
A Method to Evaluating Consistency,
Completeness and Correctness in Evolution

Requirements

Edneuci Denise Audacio1, Katia Romero Felizardo1, Luiz Gustavo Ferreira
Aguiar3, Rebeca Teodoro da Silva3, and Elias Canhadas Genvigir2

1 Federal University of Technology – Parana - Campus Cornélio Procópio - Brazil
2 Federal University of Technology – Parana - Campus Londrina - Brazil

{katiascannavino,elias}@utfpr.edu.br
3 Tribunal de Justiça do Estado do Paraná - TJPR
{luiz.aguiar, rebeca.teodoro}@tjpr.jus.br

Abstract. Changes in the domain in which a specific software was devel-
oped can generate a demand for new requirements known as requirements
evolution. However, it is expected that these will be specified in a con-
sistent, complete and correct manner. This work defines a method that
makes it possible to assess the consistency, completeness and correctness
of requirements defined during the software evolution. The developed
method is composed of two phases: (1) analysis of units of information,
i.e., the analysis of each requirement and its domain; and (2) analysis
of these items through indicators for consistency and completeness. For
verification purposes, the method was applied through a case study in
a software company and, the results presents positive indicators for the
improvement of quality in requirements evolution. The project, object of
this study, originally had a high rework load, that is, correction in the
codification of the requirements of the case study. Through the applica-
tion of the method, it was possible to identify that most of the evaluated
requirements, which presented inconsistency or completeness problem,
were associated with rework efforts.

Keywords: Requirements Engineering · Requirements Evolution · Re-
quirements Domain · Requirements Assessment.

1 Introduction

It is known that the basis for a good software development is related to the
quality of the requirements attributes [4] [16]. Identifying the right requirements
is an arduous and iterative task, where requirements engineers must respond
to the dual challenge of discovering and formalizing the wants and needs that
customers are usually able to define only in a confused and incomplete way [10].

Initially, the requirements are raised through dialogues with customers, be-
ing, in most cases, represented in natural language, in which the customer ex-
poses his/her anxieties, needs and his/her perception on the problem, while the



2 Audacio E.D. et al.

requirements engineer employs techniques with the objective to identify the re-
quirements and aspects related to the domain [8].

In the same sense, Kamalrudin [12] and Ferrari [8] suggests that the require-
ments written in natural language are by definition ambiguous, and may induce
inaccuracy, inconsistency and incompleteness. However, it is expected that the
requirements of a project are clearly defined in a consistent, complete and correct
way, in order to enable the comprehension and understanding of the requested
needs, as well as the validation of these by the client with the certainty that they
were correctly attended to.

The quality elements of requirements described in natural language can be
evaluated through consistency, completeness and correctness considering the in-
formation domain of these requirements [22].

The objective of this study is to define a method that allows to assess the
consistency, completeness and correctness of requirements defined in Service Or-
ders (S.O.), which were previously raised in a software development company.
The presented method is composed of two phases based on the analysis of the
Units of Information (U.I.), that constitute each requirement, and its informa-
tion domain. After the definition, the method was applied to real requirements
and its results show positive indications for evaluating quality parameters in
requirements.

Other studies have been carried out to assess the consistency, completeness
and correctness of the software requirements. Saito et al. [17] propose a basic
methodology based on a checklist and reports to verify and validate the con-
sistency and correctness of the requirements. In turn, the Case-BasedReasoning
(CBR) technique developed by Jani et al. [11] aims to validate whether the stan-
dards and requirements procedures are being followed within the requirements
specification phase, but the technique only observes whether the verified require-
ments reached or not the quality attributes, do not cause failures, defects or even
thelack of requirements. On the other hand, Saito et al. [17] propose that after
verification, a note is made on items that need improvement.

Muriana et al. [13] present the QualiCes method (Quality via Consistency
in Software Specifications) which aims to verify the consistency between the
documents. However, the method is limited to analyzing the use cases that have
prototypes, it is a restriction, since it is not always possible to produce prototypes
from the use cases.

Genova et al. [10] emphasize the consistency and completeness of the re-
quirement quality attributes by analyzing the textual quality of requirements,
using formal requirements documents as input data. In this same perspective,
Soares and Moura [19] present the use of a writing methodology for the require-
ments specification, using the ERS-EDITOR software, which is based on the
construction of an expanded lexicon of language.

To reduce the inconsistency generated by the use of natural language, Fockel
and Holtmann [9] use a requirements documentation approach that applies to the
so-called requirements patternsas Controlled Natural Language (CNL). CNL re-



A Method to Evaluating Requirements 3

stricts the expressiveness of natural language (NL) to allow automatic processing
of requirements, while still keeping them comprehensible to all interested parties.

In order to restrict the inconsistency and incorrectness of the requirements
extracted from the use of natural language, Palomares et al. [14] present the
use of a tool called PABRE, which is based on requirements elicitation stan-
dards. The tool PABRE consists of accumulating experience of requirements
with similar purposes and, from them, deducing a refined model of well-formed
requirements and with spaces reserved for extension points.In addition, each
model is enriched with detailed metadata, which is structured according to an
organization based on form templates.

It is worth mentioning that the method proposed in this article proposes an
evaluation of the consistency, completeness and correctness of the requirements
registered in the requirements specification artifacts, having as a principle, the
fragmentation of requirements into units and their analysis together with their
information domain.

2 Concepts

The consistency of a requirement refers to situations in which a specification
does not contain internal contradictions, being a property of a certain knowledge
that implies in mutually exclusive declarations and without confrontations of the
terminology [18] [5] [21].

In many cases, inconsistency between requirements can be related to incorrect
actions, conflict between requirements, weak dependencies and even the lack of
ability of users to describe the real need, as well as the lack of understanding of
analysts [12] [15]. In other words, depending on the specified rule or relationship
being considered, any defect in a specification, such as a lack of clarity and
understanding of the writing, may be termed inconsistency. Therefore, these
complications often represent incomplete requirements [12].

Among the reasons for the occurrence of inconsistencies, one can also in-
cludes different: linguistic uses, development strategies and points of view of the
participants, and the degree of overlap that exists in the areas of concern of
different stakeholders, which may also lead to incomplete requirements [21].

The consistency of a requirement is directly related to its completeness, since
for a requirement to be complete, it must contain at least three characteristics,
namely: 1) No information should be left as undeclared, undetermined or unre-
lated to the domain; 2) The information must not contain objects, entities or
indefinite terms, that is, each operation or condition must be constructed using
syntax and semantic rules and 3) No information must be absent, that is, all
parts or units must be present and each part or unit must be fully developed [3]
[6] [18].

If a requirement is incomplete by any other definition, developers are likely to
make assumptions about the intended behavior, and those assumptions can lead
to misunderstandings and, therefore, a product that does not meet the requested
need [6]



4 Audacio E.D. et al.

There is a need for the correct description, without bias, of requirements
because attempts to increase the completeness of a requirements specification
can impact the decrease in consistency and, therefore, affect the correction of
the final product. On the other hand, increasing the consistency of the require-
ments tends to reduce the completeness and consequently decrease the correction
[20]. Regarding correctness it is considered that a requirement is correct if it is
declared as consistent and complete in relation to the real needs of users [18].

Incorrect requirements can occur when the requirements do not accurately
reflect the facts or erroneous predictions about future states. Zowghi and Gervasi
[22] refer to the correction of requirements as being a combination of consistency
and completeness, being also often defined by the customer as the satisfaction
of certain commercial objectives.

It is observed that considerations to be made about consistency and com-
pleteness go through the analysis of the domain in which the requirements are
found. In this way, a considerable part of the requirements engineering efforts
are in analyzing and representing the existing information in the knowledge do-
main. In other words, a good part of the requirements of a software constitute
a subset of information from it is domain and the analysis requirements quality
elements is intrinsically linked to the understanding of the domain.

One of the techniques used to better understand the domain is called domain
modeling, which can provide an increase in communication between customers
and requirements engineers and, consequently, facilitate the understanding of
the real need of the stakeholder [21]. In many cases, modeling the application
domain is adopted to develop a conceptual model in order to direct analysts
directly to the customer’s real needs.

Another important role of domain modeling is associated with changes in
requirements. Some authors suggest that in iterative development cycles, with
each increment in requirements, these cannot contradict the domain so that
consistency and completeness are maintained [2] [15] [18] [22] [21]. In this context,
requirements are rarely defined at once, and in many cases, the requirements are
achieved through the progressive evolution of a previous version of the same
requirements or even the evolution of the software, in order to reflect a greater
understanding of customer needs [1] [5] [7] [21]. In the same way, the domain
evolves, since there will be a deepening of the client’s real needs.

Another aspect is that after the completion of the software development,
changes in the domain may occur, generating the need for evolution in the soft-
ware. Such needs are presented as requirements evolution. The role of the soft-
ware’s evolution requirements is to determine which relationships they wish to
maintain between the elements of a certain domain [12]. In an already completed
software, the collection of the requirements evolution does not always occur as
in the elicitation of a new product. Customer service channels such as chats,
call center services, e-mails and other distance services are often used. One way
of recording these evolution requirements, received by the service channels, is
through Service Orders (O.S.) in which the requests from stakeholders are the
inputs to the beginning of the process of specifying these requirements.



A Method to Evaluating Requirements 5

An S.O. may have the following information: 1) Customer request; 2) Tech-
nical identification and analysis for developers; 3) Identification of the module
that needs correction or implementation; 4) Detailing of the activities involved;
5) Control of identification of those involved in the analysis process, development
and others involved in the request; 6) Indication of estimated and realized hours
for the development of the request; 7) Project and version information that will
be contemplated the request of the correction or implementation; 8) Images or
prototyping to assist in the process of understanding the request for correction
or implementation and finally; 9) The instruction for the user regarding the
implementation or correction carried out.

3 Method

As can be observed in Figure 1, to assess completeness, consistency and correct-
ness in the requirements evolution, presented in S.Os, a method was developed
based on two phases: I) Analysis of the sentences described in the Service Order
and II) Assessment of consistency, completeness and correctness in the sentences.

Fig. 1: Conceptual phases of the method and it’s main activities

3.1 First Phase of the Method - Analysis of the Sentences

In an S.O. the request is written in natural language, with the transcription
occurring fully as described by the stakeholder. As shown in Figure 2, in the
first phase, the description of the request is analyzed, in order to understand and
interpret the stakeholder’s need. In the sequence, the request is broken down into
requirements. After this step, a description of the request domain is elaborated
to allow the analysis of the Units of Information that are extracted from the
requirements. A requirement may consist of one or more units of information
and an S.O. may have one or more customer requests. Each request can generate
one or more units of information that can compose one or more requirements as
well as additional information to the domain.

The term Units of Information (U.I.) refers to two types of information that
the customer may wish to articulate throughout the dialogues: 1) the software
requirements and 2) aspects related to the softwaredomain. Therefore, the artic-
ulation of an units of information is the fragment of speech in which the customer
expresses a software requirement or additional information to the domain [1][8].



6 Audacio E.D. et al.

Fig. 2: Relationship between S.O., Units of Information and requirements

The identification of an Units of Information is carried out in three phases of
a mental structure: interpretation, acceptance and accessibility[1]. When com-
pleting the model reading, it should be noted whether the stakeholder transmits
an unit of information, which represents any information related to the soft-
ware requirements or domain knowledge. This Units of Information must be
interpretable, acceptable and accessible by the requirements analyst, so that the
communication takes place efficiently [1].

In the interpretation phase, the possible meanings for each Units of Informa-
tion received are assigned by the requirements analyst or engineer. In the accep-
tance phase, the analyst selects the interpretations received in his/her mental
structure, whether or not they can be accepted. Finally, the accessibility process
is analyzed and verified, where the results produced by the requirements analyst
are consistent with the information requested by the user [1] [8]. These phases
can be seen in Figure 3, in which the Process Model for accessing an Units of
Information is presented.

Fig. 3: Analisys of Units of Information



A Method to Evaluating Requirements 7

3.2 Second Phase of the Method - Assessment of Consistency,
Completeness and Correctness

The second phase of the method consists of the assessment of the consistency,
completeness and correctness of the requirements occurring by the evaluation
of these items in the units of information that compose the requirements. To
this end, a set of questions was elaborated, three of consistency and three of
completeness. The questionnaire was based on the literature [1] [3] [5] [6] [8] [18]
[21] [22].

The questions related consistency analysis are: 1) The units of information
must not be contradictory with each other or with the domain; 2) Declarations
must be mutually exclusive; 3) There should be no confrontation of terminology
or terminology that causes doubts or misinterpretation [1] [5] [6] [18] [21].

The questions for completeness analysis are: 1) All information regarding
the requirement must be declared in the domain; 2) The information must not
contain objects, entities or indefinite terms; 3) No information should be missing
[3] [6]. If a unit of information and/or need is consistent and complete, it will be
correctly declared [6] [18] [21] [22].

In turn, the assessment of the requirement correctness occurs through con-
sistency and completeness indicators. A requirement is correct if it is stated as
consistent and complete, that is, the combination of both. In this way, initially,
consistency and completeness are evaluated, and the requirement will be cor-
rect if these two indicators are positive, otherwise the requirement is considered
incorrect.

Each unit of information is evaluated according to the criteria established
by the questions. As an example for the application of the method, a S.O. was
considered with a request made by a customer, separated in requirements and by
its units of information and the description of the request domain (see Table 1).



8 Audacio E.D. et al.

Table 1: Example of the first phase of the method
Customer Request

When registering tire brands, the software is allowing the inclusion of special charac-
ters and should allow changes to be made to the registration of a tire brand if there
are no tires with a history of movement. The software displays an “ERROR” message
when deleting a tire.

Requirements Detailing Units of
Informa-
tion

RE1 On the Tire Brand Registration screen, the brand field
accepts special characters

U.I.1

RE2 The system should not allow a tire record to be changed if
it has not already been associated with any other record
in the system.

U.I.2

RE3 When trying to delete a brand, which has already been
used, the system should display a message whose title is
“ERROR”.

U.I.3

Domain details – Tire Registration

Tire information is used by the purchasing software and carriers’ maintenance. There-
fore, it is necessary to perform the correct registration of the tires and observe various
information. Every tire has a unique identification number and cannot be duplicated.
The tires have a brand (manufacturer), model and dimension, and each brand can
have several models. The description of the brand name can be simple or composed,
and must not contain special characters such as: @, #, $, %, &, *, (, or space. How-
ever, the description of the tire model name can be simple, composed and can have
letters, numbers and symbols: + and /. A tire has a dimension that is the size of the
tire characterized by width, height, type of construction and rim. composed of letters,
numbers and the symbols of / and points. When registering a tire, it is linked with its
respective brand, model and dimension. If a tire is linked to a vehicle, its registration
must not allow changes and exclusion and if the user tries to make changes or exclude
the tire, the system should provide an “ALERT” message that the tire is already in a
vehicle. The software should allow alteration and exclusion of the brand, model and
dimension of the tire as long as there is no tire movement in vehicles and must not
accept alteration of the tire number, even if there is no movement, in case of error
you must delete the registration and redo it.

It is observed that, for this example, each Requirement has one Unit Information. Thus, RE1

is an abbreviation to Requirement 1 which, in turn, has a unique Unit Information - U.I.1.

However, a requirement can be composed of more than one unit information.



A Method to Evaluating Requirements 9

After the domain description, the Units of Information are analyzed for con-
sistency and completeness issues. It was observed that, for the example presented
in Table 2, each requirement contains a single U.I.

Table 2: Analysis of the Units of Information contained in the requirements of Table
1

Units
Consistency
Questions

Consistency
Result

Completeness
Questions

Completeness
Result

Correctness
Result

Q1 Q2 Q3 U.I. Q1 Q2 Q3 U.I.

U.I.1 7 D D Inconsistent D D 7 Incomplete Incorrect

U.I.2 D D D Consistent D D D Complete Correct

U.I.3 7 D 7 Inconsistente D 7 7 Incomplete Incorrect

In this case, each U.I. make up an only requirement. Regarding consistency,
the first question presents “the requirements cannot be contradicting each other
nor with the domain”. However, the units of informationU.I.1 and U.I.3 showed
inconsistency with the domain. Concerning U.I.1 in the description of the do-
main, it was stated that in the registrations of brand and model of tires they
cannot contain special characters, and for U.I.3 there is a mention in the domain
for an alert message in case of attempts of alteration or exclusion, which makes
the unity to be contradictory with the domain. Regarding the second question in
which “the declarations must be exclusive”, the three units of information were
declared to be consistent because there were no undefined declarations, even
though U.I.1 and U.I.3 were contradictory to the domain. And finally, regard-
ing question number three, which stated that “there should be no confrontation
of terminology or terminology that causes doubts or misinterpretation” U.I.3
caused doubt or misinterpretation and the others were considered consistent.

In the application of the questions regarding completeness, the first ques-
tion recommended that “all information referring to the requirement must be
declared in the domain”, i.e., all units of information were classified as complete
because the domain presents all the information described in the requirements.
In question number two it was affirmed that ”the requirement cannot contain
indefinite terms or objects”. In what concerns it, U.I.3 presented the term “ER-
ROR” which was not defined, while the other units were classified as complete
because they did not have indefinite terms. Moreover, question three showed
that “no information should be missing”. It was observed that U.I.1 had missing
information, since the declaration of what a special character is, is incomplete,
both in the requirement and in the domain, and U.I.3 did not describe the term
“ERROR” and it is also not presented in the domain.

Only requirement two was considered correct while requirements one and
three are considered incorrect because their units of information presented, in
some of the evaluated issues, inconsistency or lack of completeness.



10 Audacio E.D. et al.

4 Applying the Method

In order to evaluate the method application, the analysis was carried out in real
cases in a company. The company, object of this study, develops software for the
transport and logistics area and has 13 employees, including programmers, ana-
lysts and managers, four developers, a project manager, two quality analysts, a
deployment analyst, a support manager and four technicians in the support de-
partment. It was observed that the company had a constant need for corrections
and coding rework in requests for new implementations submitted by customers.
Thefore, the objective was to understand the quality of the generated S.O. to
identify whether the coding rework could originate from the quality of the S.O.
descriptions. As an implementation process, new requests are collected by chat
or telephone and described in S.Os. A new integration or software module is
initiated after collecting enough requests to generate a development interaction
lasting a maximum of 60 days.

This study selected, in a period of 60 days, 85 S.Os., related to a project of
modifications, corrections and new demands, in a system in the area of logistics,
which generated a total of 276 hours of coding. As summarized in Table 3 and
Figure 4, after the implementation and acceptance tests, with the users, it was
identified that 52 S.Os. (61.2%) were associated with some type of correction
and only 33 S.Os. (38.8%) had no association with correction. The corrections
generated, due to failure to meet customer expectations or implementation er-
rors, generated an additional of 122 hours of coding work totaling 398 hours on
the project, i.e., an increase of 44% hours of rework over time initial coding of
the Project.

Table 3: Quantitative of the S.Os. considered for testing the method
Service Order S.O. Quan-

tity
S.O. (%) Coding hours Hours(%)

Initial total 85 100% 276 100%

Linked to rework 52 61.2% 186 67%

Not reworked 33 38,8% 90 33%

Corrections 0 10% 122 44%



A Method to Evaluating Requirements 11

(a) quantitative of S.O linked or not to rework (b) Result of Consistency issues

Fig. 4: Individual result of the evaluation questions of the Units of Information
in the second phase of the method.

The 85 S.Os. generated 99 requirements that were analyzed as U.I. during the
first phase of the method. The goal was to indentify and assess whether the units
of information are interpretable, acceptable and accessible by the requirements
analyst, obtaining 151 U.I. For each S.O., the domain to be used to analyze the
questions of the second phase of the method was described.

The second phase consisted of applying the questionnaire, with questions of
completeness and consistency, for each of the U.I. As an overall result of this
analysis, it was observed that 89 units were consistent, 118 were incomplete
which, consequently, led to non-correctness. Thus, 118 units were incorrect and
only 33 were correct, as can be seen in Figure 5.

Fig. 5: Analysis of the first and second stages of the 151 Units of Information

When applying the questionnaire to the units of information, it was identi-
fied that some requirements contained units of consistent information, however
in most cases they were incomplete, which led to inaccuracy. These data can be
observed when considering the individual analysis of the questions of correct-
ness and completeness. As illustrated in Figure 6(a), the analysis of the three



12 Audacio E.D. et al.

questions about consistency, the first question (The Units of Information or re-
quirements must not be contradictory with each other nor with the domain)
presented as a result that 103 Units of Information presented themselves with-
out problems of contradiction to the domain while 48 had some kind of problem.
The second question (Statements must be mutually exclusive) pointed out that
121 Units of Information were mutually exclusive, while 30 did not have this
characteristic and, in turn, the third question (There should be no confrontation
of terminology or terminology that causes doubts or misinterpretation) showed
that 85 Units of Information did not have problems with doubts or misinterpre-
tation related to terminology while 66 units had this type of problem.

Figure 6(b) shows that considering the first question related to completeness
(All information referring to the requirement must be declared in the domain)
obtained 89 units of information had their information declared in the domain
while 62 did not. In the second question (The information should not contain
objects, entities or indefinite terms), it was pointed out that 75 Units of Informa-
tion had their information defined in the domain, while 76 presented some type
of indefinite terms. Finally, the third question on completeness (No information
should be missing) indicated that 52 Units of Information did not present an
absence of information and 99 presented some type of lack of information.

(a) Result of Consistency issues (b) Result of Completeness issues

Fig. 6: Individual result of the evaluation questions of the Units of Information
in the second phase of the method

5 Conclusion

When evaluating the 99 requirements, present in the 85 S.Os., it was observed
that 36 were correct and of these, only 2 had some rework associated with them,
i.e., 34 correct requirements have no rework. It can be observed that the method
pointed out that 63 requirements presented some type of problem indicated by
the the units of information analysis, indicating flaws of inconsistency or com-
pleteness leading to incorrectness. Thus, the 122 hours of rework were associated



A Method to Evaluating Requirements 13

with 63 requirements with some type of problem and only 2 requirements con-
sidered correct.

The application of the method proved to be feasible to assess the defined
requirements. The application of the method makes it possible to assess the
existence of problems during the registration and analysis of requirements, i.e,.
problems associated with the process of requirements evolution. The information
collected during the method applying can be useful for teams monitoring the
process improvement, offering a valuable indicator of the before and the after of
this practice.

It was observed that, unlike the development of a new software, in which the
requirements activities present a greater demand of effort and concentration of
the requirements engineers in the initial activities of the software development,
the requirements evolution presents new demands in sparse periods. The method
recommends, in its first phase, the description of the domain section, in which
the requirement is inserted. This description can be positive for an analysis
and a description of the requirements in the maintenance phases. In conclusion,
the first phase of the method can also be used to conduct a better analysis of
requirements.

References

1. Aguiar, L.G.F., da Silva, R.T., Genvigir, E.C., Fabri, J.A., L’Erário, A.: Um modelo
para tratamento de ambiguidades em requisitos de evolução de sistemas juŕıdicos
baseado em mapeamento conceitual. In: CIbSE. pp. 380–393 (2016)

2. Avdeenko, T., Pustovalova, N.: The ontology-based approach to support the
completeness and consistency of the requirements specification. In: International
Siberian Conference on Control and Communications (SIBCON). pp. 1–4. IEEE
(2015)

3. Boehm, B.W.: Verifying and validating software requirements and design specifi-
cations. IEEE Software 1(1), 75 (1984)

4. Chen, X., Zhang, W., Liang, P., He, K.: A replicated experiment on architecture
pattern recommendation based on quality requirements. In: 5th International Con-
ference on Software Engineering and Service Science (ICSESS). pp. 32–36. IEEE
(2014)

5. Cordes, D., Carver, D.: Evaluation method for user requirements documents. In-
formation and Software Technology 31(4), 181–188 (1989)

6. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., et al.: Identifying and measuring qual-
ity in a software requirements specification. In: 1st International Software Metrics
Symposium. pp. 141–152. IEEE (1993)

7. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity as a resource to disclose tacit knowl-
edge. In: 23rd International Requirements Engineering Conference (RE). pp. 26–35.
IEEE (2015)

8. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity cues in requirements elicitation
interviews. In: 24th International Requirements Engineering Conference (RE). pp.
56–65. IEEE (2016)



14 Audacio E.D. et al.

9. Fockel, MarkusandHoltmann, J.: Reqpat: Efficientdocumentationof high-
qualityrequirementsusingcontrolled natural language. In: IEEE 23rd Interna-
tionalRequirementsEngineeringConference (RE). pp. 280–281. IEEE (2015)

10. Génova, G., Fuentes, J.M., Llorens, J., Hurtado, O., Moreno, V.: A framework to
measure and improve the quality of textual requirements. Requirements engineer-
ing 18(1), 25–41 (2013)

11. Jani, H.M.: Applying case-based reasoning to software requirements specifications
quality analysis system. In: The 2nd International Conference on Software Engi-
neering and Data Mining. pp. 140–144. IEEE (2010)

12. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using es-
sential use case interaction patterns. In: 33rd International Conference on Software
Engineering (ICSE). pp. 531–540. IEEE (2011)

13. Muriana, L.M., Maciel, C., Mendes, F.F.: Checkingconsistencybetweendocu-
mentsofrequirementsengineeringphase. In: XXXVIII Conferencia Latinoameri-
canaEnInformatica (CLEI). pp. 1–10. IEEE (2012)

14. Palomares, C., Franch, X., Quer, C.: Requirements reuse and patterns: a survey.
In: International working conference on requirements engineering: foundation for
software quality. pp. 301–308. Springer (2014)

15. Pekar, V., Felderer, M., Breu, R.: Improvement methods for software requirement
specifications: a mapping study. In: 9th International Conference on the Quality
of Information and Communications Technology (QUATIC). pp. 242–245. IEEE
(2014)

16. Phillips, L.B., Aurum, A., Svensson, R.B.: Managing software quality requirements.
In: 38th Euromicro Conference on Software Engineering and Advanced Applica-
tions (Euromicro DSD/SEAA). pp. 349–356. IEEE (2012)

17. Saito, S., Takeuchi, M., Hiraoka, M., Kitani, T., Aoyama, M.: Requirements clinic:
Third party inspection methodology and practice for improving the quality of
software requirements specifications. In: 21st IEEE International Requirements
Engineering Conference (RE). pp. 290–295. IEEE (2013)

18. Sarmiento, E., Leite, J.C., Almentero, E., Alzamora, G.S.: Test scenario generation
from natural language requirements descriptions based on petri-nets. Electronic
Notes in Theoretical Computer Science 329, 123–148 (2016)

19. Soares, H.A., Moura, R.S.: A methodology to guide writing software requirements
specification document. In: Latin American Computing Conference (CLEI). pp.
1–11. IEEE (2015)

20. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness,
and correctness in requirements evolution. Information and Software technology
45(14), 993–1009 (2003)

21. Zowghi, D., Gervasi, V.: The three cs of requirements: Consistency, completeness,
and correctness. Proceedings of 8th International Workshop on Requirements En-
gineering: Foundation for Software Quality (REFSQ) (04 2003)

22. Zowghi, D., Nurmuliani, N.: A study of the impact of requirements volatility on
software project performance. In: Ninth Asia-Pacific Software Engineering Confer-
ence, 2002. pp. 3–11. IEEE (2002)


