-

dated (e.g. physical location of a person, participants’ agenda, number of date conflicts 

in a meeting request). The dynamic elements are important to specification of context 

monitoring. 

The context will be activated when some change in the CEs occurs. Therefore, we 

must create a new design task, called Monitor Context for example, to represent their 

monitoring. Then, for each dynamic contextual element, a new design task must be 

created, expressing the need to monitor it. These tasks can have the form of Monitor 

[contextual element].  

In this excerpt of the meeting scheduler system, we identified three CEs so far: meet-

ing date, timetables responses, and participants’ agenda. Thus, the tasks Monitor meet-

ing date, Monitor Participants agenda and Monitor Timetables responses, in Fig. 3 are 

the ones needed to monitor their CEs.  

Among the benefits enabled by context-sensitive systems is the possibility of adap-

tation. Therefore, we propose to use this characteristic to deal with the requirements 

adaptation when a goal fails. In order to achieve this, we add adaptation design tasks in 

the design goal model to represent the adaptation required for each requirement the 

software engineer wants to monitor. These adaptation design tasks will be activated 

when the associated context holds. The contextual information can be monitored at 

runtime to indicate the possible situations where the goal has failed.  

We propose to add a new design task in the root node for adaptation management 

and design tasks in this new node for each critical requirement that must be monitored 

and adapted. Finally, adaptation design tasks should be added to represent the adapta-

tion actions.  

In our running example, the software engineer decided that the system has to adapt 

itself when the Performance softgoal and the Schedule Defined goal fail. Therefore, 

two adaptation design tasks were added to our running example: Manage Performance 

adaptation and Manage Schedule adaptation. The adaptation tasks are Step Back and 

Reconfigure Schedule for Manage Schedule adaptation design task; otherwise, Dele-

gate (Software Architect) and Add new server are the adaptation tasks for the adaptation 

Manage Performance adaptation design task. These elements are represented in Fig. 3. 

Besides adding the adaptation design tasks in the design goal model, it is also nec-

essary to refine their contexts (see Section 2.1). In Fig. 3,  C1-C5 are contexts previ-

ously identified, otherwise, C6-C11 are the ones related to the requirements adaptation 

of our running example identified in this activity. These contexts are required so adap-

tation design tasks presented above can be executed.  



After all contexts, that influence the requirements are refined, and the context ele-

ments that need to be monitored are identified, the next step is to identify the equip-

ments/technologies needed to monitor these contextual elements. In our running exam-

ple, the only technology needed is the database; however, it can be of several types like 

GPS, RFID, camera, different types of sensors (presence, humidity, light), etc. These 

information can be listed in a table for example in order facilitate the visualization and 

management by the software engineer.  

After defining the adaptation design tasks, we identified two more CE (response time 

and number of conflicts) in the meeting scheduler example. Therefore, the design tasks 

Monitor number of conflicts and Monitor response time were also added to Fig. 3. 

 

 

Fig. 3. Behavioral contextual design goal model of the meeting scheduler system. 

3.4 Specification of flow expressions 

Flow expressions are a set of enrichments to a goal model that allow (restricted) 

specification of the runtime behavior of a system in terms of how different system tasks 

and goals interact with each other. We adopted the symbols proposed by [7] with the 

purpose of facilitating their writing. They are used in our process as intermediary model 

in order to derive the statechart. 



The first step of the specification of flow expressions is to assign an identification to 

each goal and task in the model, starting with the root goal. Gi was used as the identifi-

cation for goals and ti for tasks and design tasks where i is the number of the task.  

After the assignment, we must visit each parent node, starting with the parents of 

leafs nodes, to define a flow expression, which describes the behavior of its children 

elements using the symbols proposed by [7]. Thereafter, the flow expressions are prop-

agated to the parents nodes in the upper level combining with its children elements, and 

so on. When we reach the root goal, we have the flow expression from the entire system. 

The resulting flow expressions are annotated in the contextual design goal model.  

A common practice when creating statecharts is to use intermediate states as a point 

where the system is idle, waiting for some input, e.g., waiting for a selection by the 

user. Considering how frequently these states appear, and aiming to reduce visual pol-

lution in the behavioural contextual design goal model, such states must be inserted 

directly in the flow expressions identified as iX, where X is an integer. 

The result flow expression, presented in Fig. 3 of our running example is (i1 t16 i2 

(g2 |g3 | g4 | t15)*) - t24 - t25). Thus, from the idle state (i1), the system executes 

Manage Access (t16) task, entering in an idle state (i2). The Meeting Characterized 

(g2), Timetables collected (g3), Schedule defined (g4) goals, and the Update meeting 

(t15) task are alternatives that can be executed zero or more times. Besides, Monitor 

Context (t24) and Manage Adaptation (t25) design tasks are running concurrently with 

all tasks. 

3.5 Statechart derivation and refinement 

The statechart derivation is the last activity of our process. The flow expressions 

previously defined will be translated into states of the statechart that represents the sys-

tem’s behavior view. We adopted the set of derivation patterns related to the different 

flows that may be expressed (sequential, alternative and concurrent) as well as to their 

optionality and multiplicity defined by [7].  

After generating the base statechart, we must specify its transitions in terms of their 

triggers and conditions. Any event can be used as a trigger, but there are five particular 

classes of events that are likely to appear in a statechart [7]: user request, timer, re-

quested by another task, requested by another system and context activation. Fig. 4 

presents the complete statechart of our running example. The context activation is rep-

resented in the statechart through the context labels (C1, C2… Cn) annotated in the 

behavioral contextual design goal model (Fig. 3).  

Given that it is possible that several variants may be enable in certain contexts it is 

necessary to determine the best option. The prioritization is explained in the next sec-

tion. 

3.6 Prioritization of variants 

The system’s variants are applicable only if their associated contexts hold. However, 

in a certain execution, more than one variant may be applicable in the actual context. 



For example, suppose that contexts C3, C4, and C5 of Fig. 3 hold. Hence, the system 

has to implement runtime mechanisms to decide which variant to adopt.  

 

 

Fig. 4. Statechart of the meeting scheduler system. 

In this work, we are concerned with the impact of NFRs in the system’s behavior, 

so, we rely on the variant contribution to the NFRs satisfaction. In order to achieve this, 

the software engineer should use a method to prioritize the variants considering the 

NFRs such as the Analytical Hierarchy Process (AHP) method [10]. 

The AHP method is used in the GO2S process to produce a ranking of variants (al-

ternatives) that most contributes for the satisfaction of NFRs (criteria). First, it is nec-

essary to establish priorities for the main criteria by judging them in pairs for their rel-

ative importance, thus generating a pairwise comparison matrix. Judgments which are 

represented by numbers from the fundamental scale are used to make the comparisons. 



The number of judgments needed for a particular matrix of order n, the number of ele-

ments being compared, is n(n - 1)/2 because it is reciprocal and the diagonal elements 

are equal to unity [10]. 

In our running example, we have three NFRs (usability, security, performance). As 

demonstration of the application of this method for variant prioritization, consider that 

the contexts related to var3 (collect by phone), var4 (collect by email) var5 (collect 

automatically) hold. Thus, we must follow the steps required to use the AHP described 

in [10]. 

Considering the following pairwise comparisons Usability and Performance=0.14; 

Usability and Security=0.20; Performance and Security=3; the following priority vector 

is obtained [Usability = 0.074, Performance = 0.643 and Security = 0.283]. Thus, we 

notice that Performance is the NFR more critical to the software engineer followed by 

Security and Usability.  

The next step is to decide the variants that will be analyzed through this method. For 

example, suppose that contexts C3 (Collect by phone), C4 (Collect by email), and C5 

(Collect automatically) of Fig. 3 hold. Therefore, we list the contribution of each variant 

to the satisfaction of each NFR according the mapping proposed by [11] to convert 

from the NFRs contribution to the scale used in AHP. The remaining steps of the 

method are applied and the variant priority vector [var3=0.14, var4=0.19, and 

var5=0.67] is obtained in our running example. We can notice that the var5 is the one 

that contributes mostly for the satisfaction of the NFRs followed by var3 and var4. 

Therefore, if their context associated hold at runtime, var5 will be chosen by the system. 

The software engineer must perform this analysis for each variation point when more 

than one context can hold at runtime. 

4 DISCUSSION 

This paper proposes the GO2S process for deriving the behavior of context-sensitive 

systems from a contextual goal model. In comparison with the work of [7], the main 

difference is that we address the system’s context, the operationalization of the NFRs 

and prioritization of variants. 

The prioritization was performed using the AHP method. This activity is useful for 

selecting which variant the system must adopt at runtime when more than one variant 

is enabled at the same time. The variant that will be executed is the one that mostly 

contributes for the satisfaction of the NFRs more critical to the software engineer. It 

should be noted that AHP analysis can be performed using a spreadsheet tool, which 

shows that there is no need for sophisticated tool to support this method. 

We adopted the AHP method because of its benefits are well described in the litera-

ture [12]: it is a well-known and accepted method; it is appropriate for handling conflict-

ing concerns problems; it has the ability to quantify subjective judgments. Moreover, it 

is capable of comparing alternatives in relation to established criteria; and it provides 

means to guarantee the logical consistency of the judgments. 

The AHP has proven to be an effective method for prioritizing objectives. In indus-

trial projects, this method has been experienced as being effective, accurate and also to 



yield informative and trustworthy results [13]. However, since all unique pairs must be 

compared, the required effort can be substantial. 

We performed a thorough experimentation in order to evaluate and improve our pro-

cess. Such experiment was being defined using the framework proposed by [14] for 

performing experiments in software engineering. The experiment results [15] show that 

the structural complexity of the group that used our GO2S approach was lower and the 

mean of behavioral similarity and the time spent was higher than control group. Be-

sides, the subjects agreed that the GO2S process is easy to use indicating that it is pos-

sible to reproduce the process and it is understandable. 

An experiment to study the scalability of statechart generation algorithm was previ-

ously conducted by [7]. The inputs of the simulation were five flow expressions with 

all possible operators and different number of elements (100, 300, 500, 700, and 900). 

The results demonstrated that the automatic derivation of statecharts from design goal 

models is feasible even for large models. 

Besides, the contextual design goal model captures the inherent variability of the 

design space, through the definition of alternative refinements for the same design ele-

ment. Thus, different solutions (statecharts) for a given problem can be devised. 

It is important to note that the monitoring required to assess the context may have a 

significant impact on the system under development. The monitoring of the context 

often consumes many application resources and has the tendency to decrease the sys-

tem’s performance. Thus, the impact of monitoring the context data must also be taken 

in consideration when defining the context annotations. 

5 Related works 

A process for generating complementary design views from a goal model with high 

variability in configurations, behavioral specifications, architectural and business pro-

cesses is presented in [9]. It defines heuristic rules and patterns to map a goal hierarchy 

into an isomorphic state hierarchy in a statechart. However, their approach does not 

support the development of context-sensitive systems, neither takes in consideration of 

the impact of NFRs in the system’s behavior and the specification of monitoring and 

adaptation tasks as supported in our wok.  

A process for deriving behavioral models from goal models was also proposed in 

[7]. The behavioral models, expressed as statecharts, are obtained through a series of 

refinements expressed within an extended design goal model that constitutes an inter-

mediary model between requirements and architecture. However, in [7] the assumption 

is that the system operation is independent of context. Unfortunately, this is not always 

the case. Besides considering the system’s context, our work addresses the require-

ments adaptation modelling, the operationalization of the NFRs and variants prioritiza-

tion.  

The STREAM-A (Strategy for Transition between Requirements and Architectural 

Models for Adaptive systems) approach [1612] uses goal models based on i* (istar) 

framework to support the design and evolution of systems that require adaptability. It 

comprises the enrichment of the requirements model with contextual annotations and 



the identification of the data that the system will have to monitor. However, it focuses 

only on the structure of a system architecture. Hence, an important difference of our 

work is to specify and analyze the intended behavior of systems before they are fully 

implemented.  

An integrated approach to assist the design of Context-sensitive systems (CSS) is 

presented in [17]. Their approach includes a context metamodel for representing struc-

tural and behavioral aspects on CSS. In order to support the modeling of behavioral 

concepts, the authors propose the use of a profile to model the application behavior 

using the UML activity diagram with the semantics defined in the Contextual Graphs 

(CxG). Moreover, an activity diagram is a special case of a statechart [18] in which 

states are activities (“functions”). Hence, an activity diagram illustrates the flow from 

activity to activity and clarifies the sequence of actions. Statecharts, otherwise, are a 

powerful graphical notation to describe reactive systems that support concurrency and 

hierarchy of states, and allow tracing the behavior given specific inputs. 

6 Conclusions and Future Works  

In this work, we proposed a systematic process for deriving the behavior of context-

sensitive systems, expressed as statechart, from a contextual goal model. The process 

consist of six activities to guide the software engineer.  

The first step of the process concerns the construction of design goal model. It is 

followed by the definition of context annotations. In the third step, the tasks required 

for the monitoring and adaptation activities are specified. Later, the system behavior is 

represented in flow expression in the fourth step. The next one derives a statechart from 

the behavioral contextual design goal model. Finally, the last step is the prioritization 

of variants. 

We performed a controlled experiment in order to evaluate our process. The experi-

ment results [15] show that the structural complexity of the group that used our GO2S 

approach was lower and the mean of behavioral similarity and the time spent was higher 

than control group. Besides, the subjects agreed that the GO2S process is easy to use 

indicating that it is possible to reproduce the process and it is understandable. 

As future work, we expect to develop tool support for our process. Such tool shall 

support the modelling of the goal model and guide the software engineer to apply our 

process generating the different views (design, contextual and behavioral) of our pro-

cess to implement the statechart derivation. Further studies are required in order to de-

velop mechanisms to perform the reasoning of properties such as system’s complete-

ness and correctness of context-sensitive systems from the generated statecharts.  
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