
Specification Cases: a lightweight approach based on

Natural Language

Leandro Antonelli
1
, Julio Leite

2
, Alejandro Oliveros

3
, Gustavo Rossi

1

1Lifia, Fac. de Informática, UNLP, La Plata, Bs As, Argentina
2Dep. Informática, PUC-Rio, Gávea, RJ, Brasil

3INTEC-UADE, Bs As, Argentina

{lanto,gustavo}@lifia.info.unlp.edu.ar

julio@inf.puc-rio.br

oliveros@gmail.com

Abstract. Use Cases are one of the most used artifacts in software requirements

specifications. Although there are a lot of templates that suggests how to de-

scribe Use Cases, as well as many quality inspection techniques, there are no

many techniques to deal with the complexity and the effort to produce good

quality Use Cases. On top of that, Use Cases are biased towards user interac-

tion, leaving out important domain information. Thus, it is necessary to provide

techniques to incrementally describe specifications that goes beyond user inter-

action but which can be derived from simpler artifacts in order to make the pro-

cess organized and effective. This paper proposes an approach to begin with

very simple sentences (kernel sentences), following with the LEL glossary and

Scenarios, in order to describe Specification Cases. The approach relies on al-

ready defined kernel sentences and suggests three procedures to reorganize the

knowledge captured in kernel sentences to describe the LEL, then Scenarios

and finally Use Cases. This paper also reports a preliminary evaluation that

supports the applicability and usability of the approach.

Keywords: Use Cases, LEL, Scenarios, Kernel Sentences, Requirements.

1 Introduction

Two types of business domains are predominant: (i) very complex where an extensive

documentation is necessary, and (ii) simple and well known where some light descrip-

tion is enough. Financial and legal domains are very close to the first one, while mar-

ket places websites are example of the second one [13] [14]. Use cases are one of the

most used artifacts to describe requirements in software development of the first type,

while User Stories are mostly used in in developments of the second type.

Use Cases consolidates a lot of knowledge of the domain and the software appli-

cation that is spread among many people. Some key characteristics of Use Case de-

scription are: (i) they should state clearly the limit between the system and the real

world, (ii) they should describe the conversation, that is, the interaction between the

actor (outside the boundaries of the software system) and the system, without provid-

ing any description of the User Interface of the software system, and (iii) they de-

scribes many scenarios (happy path, alternative, exceptional) in only Use case [13].

The techniques used to describe Use Cases are mainly workshop [26] [2] [33] where a

big number of stakeholders provide their knowledge and a software professional

should understand, evaluate and organize the knowledge in Use Cases. Thus, the pro-

fessional should cope with a big gap between the stakeholders and the Use Cases. It is

necessary to provide some technique to deal with the amount of information in an

incremental way, to produce preliminary artifacts until Uses Cases are obtained.

Notwithstanding, the large adoption of Use Cases by industry, this representa-

tion lacks a series of important aspects with respect to requirements, among them: the

focus on functional requirements disregarding non-functional requirements, focus on

the interaction of the future system, without considering the large environment, and

failing to consider that the boundary among system and the real world may be blurred,

since requirements are evolving artifacts.

Our paper proposes a strategy trying to ameliorate the problems listed above.

We are proposing Specification Cases, based on three concepts: kernel sentences,

LEL (Language Extended Lexicon), and Scenarios.

The concept of the kernel sentence was introduced in 1957 by linguist Z.S. Har-

ris [19] and featured in the early work of linguist Noam Chomsky [12]. Kernel sen-

tences are also known as basic sentences, declarative construction, in active voice,

always affirmative with only one verb. Boyd [9] suggests the use of Kernel Sentences

to describe models in Software development. LEL is glossary [27] that has the aim of

understanding the language of an application domain without worrying about the

application software. LEL categorize terms in four categories (subjects, objects, verbs

and states) and uses two attributes (notion and behavioral responses) to describe the

terms. Scenarios are description of behavior regarding certain initial context or situa-

tion. There are many definitions of Scenarios. This paper will use a Scenario based on

Leite conception [27]. These scenarios are naturally linked to the LEL since LEL

glossary provides the language to describe the Scenarios, and there are already pro-

posed strategies to obtain Scenarios from LEL [17] [3]. It is important to mention that

LEL glossaries and Scenarios do not consider any software application scope, they

only describe the application domain.

This paper proposes an approach to use kernel sentences as input to describe the

LEL glossary. Then, the LEL is used to describe Scenarios. Finally, multiple Scenari-

os (sharing the same goal) are combined in one Specification Case. Our proposed

approach considers that the kernel sentences are already defined. Eventually, we are

developing a technique supported by a tool to describe and validate kernel sentences

in a collaborative way. Nevertheless, although kernel sentences are a linguistic con-

cept there is some similar artifact in Software engineering: business rules [18] [29].

Gonçalves [22] propose an approach to obtain business rules from collaborative narra-

tive. The approach proposed does not have the aim to obtain a complete description of

a LEL glossary and Scenarios. There are many proposals to obtain good descriptions

[4] [5]. This paper proposes a pipeline beginning with kernel sentences, following

with LEL, then Scenarios and finally Specification Cases. The aim of this approach is

to use the previous artifact of the step in the pipeline to drive the elicitation of more

knowledge to describe the following artifact in the pipeline. Thus, this proposal is a

framework to describe Specification Cases linking kernel sentences, LEL and Scenar-

ios. The description of Specification Cases from Scenarios requires an important deci-

sion. Use Cases describe a software application with its limits, while Scenarios de-

scribes an application domain. Moreover, many scenarios should be combined in one

Specification Case. Thus, the software developer should analyze many scenarios that

share the same goal, and identify the scope of the software, to describe the Specifica-

tion Case, by bringing the large environment into picture.

It is also important to mention that our proposed approach could also be used to

obtain User Stories [14]. User Stories and Uses Cases both recognize a limit between

application domain and software. Nevertheless, User Stories are simpler than Use

Cases, since User Stories only consider one scenario of interaction. Thus, we believe

that our proposed approach can be used to obtain User Stories, although we have to

perform some case study to assess our claim.

The rest of the paper is organized in the following way. Section 2 describes

some preliminary knowledge needed to understand the approach. Section 3 describes

the proposed approach. Section 4 provides evidence about the applicability and usa-

bility of the approach. Section 5 discuses some related works. Finally, section 6 pre-

sents some conclusion and future work.

2 Background

This section describes basic concepts of kernel sentences, LEL, and Scenarios.

2.1 Kernel Sentences

A kernel sentence is a simple construction with only one verb. It is also active, posi-

tive and declarative. This basic sentence does not contain any mood. It is termed as

“kernel” since it is the basis upon which other more complex sentences are formed.

For example, Fig. 1 describes two kernel sentences. It is important to mention that the

verb to be does not have a semantic meaning that is why the second example has two

verbs: to water and to be. Fig. 2 shows two sentences that are not kernel, since both

sentences has two verbs. First sentence has verbs to fertilize and to add, while second

sentence has verbs to water and to prevent. The first sentence can be rewritten in two

kernel sentences (Fig. 3).

The farmer fertilizes the tomatoes

The farmer waters the tomatoes when it is hot

Fig. 1. Kernel sentences

The farmer fertilizes the tomatoes to add nutrient that are not present in the soil.

The farmer waters the tomatoes to prevent them of drying out.

Fig. 2. No kernel sentences

The farmer fertilizes the tomatoes

The fertilization adds nutrient to the soil

Fig. 3. Sentence rewritten as kernel sentences

2.2 Language Extended Lexicon

The Language Extended Lexicon (LEL) is a glossary that describes the language of an

application domain, where not necessarily there is a definition of a software applica-

tion. LEL is tied to a simple idea: “understand the language of a problem without

worrying about the problem” [27]. The language is captured through symbols that can

be terms of short expressions. They are defined through two attributes: notion and

behavioral responses. Notion describes the denotation, i.e. the intrinsic and substantial

characteristics of the symbol, while behavioral responses describe symbol connota-

tion, i.e. the relationship between the term being described and other terms (Fig. 4).

Each symbol of the LEL belongs to one of four categories: subject, object, verb or

state. This categorization guides and assists the requirements engineer during the

description of the attributes. Table 1 shows each category with its characteristics and

guidelines to describe them.

Category: symbol

Notion: description

Behavioral responses:

Behavioral response 1

Behavioral response 2

Fig. 4. Template to describe a LEL symbol

Table 1. Template to describe LEL symbols according to its category

Category Notion Behavioral Responses

Subject Who is he? What does he do?

Object What is it? What actions does it receive?

Verb What goal does it pursue? How is the goal achieved?

State What situation does it represent? What other situations can be reached?

2.3 Scenarios

The Scenarios are description of the dynamic (behavior) of a domain, where not nec-

essarily there is a definition of a software application. It is based on the LEL, since

the LEL captures the language (concepts) while the scenarios capture the dynamic

(activities). The Scenario describes a sequence of steps (episodes) from some starting

point (context) to achieve some objective (goal). Some active agents perform the ac-

tion (actors) using some objects (resources). Fig. 5 summarizes the template of the

Scenario.

Scenario title: id

Goal: objective

Context: starting point: time, place, activities previously achieved.

Actors: active agents

Resources: passive elements: materials, data.

Episodes: List of actions, simple breakdown with no conditions, no iterations.

Fig. 5. Template to describe a Scenario

3 Approach

This section describes the proposed approach in a general way, and after that de-

scribes every sub step.

3.1 The approach in a nutshell

The approach is basically a succession of three steps: (i) description of the LEL, (ii)

description of the Scenarios, and (iii) description of the Use Cases. Kernel sentences

are the input of the approach and Use Cases are the output. Every step uses the prod-

uct of the previous step as input to reuse some knowledge to describe the product that

the step focuses on. Fig. 6 summarizes the approach.

Fig. 6. Our approach in a nutshell

It is important to emphasize some aspects of the approach. Kernel sentences are the

input of the approach and their description are outside of the boundaries of the pro-

posed approach. Kernel sentences are simple and basic sentences that can be de-

scribed in a workshop, a brain storming session or any other collaborative technique.

The approach does not provide guidelines to describe completely the products

(LEL, Scenarios and Use Cases). The approach provides guidelines to reuse some

knowledge from the previous artifact to perform a preliminary and partial description.

Thus, the procedures proposed to describe LEL, Scenarios and Use Cases include

some step considering the description relying on the knowledge of the analysist to

enrich the description. These steps could be found in the procedure as “add addition-

al…” or “complete manually…” or “improve…”. The approach is a framework for

use the knowledge of the previous artifact in the sequence, but this knowledge should

be enriched with the knowledge of the requirements engineer.

Kernel Sentences, LEL and Scenarios describe the application domain without

considering any software application, while Specification Cases describes a software

application. Thus, the step concerning the description of Use Cases should deal with

the definition of the scope of the software system. That is, considering the scenarios

of the application domain, the requirements engineers should decide what behavior of

the application domain would be automatized in the software system.

3.2 LEL description

Kernel sentences are simple expressions following the structure: noun + verb + com-

plement. Thus, the noun is a possible subject in LEL, verb is a symbol of verb catego-

ry in LEL, and the complement generally has a noun that can be an object in LEL.

Then, kernel sentences can also be related with symbols. For example, behavioral

responses of a subject describe the actions that he performs. Thus, the kernel sentenc-

• Kernel sentences

Description of
the LEL

• LEL

Description of
Scenarios

• Scenarios

Description of
Specification
Cases

• Specification Cases

es that have certain subject must be behavioral responses of him. Moreover, verbs

symbols describe activities, and the behavioral responses describe a set of subtask to

perform the activity. Thus, the requirements engineer should analyze the activities to

(verbs) to organize them. Fig. 7 summarizes the algorithm.

for each kernel sentence k

extract noun n in k
if n not defined in LEL

define n
complete the notion manually

add k to n .behavioral responses

extract verb v in k
if v not defined in LEL

define v
complete the notion manually

for each kernel sentence k
find a verb v where k is a subtask
add k to v .behavioral responses

for each v defined in LEL
 arrange the behavioral responses in sequence
 add additional behavioral responses

Fig. 7. Procedure for LEL description

Let’s considers five kernel sentences related to the fertilization process (Fig. 8). Ac-

cording to them, the following symbols should be defined: (i) subject farmer, (ii) ob-

jects spraying backpack, irrigation pipe, mixture of minerals, (iii) verbs fertilizes us-

ing the spraying backpack, fertilizes using the irrigation pipe, prepares the mixture of

minerals, pour the mixture into the irrigation pipe, pour the mixture into the spraying

backpack. It is important to mention that verbs symbols of the LEL do not exclusive

refer to verbs in the grammar sense. They refer to expression that denote an action.

Farmer is the common noun of the all kernel sentences, thus, it should be defined as a

subject symbol (Fig. 9). The first 3 behavioral responses are obtained from the kernel

sentences, while the rest are added. Then, two examples of verbs are shown: “fertilize

using the irrigation pipe” (Fig. 10) and “fertilize using the spraying backpack” (Fig.

11). In both cases, first and second behavioral responses are kernel sentences, while

the rest is added.

3.3 Scenarios description

One verb should give origin to one scenario. That is, scenarios should describe a

unique flow of actions from the context to the goal. If there are some conditions that

give origin to different flows of actions, should be defined two Scenarios. The name

of the verb is used as a name of the scenario. The notion of the verbs describes the

goal of the scenario (Table 1). And the behavioral responses of the verb describe the

episodes of the Scenarios (Table 1). The actor of the scenarios can be derived as the

subject symbol who performs the action. And the resources can be obtained collecting

the objects of the episodes. Then, the context should be described manually. And the

episodes should be enriched in order to describe with more detail the activity. Fig. 12

summarizes the algorithm.

 The farmer fertilizes using the spraying backpack.

 The farmer fertilizes using the irrigation pipe.

The farmer prepares the mixture of minerals.

The farmer pours the mixture into the irrigation pipe.

The farmer pours the mixture into the spraying backpack

Fig. 8. Kernel Sentences related to fertilization process

 Subject: farmer

 Notion: responsible to grow the fruits

 Behavioral responses

 The farmer fertilizes spraying.

 The farmer fertilizes watering.

The farmer prepares the mixture of minerals.

The farmer dilutes the mixture in water.

The farmer sprays the mixture to the plant.

The farmer waters the mixture to the soil.

Fig. 9. Symbol subject farmer description

Verb: fertilize using the irrigation pipe

Notion: activity that pursue the aim of adding nutrient to the plant.

Behavioral responses:

The farmer prepares the mixture of minerals.

The farmer pours the mixture into the irrigation pipe.

The farmer pours fresh water into the irrigation pipe.

Fig. 10. Description of the verb symbol “Fertilize using the irrigation pipe”

Verb: fertilize using the spraying backpack

Notion: activity that pursue the aim of adding nutrient to the plant.

Behavioral responses:

The farmer prepares the mixture of minerals.

The farmer pours the mixture into the backpack.

The farmer sprays the mixture to the plant.

The farmer washes the backup.

Fig. 11. Description of the verb symbol “Fertilize using the spraying backpack”

for each verb v in LEL
define a Scenario s

s.id = v.id
s.actor = subject containing v in behavioral resp.
s.goal = v.notion

s.episodes = v.behav responses
complete s.context manually
s.resources = objects in s.episodes
improve the description of s.episodes

Fig. 12. Procedure for Scenario description

The verbs “fertilize using the irrigation pipe” (Fig. 10) and “fertilize using the spray-

ing backpack” (Fig. 11) describe two different ways of fertilization. Every one de-

scribes a unique flow of actions and should give origin to one scenario. The scenario

“fertilize using the irrigation pipe” (Fig. 13) has 5 episodes. The first and second ones

(“The farmer calculates the amount of minerals”, “The farmer dilutes the minerals in

water”) are defined considering the first behavioral response of the verb (“The farmer

prepares the mixture of minerals”). The third and fifth episodes (“The farmer pours

the mixture into the irrigation pipe”, “The farmer pours fresh water into the irrigation

pipe”) are obtained from the verb. While fourth episode (“The farmer activates the

irrigation pipe”) is added. The scenario “fertilize using the spraying backpack” is

obtained in a similar way (Fig. 14).

Scenario: fertilize using the irrigation pipe

Goal: add nutrient to the plant

Context: the cistern has enough water to activate the irrigation pipe

Actor: Farmer

Resource: cistern with water, irrigation pipe, minerals, chart to calculate the

amount of minerals.

Episodes:

The farmer calculates the amount of minerals

The farmer dilutes the minerals in water

The farmer pours the mixture into the irrigation pipe

The farmer activates the irrigation pipe

The farmer pours fresh water into the irrigation pipe

Fig. 13. Description of the Scenario “Fertilize with pipe”

Scenario: Fertilize using the spraying backpack

Goal: add nutrient to the plant

Context: the cistern does not have enough water to activate the irrigation

pipe

Actor: Farmer

Resource: water, backpack, minerals, chart to calculate the amount minerals.

Episodes:

The farmer calculates the amount of minerals

The farmer dilutes the minerals in water

The farmer pours the mixture into the backup

The farmer sprays the liquid to the plant

The farmer washes the backpack

Fig. 14. Description of the Scenario “Fertilize with backpack”

3.4 Specification Cases Description

The description of the Specification Cases consists in combining different scenarios

that share the same goal in one Specification Case. Every scenario should be catego-

rized as one type: happy path, alternative path or exceptional path. And the episodes

of every scenario should be used as the conversation of the Specification Case. Never-

theless, the conversation should be adjusted because it is necessary to determine the

scope of the software system. That is, the scenarios describe the application domain,

so it is necessary to identify the functionality that will be included in the software

system. Thus, some actors can change (because some responsibility is performed by

the software system) or even the whole episode should be adjusted. Fig. 15 describes

the algorithm.

for each goal g
for each scenario s that shares the goal g

define the scope of software system regarding s
categorize s as happy, alternative or exception

path
define a Use case u
u.id = some common expression from all s
u.goal = g
for each s

u.path = s.episodes
Improve the description u.path

Fig. 15. Procedure for Specification Case description

The scenarios “fertilize using the irrigation pipe” Fig. 13 and “fertilize using the

spraying backpack” Fig. 14 share the same goal “add nutrient to the plant”. So, they

should be part of the same Specification Case. The happy path should be “fertilize

using the irrigation pipe”, while “fertilize using the spraying backpack” is the alterna-

tive path. Then, the software system automatizes the preparation of the mixture, but

the calculus about the amount of the mixture relies on the farmer. Fig. 16 describes

the resulting Specification Case. Step 1 and 2 of the happy path is adapted from epi-

sode “The farmer prepares the mixture of minerals” considering the boundaries of the

software system. Then, interaction 3 and 5 has the system as actor instead of the

farmer as it was described in the Scenario. Finally, interaction 4 is not present in the

scenario. Regarding the alternative path, the backpack is outside of the boundaries of

the system and it only prepares the mixture and pours it in a container. The exception-

al path was not considered in the scenarios, and it was added.

Use Case: fertilize

Goal: add nutrient to the plant

Actor: farmer

Happy path:
1. The farmer specify the amount of minerals necessaries

2. The system dilutes the minerals in water

3. The system pours the mixture into the irrigation pipe

4. The system activate the irrigation pipe

5. The system pours fresh water to wash the irrigation pipe

Alternative path:
The system does not pour the mixture into the irrigation pipe, because there

is not enough water in cistern to activate the irrigation pipe.

3. The system pours the mixture into an external container.

Exceptional path:

2. The system does not have enough minerals to prepare the mixture.

Fig. 16. Description of the Use Case “Fertilize”

4 Evaluation

The framework proposed was applied to an application to manage sanitary resources

related to covid-19. The system manages doctors, rooms, beds and patients. The sys-

tem also manages the evolution of a patient and provides alerts according to certain

workflow to follow the evolution of the patient.

Participants were 15 students of a degree course. The objective of the course is

to provide a realistic experience in software development. In particular, the course

emphasizes requirements practices. Nevertheless, most of the students have experi-

ence in industry since in Argentina, students generally begin to work in industry in

second year of their undergraduate studies.

Participants applied the approach to describe Use Cases. The kernel sentences

were provided, and the participants had to build the LEL, the Scenarios and finally

Specification Cases. One of the professors of the course is a Medical Doctor, and he

played the role of stakeholder and provided the information requested by the partici-

pants to enrich the description of the artifacts requested. Another professor of the

course checked the quality of the Use Cases considering the knowledge they provide

as well as the correct use of the template. Students also developed the software appli-

cation and the professors checked the correct implementation of the functionality.

Thus, we can rely on the correct specification and implementation of the functionali-

ty. And the evaluation was focused on the applicability of the approach.

The System Usability Scale (SUS) [10] [11] was used to assess the usability and

applicability of the approach. Although SUS is mainly used to assess usability of

software systems, it was probe to be effective to assess products and processes

[7]. The System Usability Scale (SUS) consists of a 10-item questionnaire; every

question must be answered in a five-options scale, ranging from ”1” (”Strongly Disa-

gree”) to ”5” (”Strongly Agree”). Although there are 10 questions, they are related by

pairs, asking the same question but in a complementary point of view in order to ob-

tain a result of high confidence.

The calculation of the SUS score is performed in the following way. First, items

1, 3, 5, 7, and 9 are scored considering the value ranked minus 1. Then, items 2, 4, 6,

8 and 10, are scored considering 5 minus the value ranked. After that, every partici-

pant’s scores are summed up and then multiplied by 2.5 to obtain a new value ranging

from 0 to 100. Finally, the average is calculated. The approach can have one of the

following results: “Non acceptable” 0-64, “Acceptable” 65-84, and “Excellent” 85-

100 [28]. The score obtained was 71,17. Thus, the approach can be considered as

“acceptable”.

5 Related work

There are many works that describe templates to describe Use Cases, but these works

do not describe a process or technique to fill the template. Cockburn et al. [13] pro-

vides an extensive guide about different templates of use cases, diagrams, and narra-

tives with a different level of detail. They also provide best practices, but they do not

provide much information about a process. The best practices they suggest consists in

linking Use Cases to other models: backward traceability to the business model, for-

ward traceability to GUI, artifacts of design, test cases, etc. Denney et al. [16] de-

scribe how to deliver quality software using Use Cases. They emphasize in the tem-

plate it should be used to capture the knowledge necessary to develop quality soft-

ware. Nevertheless, they do not describe any process to elicit the Use Cases. Schnei-

der et al. [32] describe some simple steps that it should be followed to describe Use

Cases, but they do not provide any detail about how to do that. Savic et al. [31] pro-

pose three different levels of abstraction: description of a Use Case as a black box,

description of the behavior of the Use Case, and the GUI of the software application.

Tiwari et al. [36] performed a study about assessing the effectiveness of 8 different

templates. They considered different criteria, and they found that no template satisfied

all criteria.

Many works propose workshops as the elicitation technique. For example Alex-

ander et al. [1] and Bittner et al. [8] recommend some specific Use Case template, but

they use regular workshops to elicit information. Some other approaches use work-

shops combined with another techniques. Leffingwell et al. [26] recommend having

preliminary interviews to plan the workshop. Alexander et al. [2] also recommend

having interviews before the workshops, and they propose the use of storytelling dur-

ing the workshop. Sinha et al. [33] perform workshops to request participants to de-

scribe Use Cases in colloquial way. Then, the analyst writes the Use Cases after the

workshops. Richards et al. [30] propose a technique similar to Sinha et al. [33] and

they consider different points of view. Thus, they consider a reconciliation of the

different points of view in structured Use Cases.

Some papers rely on collaborative group sessions based on a specific technique.

Gallardo et al. [20] propose a collaborative tool that manages diagrams in order to

deal with different points of view. Yang-Turner et al. [35] propose an extension of the

diagrams of Use Case in order to improve the dynamic of the Requirements discovery

workshop. Cruz et al. [15] also propose an iterative approach to describe Use Cases:

context, high level description and more detailed description. Sinha et al. [34] propose

a tool to perform an automatic inspection of the Use Cases and invest effort in im-

proving the Uses Cases more than in the initial description.

Some papers propose very detailed approaches that need very experienced ana-

lysts. Armour et al. [6] propose a very detailed approach for describing advanced Use

Case. They propose three main steps (finding, describing, and refactoring) to describe

very precise and detailed Use Cases. Kulak et al. [24] also propose a very detailed

approach that has the following steps: mission, vision, values, statement of work, risk

analysis, prototypes, and business rules. Girotto et al. [21] propose an approach to

base the description of Use Cases in Business Process Model and Notation.

Regarding light approaches, the most similar to our proposed approach, Jacob-

son et al. [23] introduce the concept of Use Case slices to be used in combination with

concepts of agile development. These Use Case slices should be described using a

classic Use Case template, nevertheless, they have similarities with User Stories. Ti-

wari et al. [37] propose an approach to identify Use Case names and actors using

natural language processing tools. Kundi et al. [25] propose an approach based on

framenet, a lexical database. They propose an iterative approach to identify frame

elements, describes use cases, and find new frame elements. These strategies use very

different techniques to obtain knowledge: workshop to elicit orally or documents in

order to perform natural language processing tools. Our approach uses three steps of

different level of complexity (LEL, Scenarios and Use Cases). These artifacts can be

described iteratively using the knowledge captured in them, as well as using any other

technique the requirements engineer consider in order to obtain knowledge from other

sources. Thus, our proposed approach provides a framework to deal with the com-

plexity of the knowledge while it can be integrated with other techniques familiar for

the requirements engineer.

6 Conclusions

Use Cases are one of the most used artifacts to describe requirements in classic soft-

ware development projects where there are a huge amount of requirements and busi-

ness rules. There are many works that propose many templates to organize the

knowledge in the Use Cases and there are also many proposals to evaluate que quality

of the Use Cases.

Nevertheless, the responsibility and the effort of understanding the knowledge, organ-

izing the different points of view of the stakeholders, and defining the scope of the

software system rely on software developers, their skills and experience. We have

proposed an approach that tackles the problems of context information and limits of

the system. As such, it helps software developers, guiding the knowledge acquisition

from the vocabulary (LEL) and the situations in the given environment (Scenarios).

As such, producing more robust specifications.

The approach begins with simple expressions (kernel sentences). Then, they are used

to describe a more complex artifact (LEL), which is the basis of another artifact that

describes the behavior in the domain, the Scenarios. Then, the Scenarios are trans-

formed in Specification Cases.

Since we rely on kernel sentences, which are focused on functional behavior, our

current Specification Cases are function oriented. Future work will explore the con-

cept of restrictions in Scenarios [17] to bring quality aspects (Non-Functional Re-

quirements) to the Specification Cases.

This approach has different steps of elicitation and description of artifacts before the

production of the specification. We have evaluated our proposed approach with a

group of students, with a wide range of experience in software development and the

results where positive. Nevertheless, we plan to perform a further case study where

we will compare the results of our proposed approach versus the experience of writing

Use Cases directly from the stakeholder. The proposed approach is the result of many

years of experience, where problems of directly describing Use Cases have been

found, but we still need more data to assess the effort of our approach, as well as the

quality of the resulting products.

7 References

1. Alexander, Ian; Maiden, Neil. Scenarios, Stories, Use Cases. Wiley (2004).

2. Alexander, Ian; Beus-Dukic, Ljerka. Discovering Requirements: How to Specify Products

and Services. Wiley (2009).

3. Antonelli, L., Rossi G., Leite, J.C.S.P., Oliveros, A: “Deriving requirements specifications

from the application domain language captured by Language Extended Lexicon”, Work-

shop in Requirements Engineering (WER), Buenos Aires, Argentina, April 24 – 27 (2012).

4. Antonelli, L., Rossi G., Leite, J.C.S.P., Oliveros, A: “Buenas prácticas en la especificación

del dominio de una aplicación”, Workshop in Requirements Engineering (WER), Monte-

video, Uruguay, April 8 – 10 (2013).

5. Antonelli, L, Rossi, G, Oliveros, A: “A Collaborative Approach to Describe the Domain

Language through the Language Extended Lexicon”, Journal of Object Technology, Vol-

ume 15, Number 3, issn 1660-1769, doi 10.5381/jot.2016.15.3.a3, PP 1:27 (2016).

6. Armour, Frank, Granville Miller. Advanced Use Case Modeling: Software Systems. Ad-

dison-Wesley, (2000).

7. Bangor, A., Kortum, P. T., Miller, J. T. "An empirical evaluation of the system usability

scale." Intl. Journal of Human–Computer Interaction 24.6, pp. 574-594 (2008).

8. Bittner, Kurt; Spence, Ian: Use Case Modeling, Addison-Wesley Professional, 20 August

(2002).

9. Boyd, Nikolas S. “Using Natural Language in Software Development.” In: Journal of Ob-

ject-Oriented Programming - Report on Object Analysis and Design, 11-9 (1999)

10. Brooke, J. “SUS-A quick and dirty usability scale. Usability evaluation in industry”,

189(194), 4-7, (1996).

11. Brooke, J. "SUS: a retrospective." Journal of usability studies 8.2, pp.29-40, (2013).

12. Chomsky, N., The Logical Structure of Linguistic Theory. Plenum Press, New York,

(1975).

13. Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, (2001).

14. Cohn, Mike, User Stories Applied: For Agile Software Development, Addison Wesley, 1st

Edición, ISBN: 0-321-20568-5, (2004).

15. Cruz, E. F., Machado, R. J., Santos, M. Y. "On the Decomposition of Use Cases for the

Refinement of Software Requirements," 2014 14th International Conference on Computa-

tional Science and Its Applications, Guimaraes, 2014, pp. 237-240, doi:

10.1109/ICCSA.2014.54. (2014)

16. Denney, Richard. Succeeding with Use Cases: Working Smart to Deliver Quality. Addi-

son-Wesley (2005).

17. Hadad, G., Kaplan, G., Oliveros, A., Leite, J.C.S.P.: Construcción de Escenarios a partir

del Léxico Extendido del Lenguaje, in Proceedings SoST, 26JAIIO, Sociedad Argentina

de Informática y Comunicaciones, Buenos Aires (1997)

18. Halle B., “Business Rules Applied”, John Wiley & Sons, Inc., New York, (2002).

19. Harris, Z.S.. Co-occurrence and transformation in linguistic structure. (Linguistic Society

of America) pp. 390- 457 (1957).

20. Gallardo, J., Molina, A. I., Bravo, C. Gallego, F. "A system for collaborative building of

use case models: Communication analysis and experiences: Experiences of use and lessons

learned from the use of the SPACE-DESIGN tool in the domain of use case diagrams,"

2014 9th International Conference on Evaluation of Novel Approaches to Software Engi-

neering (ENASE), Lisbon, pp. 1-10, (2014).

21. Girotto, A. N., Santander, V. F. A., Silva, I. F. d., Céspedes, M. A. T. "Deriving use cases

from BPMN models: A proposal with computational support," 2017 36th International

Conference of the Chilean Computer Science Society (SCCC), Arica, pp. 1-12, doi:

10.1109/SCCC.2017.8405122 (2017).

22. Gonçalves, J. C. de A.R., Santoro, F. M., Baião, F. A. "Collaborative narratives for busi-

ness rule elicitation," 2011 IEEE International Conference on Systems, Man, and Cyber-

netics, Anchorage, AK, pp. 1926-1931, doi: 10.1109/ICSMC.2011.6083954. (2011).

http://www.educery.com/papers/rhetoric/road/

23. Jacobson Ivar, Spence I., Bittner K. Use Case 2.0: The Guide to Succeeding with Use Cas-

es, IJI SA (2011).

24. Kulak, Daryl, Eamonn Guiney. Use cases: requirements in context. Addison-Wesley,

(2012).

25. Kundi M., Chitchyan R. "Use Case Elicitation with FrameNet Frames," 2017 IEEE 25th

International Requirements Engineering Conference Workshops (REW), Lisbon, pp. 224-

231, doi: 10.1109/REW.2017.53 (2017).

26. Leffingwell, Dean, Widrig, Don, Managing Software Requirements: A Use Case Ap-

proach, Addison-Wesley Professional. 7 December (2012).

27. Leite, J.C.S.P., Franco, A.P.M.: A Strategy for Conceptual Model Acquisition, in Proceed-

ings of the First IEEE International Symposium on Requirements Engineering, San Diego,

California, IEEE Computer Society Press, pp 243-246 (1993)

28. McLellan, S., Muddimer, A., Peres, S. C. "The effect of experience on System Usability

Scale ratings." Journal of usability studies 7.2, pp. 56-67 (2012).

29. Tony, Morgan. Business Rules and Information Systems: Aligning IT with Business

Goals, Addison-Wesley Professional; 1er edición (18 Marzo 2002)

30. Richards, D., Fure, A. Aguilera, O. "An approach to visualise and reconcile use case de-

scriptions from multiple viewpoints," Proceedings. 11th IEEE International Requirements

Engineering Conference, Monterey Bay, CA, USA, 2003, pp. 373-374, doi:

10.1109/ICRE.2003.1232792 (2003)

31. Savic D. et al., "Use Case Specification at Different Levels of Abstraction," 2012 Eighth

International Conference on the Quality of Information and Communications Technology,

Lisbon, pp. 187-192, doi: 10.1109/QUATIC.2012.64 (2012).

32. Schneider, Geri and Winters, Jason P. Applying Use Cases 2nd Edition: A Practical Guide.

Addison-Wesley (2001).

33. Sinha, A. Paradkar, A. Kumanan P. Boguraev, B. "A linguistic analysis engine for natural

language use case description and its application to dependability analysis in industrial use

cases," IEEE/IFIP International Conference on Dependable Systems & Networks, Lisbon,

pp. 327-336, doi: 10.1109/DSN.2009.5270320 (2009).

34. Sinha, A. Sutton S. M. Paradkar, A. "Text2Test: Automated Inspection of Natural Lan-

guage Use Cases," 2010 Third International Conference on Software Testing, Verification

and Validation, Paris, pp. 155-164, doi: 10.1109/ICST.2010.19 (2010).

35. Yang-Turner F. Lau, L. "Extending use case diagrams to support requirements discovery,"

2011 Workshop on Requirements Engineering for Systems, Services and Systems-of-

Systems, Trento, pp. 32-35, doi: 10.1109/RESS.2011.6043929 (2011).

36. Tiwari, S. Gupta, A. "A Controlled Experiment to Assess the Effectiveness of Eight Use

Case Templates," 2013 20th Asia-Pacific Software Engineering Conference (APSEC),

Bangkok, pp. 207-214, doi: 10.1109/APSEC.2013.37 (2013).

37. Tiwari, S. Rathore, S. S. Sagar S. Mirani, Y. "Identifying Use Case Elements from Textual

Specification: A Preliminary Study," 2020 IEEE 28th International Requirements Engi-

neering Conference (RE), Zurich, Switzerland, pp. 410-411, doi:

10.1109/RE48521.2020.00059 (2020)

