
A Survey on Preferences of Quality Attributes
in the Decision-making for Self-Adaptive
Systems: the Bad, the Good and the Ugly

Luis H. Garcia Paucar and Nelly Bencomo

ALICE, Aston University, UK
garciapl@aston.ac.uk, Nelly@acm.org

Abstract. Different techniques have been used to specify preferences for
quality attributes and decision-making strategies of self-adaptive systems
(SAS). These preferences are defined during requirement specification
and design time. Further, it is well known that correctly identifying the
preferences associated with the quality attributes is a major difficulty.
This is exacerbated in the case of SAS, as the preferences defined at de-
sign time may not apply to contexts found at runtime. This paper aims
at making an exploration of the research landscape that have addressed
decision-making and quality attribute preferences specification for self-
adaptation, in order to identify new techniques that can improve the
current state-of-the-art of decision-making to support self-adaptation.
In this paper we (1) review different techniques that support decision-
making for self-adaptation and identify limitations with respect to the
identification of preferences and weights (i.e. the research gap), (2) iden-
tify existing solutions that deal with current limitations.

Keywords: Self-adaptation, decision making, preference trade-off, qual-
ity attributes

1 Introduction
Decision-making requires the quantification and trade-off of multiple quality at-
tributes and the analysis of the costs and benefits between alternative solutions
[1, 2]. Decision-making is at the core of self-adaptation [3]. An important issue
is the specification of preferences associated with quality attributes and defined
in the decision-making strategies to support self-adaptation [4]. Priorities asso-
ciated with requirements may vary from stakeholder to stakeholder and from
one envisaged situation to another. Different priorities can imply different deci-
sions. Further, the assumptions made at requirements specifications and design
time can change during runtime [5] and those changes can create alterations of
priorities and utility preferences. This is exacerbated in the case of SAS, as the
preferences defined during the requirements specification and design may not
apply to contexts found at runtime and therefore causing unexpected or incor-
rect behaviour. Modeling and reasoning with prioritization and preferences is
a research field that needs more attention [1]. Different studies of the state-of-
the-art for SAS in general have been performed [6–8, 2, 9]. They have identified
current approaches and trends but also critical challenges that must be further



explored. However, most of the current approaches tend to focus on design time
issues and are effective in specific domains but unlikely to be widespread. Very
few of these approaches address dynamic decision-making hence, it is still an
issue [2]. Further, the need for updating utility preferences or uncovering rela-
tionships between non-functional requirements (NFRs) during runtime has been
neglected. The steps of monitoring the environment, detecting the need for (self-
) adaptation and deciding how to react are challenges for SAS [6], which still
need to involve as well the role of preferences and re-prioritization of quality
attributes during runtime. Our main research goal is to study the current ap-
proaches that tackle utility preference elicitation and prioritization with respect
to quality attributes and also, investigate how these are updated during runtime
when new relationships between quality attributes are found. In this study, we
start from two main research questions that drive the work: (RQ1) What are the
current approaches that address preferences definition in SAS? and (RQ2) What
are the current approaches that address dynamic re-assessment of preferences in
SAS at runtime? The aim of these questions is to identify the existing studies
that explicitly consider the need to reassess utility preferences at runtime, to
assess the current research results to identify research gaps. In order to answer
these questions, we have compared a set of approaches to determine their main
characteristics, benefits and limitations. We have used the results of different
recent surveys in the area of decision-making for self-adaptive systems [6–8, 2,
9]. We have defined the classification criteria (in section 4), which allowed us to
summarize the responses into two kinds of research findings: (i) those related to
goal and decision making and (ii) those related to preferences. The review em-
phasizes the analysis on the second group (ii). However, such analysis includes
references and the context provided by (i). Different techniques have been ana-
lyzed for the specification and update of preferences, to therefore determine the
most appropriate approaches for self-adaptation.

The review is organized as follows. Section 2 describes the search strategy
implemented to guarantee a systematic search approach. Section 3 shows an
overview of the selected approaches. Section 4 presents an analysis of the ap-
proaches reviewed, identifying their generic characteristics, benefits, and limi-
tations. Finally, Section 5 concludes the review and overviews ideas to fill the
identified research gaps.

2 Search strategy
The selection criterion to increase the possibilities of having relevant studies was
based on a search strategy. The search strategy involved papers published in
English, in conferences and journals as full research papers, short and position
papers about requirements trade-off and quality attribute preferences specifica-
tion for SAS and based on recent surveys of the research area [6, 10, 8, 2, 9]. The
digitial libraries selected for the search process are summarized in Table 1.

Specialized venues has been also identified in the field of Requirement Engi-
neering and self-adaptive software. The targetted journals were:
– ACM Transactions on Autonomous and Adaptive Systems
– IEEE Transactions on Software Engineering



Table 1. Target Databases

– Journal of Software and Systems (Elsevier)
– Information and Software Technology (Elsevier)
– Software and System Modelling (Springer)

For the specialized conferences, there have been identified:
– Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS)
– Conference on Software Engineering (ICSE)
– Conference on Model-Driven Engineering Languages and Systems (MODELS)
– Requirement Engineering Conference (RE)

2.1 Search String

The aim of the search string is to capture all results related to non- functional
requirements and preferences in the context of self-adaptive software. Several
trial searches were performed in each database with the intention of checking the
number of returned papers and their relevance. The objective of the trial searches
is to check the feasibility of the search string and adjust it accordingly. The
general search string used on all databases is: (preference*) AND (self*) AND
(software). By performing the search, different results were obtained from the
target databases: ACM (323 results), IEEE (56 results), SCOPUS (336 results),
Web of Science (205 results) and Springer (18787 results). After applying the
selection and exclusion criteria (See section 2.2), 10 papers were finally selected.
The search was executed on the databases using the search string, as specified
earlier. Minimizing results by excluding irrelevant disciplines was used, whenever
available. In case the search engine does not imply enough filters and large
number of irrelevant results were retrieved, there were used the first 100 search
results ordered according to the relevance with regard to the search string. This
decision was made after checking up another 100 search results after the first
ones and found irrelevance.

2.2 Selection and exclusion criteria

Inclusion criteria has been defined with the aim of increasing the possibilities of
having relevant studies. These are:
– Papers published in conferences and journals, as full research paper, short and

position paper presenting new and emerging ideas.
– Papers presenting a technique for NFR preference definition or updating.
– Papers discussing aspects of NFR preferences definition or updating.

Exclusion criteria: Applied on the results retrieved, are:
– Duplicate studies.
– Papers in the form of abstract, tutorials, posters or presentation.
– Abstract not available.
– Full-text papers not accessible.
– Papers not explicitly addressing preference definition or updating.



3 Approaches overview
When we make decisions, a natural approach is to evaluate our different alter-
natives and choose one based on some criteria [11]. In SAS we must be able
to apply this natural way of reasoning but with the challenge of working under
uncertain conditions. How to ensure a reliable and accuracy behaviour (i.e., op-
timize the systems behaviour) trading-off multiple goals competing among them
and being constantly affected by external changing conditions is the field of ac-
tion of the well known set of methods called Multi Criteria Decision Analysis
Methods (MCDA). MCDA methods are currently applied in different fields [12]
but more than ever in self-adaptation. Different MCDA techniques have been
used for both, decision-making and preferences specification in SAS. Some pop-
ular MCDA techniques such as Pareto Optimal [13] have been use for reasoning
at runtime to discover a set of optimal adaptation alternatives. The final alter-
native selection could either demand the user intervention or be part of a fully
autonomic system behaviour. Other MCDA approaches such as Analytic Hier-
archical Process (AHP) [14] have also been used for specifiying quality attribute
preferences at design time collected from system’s stakeholders following a more
formal and objective approach.

In the rest of this section we explore different approaches for decision-making
in SAS, focusing on elicitation and dynamic update of preferences. The ap-
proaches covered are summarized in Table 2.

Table 2. Approaches for specifying requirements and preferences

Song et.al. (AP1) Song et.al. [15] presents an approach where adaptation
goals and structural runtime models (i.e. the current system context and config-
uration) are transformed into a Constraint Satisfaction Problem (CSP) [13] to
simplify the model and facilitate reasoning. Within the CSP, the constraints are
classified as hard (configuration domain values and current context values) and
weak (configuration values and adaptation goals). Each weak constraint has a



weight (i.e. utility preference) based on the users preferences while the system
quality attributes are part of the adaptation goals. Based on the CSP, the adap-
tation is performed in two stages: Constraint diagnosis (to determine the set of
constraints to be ignored) and Constraint solving: to assign new configuration
values that satisfy the remaining constraints. The algorithm proposed uses con-
straints’ weights and is based on a dynamic programming approach. Preferences
are elicited initially from information provided by system stakeholders and the
model supports upgrade of preferences through an interactive process in which
the user must participate. If users do not agree with the final solution (after each
round of adaptation), they can therefore revise the configuration values using
an interface. The proposal was applied to a case study based on a smart house
however, the model could be applied in different domains.

Letier et.al. (AP2) Letier et.al. [16] proposed the representation of sys-
tem goals (i.e. optimisation goals) as part of an Architecture Decision Model
(ADM). The optimisation goals include software quality attributes such as per-
formance, reliability and are partitioned into two categories: G+ (goals to be
maximized) and G- (goals to be minimized). The ADM represents a Multi Ob-
jective Architecture Decision Model (MOADM), which could have a large num-
ber of optimization goals. To simplify this model, the MOADM is converted
into a cost-benefit decision model (CBDM), establishing the relation among de-
sign choices and levels of goal satisfaction. The goal weights and preferences
functions are elicited using information provided by stakeholders using MCDA
techniques. The approach does not cover dynamic update of utility preferences.
The goal preferences are defined as linear functions, where preference 0 and 1 are
associated to the lowest and highest possible values for that goal among all can-
didate architectures and all possible parameters values. The approach takes into
account the risk associated with each candidate (design) decision. Adaptation
implies shortlisting the candidate design decisions. The default is to shortlist
candidate design decisions that maximize expected net benefit and minimize
the risk of project failure. An extension of Pareto optimal technique is used for
shortlisting. The approach does not support autonomic reasoning as the set of
final alternatives must be presented to stakeholders for the final decision.

Garcia-Galan et.al. (AP3) In [17], Garcia-Galan et.al. propose a preference-
based analysis for identifying service configurations that maximize the tenants
satisfaction at runtime. The approach is inspired in game theory and social adap-
tation concepts (i.e., it considers changes in the users collective judgment as a
new adaptation driver). The analysis made to identify the best system configu-
ration(s) interprets the problem as a coalitional game where all the tenants are
considered a great coalition. Conceptually, the problem is solved by the Nash
Bargaining Solution [18] and is implemented using multi-objective optimization:
a Pareto efficient solution maximizing the Nash Product, this allows shortlist-
ing alternatives. Because there may be many Pareto optimal solutions, in order
to choose a single solution it is applied a weighted Nash Product, where the
weight sign the importance of each tenant: the more users a tenant presents, the
more importance the tenant will have. The approach involves the creation of an



Extended Feature Model (EFM) and a Semantic Ontology of User Preferences
(SOUP) [17] preference Model. The EFM is a variability model and represents
the configuration space (functional features and quality attributes). SOUP con-
tains the tenants’ preferences, called preference terms, which refers to functional
and NFRs). The users preferences can be elicited and updated by asking for
explicit users feedback or mining the quality feedback from the users behavior.
Crucially, this last characteristic could allow an autonomic update of preferences.

Elahi et.al. (AP4) Elahi et.al. [19] present a trade-off analysis algorithm
that takes pair-wise comparison of alternative solutions to determine the best
solution among several alternatives. It is important to highlight that the compar-
isons are not transformed into a numerical representations of utility preferences.
Valid satisfaction levels that the requirements may have are enumerated with
respect to the relative rankings of alternatives. Stakeholders’ preferences are
incorporated using a MCDA-based method: the Even Swaps Method [20], there-
fore avoiding the elicitation of numerical weights or goals. There is also support
for preference update by asking for explicit users’ feedback: i.e. the preference
updating is not autonomous. Qualitative parameters (i.e. no numerical) act as
input for the reasoning engine. To determine the best alternative for each pos-
sible goal satisfaction level, the algorithm decides the optimum alternative by
using a heuristic method. When the founded alternative does not satisfy all the
NFR an optimum alternative is not found and it is an exceptional pattern. In
such a case the domain experts may be consulted.

Liaskos et.al. (AP5) In [1], Liaskos et al. present a goal modelling exten-
sion to support preferences. The goals are classified as either preference goals
or mandatory. The preference goals are used for evaluating alternative ways to
achieve mandatory goals. The approach involves a framework for specifying pref-
erences requirements and priorities among them. These preferences are used by
a preference-based planner to search for alternatives which satisfy mandatory
and preferred requirements. The weights are assigned to preference goals using
a quantitative requirement prioritization scheme: Analytic Hierarchical Process
(AHP) [14]. The adaptation is performed formalizing a visual goal model and the
preferences specification into a planning problem specification. To have a clear
semantics for preferences and priorities the authors use a formal language for
specifying AI planning problems called PDDL 3.0 allowing the use of semantics
for preferences and their priorities. The reasoning engine was implemented using
Hierarchical Task Networks (HTNs): an automated planning, where dependen-
cies among different design alternatives are shown. The planner is implemented
using HTNPlan-P [21] and the input for this planner is an HTN domain specifica-
tion and a set of PDDL preferences and metrics. There are no specific references
regarded to preferences updating in runtime.

Peng et.al. (AP6) Peng et.al. [22] propose a self-tuning method that can
dynamically tune the preferences of different quality requirements to autonomously
make trade-off of decisions by a preference-based goal reasoning procedure. Goals
can be either hard or soft goals. The system quality attributes correspond to soft
goals. Each soft goal has a preference rank. The preference rank is defined by



a priority number indicating its importance with respect to other soft goals.
The decision process involves three main components: (i) a Proportional Inte-
gral Derivative (PID) Controller [23], (ii) a Preference-driven Goal Reasoner
(GR) and (iii) an Architecture Configurator (AC). In this approach, the quality
attribute preferences are updated autonomously by the PID controller, estab-
lishing a balance in runtime, between the earned business value and quality
measurement. The PID controller dynamically adjust the preference ranks of
related soft goals, to maximize the overall satisfaction base on runtime feedback
(earned business value and quality measurements) and using a preference tuning
algorithm. The algorithm returns the tuned preferences ranks (given between
1 and 10) of soft goals. The reasoning approach uses a Pareto Optimal algo-
rithm that yields a set of alternative configurations and the SAT solver obtain
the optimal solution. The GR takes as inputs the soft goals preference ranks
and the goal model, with hard and soft goals, the refinement and contribution
relationships, and its quantitatives expected satisfaction. The GR first encodes
the goal model elements into Conjunctive Normal Form proposition formulas to
feed a Satisfiability (SAT) solver. Then, the SAT solver is invoked to get a valid
configuration. The GR always finds the Pareto Optimal solutions.

Bencomo et.al. (AP7) In [5], Bencomo et.al. propose the Bayesian def-
inition of surprise as the basis for quantitative analysis to measure deviations
of self-adaptive systems from the specified expected behavior. The authors use
surprises to measure how observed data affects the assumptions of the world
during the execution of the SAS at runtime. In [5], a surprising event is defined
as one that causes a large divergence between the belief distributions prior to
and posterior to the occurrence of the event. In other words, a surprise can quan-
tify the unanticipation of new data observation given the current model of the
environment. When a surprise is perceived, the SAS may decide either to adapt
accordingly or to flag that an abnormal situation is happening. AP7 is based on
the mathematical model provided by Dynamic Decision Networks (DDNs) [24]
which is driven by levels of satisficement of NFRs (i.e. quality priorities). Deci-
sions in the DDN correspond with alternative design decisions dj that correspond
with different configurations a SAS can undertake. The random variables of the
DDN represent the levels of satisficement of quality properties given the cor-
responding configurations. The conditional probability P (NFRi|dj) represents
the probability of NFRi being satisficed given a decision dj . For each NFRi,
a function of the utility preference called w(NFRi ,dj) over every design alter-
native dj considered is identified. The function w(NFRi,dj) represent the utility
preferences. Crucially, the conditional probabilities will be updated by the DDN
by Bayesian updating. Probabilistic inference occurs whenever new evidence ar-
rives. The initial conditional probabilities are either estimated by experts or
collected from previously gathered statistics. It is important to highlight that
the DDN provides a quantitative technique to make informed decisions based
on the arrival of new evidence during runtime. The approach allows to uncover
conflicts between quality properties and support reasoning about these conflicts
and therefore the re-appraisal of their tradeoff due to runtime evidence. Utility



preferences could be updated at runtime based on the new information gathered
as shown in our own approach.

Sousa et.al. (AP8) In [25], Sousa et.al. propose a model for capturing
user preferences with respect to quality of service (QoS) at design time. User
preferences are expressed as independent utility functions for each aspect or
dimension of QoS and the model was applied to a case study about resource
adaptation for improving user satisfaction with respect to running software on
small mobile devices. Using the proposed approach, it is possible to model quality
of service tradeoffs based on utility theory. The utility functions map the possible
quality levels in a dimension of QoS to a normalized utility space U [0,1], where
the user is happy with utility values close to 1, and unhappy with utility values
close to zero. The approach define a software infrastructure that captures models
of QoS trade-offs, coordinates the resource usage across the applications and
enables the applications to dynamically adjust their adaptation policies based
on the QoS models. A Solver determines the tactic with the highest utility, given
the available resources, by exhaustive evaluation of all the tactics defined for the
application. The Solver is invoked by the application before carrying out each
unit of work.

Ramirez et.al. (AP9) Ramirez et.al. [26] present a goal-based requirements
model-driven approach for automatically deriving utility functions for RELAXed
goal models during the requirement engineering phase. The proposed approach
was applied to a case study based on the goal model of an intelligent vehicle
system (IVS) and uses the derived utility functions to monitor the IVS under
different environmental conditions at run time. The approach, called Athena,
uses as input a goal model and a mapping between environmental conditions
and the monitoring elements responsible for observing them. The approach pro-
duces as output a set of different kind of utility functions by instantiating utility
functions templates based on the goal’s type. For a RELAXed goal, Athena
generates a fuzzy logic-based utility function by mapping RELAX operators to
corresponding fuzzy logic-based mathematical functions.

Walsh et.al. (AP10) In [27] Walsh et.al. demonstrate how utility func-
tions can enable a collection of autonomic elements to continually optimize the
use of computational resources in a dynamic, heterogeneous environment. This is
achieved by providing a uniform means of communicating resource needs to a re-
source arbiter. The approach uses a user interface for modifying utility functions
at run-time, therefore there is no autonomic update of preferences at runtime.

Angelopoulos et.al. (SEAMS 2014) (AP11) Angelopoulos et.al. [28] use
concepts of goal-oriented requirements engineering, such as goals for modelling
stakeholder requirements, soft goals for modelling NFR, Awareness Require-
ments (AwReqs) and Evolutionary Requirements (EvoReqs). Analytic Hierarchy
Process (AHP) is used at design time to support the prioritization of soft goals
and AwReqs. The decision making framework used, Zanshin, support a feed-
back controller that monitors failures and determines the adaptation actions to
be carried out. The framework perform adaptations by using reconfigurations.
Reconfiguring consists on finding an alternative specification with new values for



system parameters in order to improve indicators of failure (i.e. AwReqs) and
take the system back to an acceptable state. The specific mechanism for reconfig-
uration is called Qualia+, which is an adaptation mechanism that defines a basic
algorithm composed of 8 procedures such as parameter selection and parameter
change. The basic algorithm uses information about AwReqs, parameters and
their interrelations in order to randomly select which parameter to tune from
the set of parameters that can positively affect a given indicator of a failing in
a SAS. The first results were positive in comparison with a previous version of
the mechanism of reconfiguration. Next steps will involve further evaluation to
ensure the efectiveness on several case studies. The approach does not provide
dynamic autonomic update of preferences.

4 Approaches analysis

The results of the analysis and comparison between approaches are shown in
Table 3. When the collected information for a possible answer does not fit with
any of the research questions, this has been left blank represented by a dash (-).
Because the reasoning process in SASs and the system goals are closely related,
it is relevant to classify the goal representation and reasoning techniques of the
approaches. Therefore, it has been defined a classification criteria about goals
and decision making: (CC1) Decision making techniques. (CC2) Goals and qual-
ity attributes representation. (CC3) Case study/application. As the specification
techniques for quality attribute preferences are the focus of this review, further
classification criteria are set with respect to preferences: (CC4) Techniques for
design time (CC5) Support for preference updating. (CC6) Techniques for pref-
erence updating. These criteria allow the identification of relevant techniques
for specifying and reassessing preferences in SAS to further determine those ap-
proaches used at design time and runtime. The analysis is explained by using
categories which include the classification criteria previously defined.

4.1 Terminology (CC2)

There is not common terminology to refer quality attributes of a system. Song
et. al. [15] call them weak constraints and Liaskos et. al. preference goals [1]. In
[22], the quality attributes correspond to soft goals and in [17] they are called
preferences, which refers to functional and NFR. However the most widespread
common denominator is to recognize them as requirements [5, 27, 17], specifically
NFR to refer quality attributes.

4.2 Techniques for Design Time (CC4)

The most widespread method for preference elicitation is done by asking the
stakeholders of a system. In [15, 5] preferences are elicited initially with informa-
tion from system stakeholders. Authors in [16, 19, 1] complement this approach
by using multi criteria decision analysis methods (MCDA). Elahi et. al. [19] are
incorporating Stakeholders preferences by using incorporated using a MCDA-
based method: the Even Swaps Method [20], therefore avoiding the elicitation
of numerical weights. The most common MCDA methods is AHP [14]. Garcia



Galan et. al. [17] defined the Systems initial preference by using initial configu-
rations defined by the stakeholders. While it is not common, some authors have
defined preferences in an autonomous way, for example, Ramirez et. al. [26] use
predefined models to derive utility functions.

4.3 Techniques for Preference Updating at runtime (CC5, CC6)
This is a field that need more exploration, several approaches [1, 16, 26] only work
with the initial preference at runtime: they do not support preference updating,
and some other support it but not in an autonomous way as they required a user
intervention: In [15], if users do not agree with the final solution, they can revise
the configuration values. The new users’ preferences elicited allow tuning the
weights of existing goals or the generation of new ones. [25] use a user interface
for manipulating thresholds on preferences at runtime. However, Peng et. al.
[22] show first results of autonomous preference updating by monitoring the
environment at runtime and using a preference tuning algorithm. Bencomo et.
al [5] identifiy at runtime the need of preference reassessment. In [27], Walsh et.
al. use machine learning techniques to update the system’s preferences.

4.4 Decision making techniques (CC1)
Preferences are used by the system in its decision making process. The most
common approaches for decision making are utility functions and Pareto Op-
timal. Ramirez et. al. [26] performs a goal model transformation into utility
functions for monitoring software requirements at runtime. In [22], the qual-
ity attribute preferences are updated autonomously establishing, at runtime, a
balance between the earned business value and quality measurement. The rea-
soning approach uses a Pareto Optimal algorithm that yields a set of alternative
configurations and the satisfiability solver (SAT) obtain the optimal solution.
Some approaches have scalability issues, that is, it is not yet possible to easily
apply them to real domain problems. Authors in [15] are still investigating how
to deal with scalabilities issues associated with the number of constraints. In
[17], the approach suffers from scalability problems with respect to the size of its
configuration space. Approaches like Sousa et. al. [25], use forecast and learning
elements for the decision making process

4.5 Application Domain (CC3)

The approaches have been applied to at least one software application related to
an application domain. In [1], the authors tested four applications, therefore this
is the approach with the most diverse application domains tested. A summary
of this criterion for all the approaches is shown in in Table 3.

5 Findings and concluding remarks
The results show that, even if scarce, there have been important research results
towards decision-making for SAS taking into account quality attributes (this is
a good aspect). However, dynamic update of utility preferences is still a chal-
lenge. This study also shows that preferences specification is still a task executed
primarily at design time. The latter are bad aspects and, they are bad and not



T
a
b
le

3
.

A
p
p
ro

a
ch

es
su

m
m

a
ry



an ugly as we have found that there are emerging results that proof that chal-
lenges are continuously met. To name some emerging results we have shown hat
different MCDA techniques stand out as common techniques used for reasoning
optimization. It is Pareto, in different variants, one of the most widely spread
used [16, 17, 22]. Some approaches use ad-hoc methods for collecting users’ pref-
erences, while others use techniques such as MCDA [16, 19, 1]. In [15, 19, 27] the
support for preferences update exists but requires user intervention. Some ap-
proaches offer potential to support autonomic preference updating. For example,
authors of [17] propose an approach for mining users’ behavior while authors of
[1] use an autonomic preference tuning algorithm. In [26], there is an autonomic
generation of utility functions. Authors in [27, 29] highlight the relevance of using
models that need to be learned and refined during the operation of the system.
Thus, coming back to our initial aim of identifying the existing studies that ex-
plicitly consider the need to reassess utility preferences at runtime, the current
results still sign there is an important research gap. We are currently working
towards this research issue[30]. As shown by experiments discussed in [5] and
our recent approach for quality attribute preferences reassessment presented in
[30, 4], utility preferences associated with quality attributes initially provided by
domain experts during the sensitivity analysis process at design time, may not
be ideal for given specific cases found at runtime. Badly chosen preferences can
either make the system miss adaptations or suggest unnecessary adaptations
that may degrade the behaviour of the running system. To our knowledge, cur-
rently there is no significant related work with respect to this specific research
issue. Specifically, we are working towards to answering the questions: how to
detect quality attribute utilities that are not suitable to the new contexts and
which can either trigger non-suitable adaptations or miss adaptation opportuni-
ties given changes related to dynamic contexts during execution and that were
not fully foreseen before runtime? how to optimize and get scalable reasoning
techniques including dynamic updating for quality attribute preferences? We are
working on a novel approach, called ARRoW, for the re-appraisal and further
updating of the weights associated with quality attributes during runtime and,
according to evidence gathered from the operational environmental. The result
is a better informed decision-making process based on evidence. Some analyzed
approaches [1], including our current research [5, 31], use Artificial Intelligence
and machine learning techniques to support the MAPE-K control loop in SAS.
Machine learning techniques offer a promising path to be able to explore the
operating environment to improve its understanding and get a better informed
decision-making [31]. One proposed way is to identify new mechanisms that
quantify the difference between the SAS expected behavior and possible devi-
ations due to changes in the environment. It is argued that this quantification
must be independent of the current quality attribute utilities assigned by ex-
perts. The detected deviations would be triggered in an independent way from
the preferences of stakeholders. An example is shown in [5], where it is proposed
the use of Bayesian surprises to support a review process of sensitivity analysis
to agree on consistent utility functions to new. Furthermore, the idea of surprise



does not have to be attached to Bayesian reasoning only [32]. These new envi-
sioned techniques have the potential of being used, in general, as ways to review
and re-asses the sensitivity analysis of the utilities initially assigned. An im-
portant consequence is the ability to uncover conflicts between different quality
attributes and support reasoning about these conflicts and therefore, allow the
re-appraisal of their tradeoff due to evidence found during runtime (supported
for example by machine learning) [5]. To achieve the above, it is argued that more
collaborations with different communities (AI, MCDA and Search Based Soft-
ware Engineering techniques, Genetic Programming, etc.) should be performed
[8, 33, 34]. The latter is part of the “ugly” aspect. A big question is how do we
put in contact all these communities to work together towards a common goal?
This is a big challenge!

References

1. S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Representing and
reasoning about preferences in requirements engineering,” Requir. Eng., 2011.

2. C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A survey on
engineering approaches for self-adaptive systems,” Pervasive and Mobile Comput-
ing, vol. 17, Part B, pp. 184 – 206, 2015.

3. N. Bencomo and A. Belaggoun, “Supporting decision-making for self-adaptive sys-
tems: From goal models to dynamic decision networks,” in REFSQ -, 2013.

4. L. H. G. Paucar and N. Bencomo, “Runtime Models Based on Dynamic Decision
Networks : Enhancing the Decision-making in the Domain of Ambient Assisted
Living Applications,” MRT - Models@run.time at MODELS 2016, 2016.

5. N. Bencomo and A. Belaggoun, “A world full of surprises: bayesian theory of
surprise to quantify degrees of uncertainty,” in ICSE, 2014, pp. 460–463.

6. M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research
challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, May 2009.

7. B. H. Cheng and et al., “Software engineering for self-adaptive systems.” Springer-
Verlag, 2009, ch. Software Engineering for Self-Adaptive Systems: A Research
Roadmap.

8. R. de Lemos, H. Giese, H. Müller, and M. Shaw, “Software Engineering for Self-
Adpaptive Systems: A second Research Roadmap,” in Software Engineering for
Self-Adaptive Systems, ser. Dagstuhl Seminar Proceedings, Germany, 2011.

9. M. Salama, R. Bahsoon, and N. Bencomo, “Managing trade-offs in self-adaptive
software architectures: A systematic mapping study,” in Managing trade-offs in
adaptable software architectures, I. Mistrk, N. Ali, J. Grundy, R. Kazman, and
B. Schmerl, Eds. Elsevier, 2016.

10. B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds., Software
Engineering for Self-Adaptive Systems, ser. LNCS, vol. 5525. Springer, 2009.

11. A. Ishizaka and P. Nemery, “Multi-criteria decision analysis : Methods and soft-
ware.” Somerset, NJ, USA: John Wiley & Sons, 2013.

12. J. Figueira, S. Greco, and M. Ehrogott, Multiple Criteria Decision Analysis: State
of the Art Surveys. Springer, 2005.

13. M. P. D. S. J. . Y. S. Harman, M., “Search based software engineering: Techniques,
taxonomy, tutorial.” Search, 2012, 159., 2011.

14. T. Saaty, “Decision making with the analytic hierarchy process,” Inter. Journal of
Services Sciences,, 2008.



15. H. Song, S. Barrett, A. Clarke, and S. Clarke, “Self-adaptation with end-user pref-
erence: Using run-time models and constraint solving,” in the Intrl. Conference
MODELS, USA, 09/2013 2013.

16. E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information value in
software requirements and architecture,” in Proceedings of ICSE, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 883–894.

17. J. Garćıa-Galán, L. Pasquale, P. Trinidad, and A. Ruiz-Cortés, “User-centric adap-
tation of multi-tenant services: Preference-based analysis for service reconfigura-
tion,” in SEAMS, ser. SEAMS 2014. USA: ACM, 2014, pp. 65–74.

18. J. F. Nash, “The bargaining problem,” Econometrica: Journal of the Econometric
Society, 1950.

19. G. Elahi and E. Yu, “Requirements trade-offs analysis in the absence of quantita-
tive measures: A heuristic method,” in Proceedings of the 2011 ACM Symposium
on Applied Computing, ser. SAC ’11. New York, NY, USA: ACM, 2011.

20. K. R. L. R. H. Hammond, John S., “Even swaps: A rational method for making
trade-offs,” Harvard Business Review, MarchApril, 137150, 1998.

21. B. J. a. . M. S. a. Sohrabi, S., “Htn planning with preferences,” IJCAI International
Joint Conference on Artificial Intelligence, 17901797., 2009.

22. X. Peng, B. Chen, Y. Yu, and W. Zhao, “Self-tuning of software systems through
goal-based feedback loop control,” in Requirements Engineering Conference (RE),
Sept 2010, pp. 104–107.

23. J. D. P. G. F. Franklin and A. E. Naeini, “Feedback control of. dynamic systems,
5th ed.” Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

24. N. Bencomo, A. Belaggoun, and V. Issarny, “Dynamic decision networks to support
decision-making for self-adaptive systems,” in (SEAMS), 2013.

25. J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satyanarayanan, “User
guidance of resource-adaptive systems,” in In Proc. of International Conference
on Software and Data Technologies, 2008.

26. A. J. Ramirez and B. H. C. Cheng, “Automatic derivation of utility functions for
monitoring software requirements,” Lecture Notes in Computer Science, vol. 6981
LNCS, pp. 501–516, 2011.

27. W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions in auto-
nomic systems,” in Autonomic Computing, 2004.

28. K. Angelopoulos, V. E. S. Souza, and J. Mylopoulos, “Dealing with multiple failures
in zanshin: A control-theoretic approach,” in Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS 2014. New York, NY, USA: ACM, 2014, pp. 165–174.

29. N. Bencomo, A. Bennaceur, P. Grace, G. Blair, and V. Issarny, “The role of mod-
els@run.time in supporting on-the-fly interoperability,” Computing, vol. 95, no. 3,
pp. 167–190, 2012.

30. L. H. G. Paucar and N. Bencomo, “The Reassessment of Preferences of
Non-Functional Requirements for Better Informed Decision-making in Self-
Adaptation,” AIRE ’16 at RE’ 2016., 2016.

31. S. Hassan, N. Bencomo, and R. Bahsoon, “Minimize nasty surprises with better
informed decision-making in self-adaptive systems,” in SEAMS, 2015.

32. N. Bencomo, “Quantun: Quantification of uncertainty for the reassessment of re-
quirements,” in RE, 2015, pp. 236–240.

33. M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Empirical software engi-
neering and verification,” B. Meyer and M. Nordio, Eds. Springer-Verlag, 2012.

34. C. M. B. B. H. Cheng, “An approach to mitigating unwanted interactions between
search operators in multi-objective optimization,” GECCO ’15, 2015.


