
Design Thinking and Non-Functional Requirements
Elicitation: A Survey

Fábio Avigo de Castro Pinto1[0000-0002-6002-1714], Anarosa Alves Franco Brandão1[0000-

0001-8992-4768], Fábio Levy Siqueira1[0000-0002-7550-2000]

1 Escola Politécnica da Universidade de São Paulo, Brasil.
{fabio.avigo, anarosa.brandao, levy.siqueira}@usp.br

Abstract. Design Thinking (DT) is a human-centered approach used in innova-
tive problem-solving. In software development projects, it can be usually applied
as a toolbox, mindset or process. Moreover, DT has seen a large rise in popularity
over the past decade, especially in its upfront use for eliciting requirements. De-
spite its many benefits and successful use cases in this scenario, some of the
shortcomings related to its uses in Requirements Engineering (RE) have started
to show up. One of them lies in the difficulty with eliciting other non-functional
requirements (NFR) – besides usability –, possibly jeopardizing the subsequent
software development life-cycle if these requirements are not properly addressed.
This article presents a qualitative survey conducted via LinkedIn with 53 soft-
ware developers that have had previous experiences with the use of DT as an
upfront process in software projects. The focus of the research has been on iden-
tifying the existence of problems, how they became manifest, and whether the
software community has tools for mitigating them. The results suggest the ne-
glect of DT for requirements other than those of a functional or usability nature
in this situation. Since this use of DT is focused on improving the users’ experi-
ence, and identifying their needs, we argue that such needs are not limited only
to the functions of a software or its usability. In fact, we also advocate that other
aspects that are intrinsic to NFR, such as performance and reliability are part of
such needs.

Keywords: Design Thinking, DT, Non-functional Requirements, NFR.

1 Introduction

The market is currently influenced by a series of complex factors – emerging technol-
ogies, globalization processes, and a constant changing of requirements –, which makes
it so that the life cycle of a service becomes shorter. This situation leads to a conflict
among tools and methods that have been used in the past, which have problems fitting
the new products and service development requirements. In order to support them, com-
panies should seek other possibilities using new approaches for creating value [1].

An approach that can help with this scenario is Design Thinking (DT), developed in
Stanford, refined by IDEO and supported by Hasso Plattner, one of the founders of SAP
[2]. It encompasses a team-based process for designing the solution of a given problem

2

[3]. Within DT, participants usually empathize with the final user, redefine the problem,
match different perspectives, brainstorm solutions, and develop prototypes. Design
Thinking has experienced a surge in popularity over the last decade, given its practical
framework that leads to clear benefits to companies [2].

Moreover, DT represents a potential solution for some traditional challenges in Re-
quirements Engineering, for eliciting user needs [4], being regarded by some authors,
such as in [5], as a “modern form of RE”. However, recent works present that there are
still challenges to be overcome with the approach when applied for RE. A previous
article by the authors with the scope of a systematic literature review with the objective
of identifying problems that arise from DT in RE is a starting point for this study [6].
Among the several difficulties found by the authors, one must be highlighted: DT can
neglect non-functional requirements, such as security or performance [7].

This paper seeks to deepen the understanding of DT applied for RE, focusing on its
use as an upfront process in software projects. Our goal is to investigate how it handles
the elicitation of non-functional requirements. To answer this, a qualitative survey was
conducted with 53 software developers that have had previous experiences with DT in
software projects. This work contributes to better understanding the limitations of DT
in such a context.

This work is organized as follows: Section 2 presents a brief introduction to Design
Thinking, while Section 3 presents an overview about Non-Functional Requirements.
Following up, Section 4 depicts related work in the field and Section 5 presents the
design of the survey. Section 6 presents the gathered results and Section 7 discusses
them and presents the threats to validity. Finally, Section 8 concludes the article.

2 Design Thinking

Design Thinking is a human-centered approach that can be used to tackle complex and
wicked real-life problems with a set of principles focused on empathy with users, fast
prototyping, tolerance for failure and iterative learning cycles [7–9].

A common approach to DT is the “Double Diamond”, a process framework by De-
sign Council [10]. A graphical representation for the process is presented on Fig. 1. The
Double Diamond approach starts with a problem to be solved and has 4 phases, a di-
vergent focused on empathizing with the user (Discover), followed by a convergent
phase focused on defining the issue (Define), followed by another divergent phase fo-
cused on finding a solution (Develop) and concluded by a convergent phase focused on
delivering an outcome or prototype for it (Deliver). These phases can be repeated in an
iterative manner until a satisfactory result is achieved.

3

Fig. 1. The Double Diamond process. Adapted from [11].

Some authors, such as Vetterli et al. present that RE can make use of DT for eliciting
customers’ needs through the creation of fast and simple prototypes that converge into
innovative solutions [4]. The resulting prototypes of DT help with the substantiation of
different ideas, while focusing on specific and important needs within the design space.
Brenner, Uebernickel and Abrell [2] suggested that DT can be applied as a mindset,
toolbox, or process. A second definition by Hehn et al. deepened this understanding by
defining three categories of possible applications: upfront, infused or continuous DT
[11].

In this paper, we refer especially to the upfront approach, in which DT is conducted
in the form of one or more workshops as a process previous to the activities pertaining
to software development. In it, DT is used as a guiding process, and the proposed solu-
tion concept is linked to the identified customer needs. The outcomes comprise a clear
solution vision in form of a mockup, and the DT artifacts are used as basis to perform
further RE activities [11]. Some examples of this use can be found in [11–14].

3 Non-functional Requirements

Requirements are conditions or capabilities needed by users to solve a problem or
achieve an objective [15]. They are commonly distinguished as being of a functional or
non-functional nature, which represents the difference between what a system shall do
(functional), as opposed to how it should do it (non-functional).

While functional requirements are the ones that determine the actions that must be
accomplished by a system [16], non-functional requirements lack a consensus in the
RE community as for how they should be elicited, documented and validated [17]. Add-
ing up, Chung and Leite have suggested that the attention in the Software Engineering
field has been centered on the functional characteristics of a system, and this practice
led to needed quality characteristics being treated merely as technical issues related
mostly to the detailed design or testing of an implemented system [18]. A summariza-
tion of the common understanding of NFR is an attribute of or a constraint on a system
[17].

4

The categorization of NFR that was chosen to be used in this work is the one of the
ISO/IEC 25010 (2011), regarding product quality properties and excluding the one of
functional suitability, due to it being too closely related to functional requirements [19].

The constraints that NFR bring are a key topic for this work. Landes and Studer have
suggested that NFR establish the justifications for design decisions and thus restrict the
way for the realization of the required functionality [20]. One example of this is defin-
ing when using or not external code libraries: this decision must be made at some point
in time, and it can restrain services both ways. If used, the developing team will have
to account for issues in versioning, compatibility, security, and performance. If unused,
it can impact development times, code complexity and maintainability difficulty.

Another example lies in properly defining the user of the product, what is related to
usability. Different classes of users can be familiar with different user interfaces. Some
common examples are age differences, or systems built for a specific business context.
This is a problem typically addressed with DT.

4 Related Work

This section presents some of the latest related works to this survey. There are plenty
of studies to be found on the application of DT in use reports or case studies for software
development, such as in [21–23]. However, it is observable that the term “Design
Thinking” is still a buzzword. As Brenner et al. [2] put it, many of the projects labelled
as DT are simply classical innovation, strategy or re-engineering, and do not represent
the mastering or fully understanding of its principles. In this way, it is reasonable to
presume that many companies and developers are still scratching DT’s potential as an
innovative tool and expanding its possibilities of use.

Presets et al. have reported in a related survey of DT on its use by the Brazilian Agile
Software Development Community and cataloged 127 responses [24]. It is presented
in the study the opinions of the respondents regarding the main benefits of using DT,
such as keeping the user at the center of the process without neglecting business needs.
Some of the difficulties for applying DT were also reported by participants. This survey
was also conducted via the LinkedIn social network and followed a similar sampling
approach with the use of a query to filter relevant profiles.

Schmiedgen et al. have also conducted a survey with industry practitioners focused
on how organizations measure the impact of DT [25]. The authors combined quantita-
tive and qualitative data with the use of a questionnaire distributed to managers and
employees in organizations who applied DT. After it, 16 qualitative interviews were
conducted to deepen the research. The authors present that many different practices are
labeled DT, which creates an obstacle for its proper analysis. Additionally, the impact
of DT is difficult to quantify, and very few people measure it.

Apart from recent surveys, some recent studies have also shown issues concerning
NFR. For example, on comparing Design Thinking and Agile practices, Hehn and
Uebernickel have commented that DT neglects NFR such as security or performance,
albeit it enhances the priority of eliciting usability requirements [7].

5

5 Study Design

This section goes into detail regarding the survey that was conducted to investigate the
elicitation of NFR within Design Thinking. We defined the survey protocol following
the structure proposed by [26, 27]. All survey data, including the original questionnaire,
complete answers and the analyses provided on the following sections is publicly avail-
able at https://doi.org/10.6084/m9.figshare.19354661.

5.1 Objective and Research Questions

The main objective of this study is to analyze whether DT faces challenges with the
elicitation of NFR in software development projects. We considered the upfront use of
DT, as described in Section 2. As these missing requirements may arise only after the
workshops, the survey has investigated the perception of participants during the DT
workshops as well as during the subsequent software development phases.

5.2 Research Questions

According to the defined objective of the study, the following research questions were
proposed:

RQ1. Are there problems regarding non-functional requirements elicitation that can
arise with the Design Thinking approach?

RQ2. Are there non-functional requirements that are not addressed during the DT
phase and become known only during the software development phase?

RQ3. Does the software community have tools for mitigating issues regarding other
non-functional requirements?

5.3 Population Sampling

This survey was aimed at software developers that have had experiences with Design
Thinking in at least one software development project that reached some stage of de-
velopment. This survey is qualitative in its nature, given its objectives of better under-
standing the questions concerning non-functional requirements elicitation with DT, ra-
ther than seeking confirmation to a certain hypothesis.

Qualitative research is used for the investigation of situations in which people are
involved and different kinds of processes take place [28]. It aims to understand the
reason and mechanisms explaining a phenomenon [29]. One major difference between
qualitative and quantitative research approaches regards the population sampling.
Quantitative approaches usually involve probability sampling, whereas qualitative ap-
proaches require purposeful sampling. That is, qualitative researchers value the deep
understanding that comes from information-rich cases while quantitative researchers
value the generalizations to larger populations given the random and statistically repre-
sentative samples [30].

6

A concept usually adopted in qualitative research is that of data saturation, which is
the point at which no new information or themes are observed in the data from the
completion of additional interviews or cases [31]. Although helpful in the conceptual
level, it does not provide guidance for estimating actual sample sizes, prior to data col-
lection [31]. As Boddy [32] puts it, the issue of defining the appropriate sample size
depends on the context and scientific paradigm of the research. And how to determine
an adequate sample size for qualitative studies is not yet a consensus. Boddy also com-
prised a list of sample sizes suggested by researchers, which vary in a range of 15 to 50
interviews [32]. Sandelowski suggests that a large sample size for qualitative studies is
over 50 interviews [30]. Creswell and Poth divided qualitative inquiries among five
approaches, of which this study is better represented as a phenomenological study, and
for such, a range of 5 to 25 interviews would be recommended [33].

Summing up, the sample size chosen for this survey was 50 interviews. The follow-
ing section will go into details regarding how these cases will be obtained as well as
how to assure their purposefulness for the study.

5.4 Description and design of sampling method

The potential respondents for the survey were reached via the LinkedIn network, and
50 answers had to be obtained. For that, the first filter was to reach for software devel-
opers that have had experiences with the Design Thinking approach via the search fil-
ters. The chosen query for representing this population was: “design thinking” and “de-
veloper” and “software”. The results comprised people that have used all keywords in
their profile. As of January-2021, there were 54,000 results to this search worldwide.

The LinkedIn search orders the results by relevance, according to the proximity de-
gree between the people in the results and the one performing the searches. As the re-
searcher who used LinkedIn for this purpose is from Brazil, most of the results were
from this country. Therefore, the questionnaire has been applied in Portuguese to assure
that the interviewees understood the meaning of each survey question precisely. The
answers were then translated back to English to be presented here, in Table 1. The exact
sequence of questions is the one presented there. This is not novel, and has been previ-
ously done in qualitative surveys, as in Wagner et al. [34].

The next step was then contacting industry professionals that matched the criteria. A
message was provided with the context of the study and a friendly invitation to partic-
ipate. Invitations have been daily sent until the desired amount of 50 answers were met.

The sampling was conducted over a period of two months (feb/21-apr/21). A total
of 669 invites were sent, and a total of 53 responses were received and further pro-
cessed. This adds up to a response rate of roughly 8%. The answers were recorded in
Google Forms and then sent to a spreadsheet for analysis.

5.5 Questionnaire

As mentioned previously, a Design Thinking Workshop is how researchers and practi-
tioners refer to the DT sessions/meetings.

7

Software projects that make use of DT can vary, as in the number of sessions, scope,
number of participants and other techniques applied apart from DT. However, the cho-
sen hypothesis was that each project made use of a DT Workshop for requirements
elicitation (not necessarily as the single technique), and it was followed by some stage
of software development, where the results of it could then be used to produce code.
This simplified model was adopted to facilitate understanding the potential shortcom-
ings of DT, for they can show up either during the workshop, or after it, during software
development. And, in this manner, the software developer must also have participated
in both phases of this project that was chosen as basis of report.

Table 1. Questionnaire

Question

1. City of residence / State of residence

2. What company do you currently work for?

3. What is your current organizational role or function?

4. What is your experience, in years, with software development?

5. What is your experience, in years, using Design Thinking?

6. How many projects have you participated in that used Design Thinking?

7. On a scale of 1 (extremely dissatisfied) to 5 (extremely satisfied), how was your satisfaction with the
Design Thinking approach as a whole regarding requirements elicitation?
8. On a scale of 1 (extremely unsuccessful) to 5 (extremely successful), how successful do you consider
the Design Thinking workshop to be in eliciting functional requirements?
9. On a scale of 1 (extremely unsuccessful) to 5 (extremely successful), how successful do you consider
the Design Thinking workshop to be in eliciting the following non-functional requirements? [19]
10. What support techniques were used for eliciting non-functional requirements during the Design
Thinking Workshop (except usability)?
11. What difficulties or negative points regarding the elicitation of non-functional requirements (except
usability) did you identify during the DT workshop?
12. In your opinion, what percentage of completion was reached regarding the implementation of the
system/software component of the project thus far?
13. In your opinion, what percentage of completion was reached regarding the deployment of the sys-
tem/software component of the project thus far?
14. The Design Thinking workshop usually delivers artifacts for the software development activities,
such as low-fidelity prototypes or requirements captured via post-its. On a scale of 1 (useless) to 5
(extremely useful), how useful were these artifacts in capturing non-functional requirements (except
usability) for the software development?
15. If any non-functional requirements arose during the software development phase that were unfore-
seen in the DT Workshop, in what categories would these requirements better fit?
16. If any non-functional requirements arose during the software development phase that were unfore-
seen in the DT Workshop, how did they become known?

The first part of the questionnaire (Q 1-6) presents profiling questions aimed at ex-

tracting data from different technological contexts, identifying validation threat biases
from too many answers from the same company and categorizing answers. The second
part (Q 7-11) is concerned with the experience during the DT Workshop, with questions
that aimed at identifying if DT lacks in NFR elicitation, and what techniques were used
that could help with this issue. The last part (Q 12-16) refers to the experience after the
DT Workshop and during the development phase. It focused on identifying the potential

8

problems with NFR not properly treated during the workshop and that came up in a
later stage of the project. No questions were mandatory, and since, aggregate results
shown in the following section disregard blank answers.

6 Study Results

In this section, the survey results are presented.

6.1 Profile of Respondents (Q1 to Q6)

A total of 53 responses were collected. Regarding their current role, the vast majority
consisted of software developers (57%), project owners (19%) and UX/UI Designers
(9%). A total of 45 companies were listed as the current work from respondents. Most
of the respondents (73%) were from 3 fields: IT Services & Consulting, Banking &
Financial, and Health, Wellness, Fitness & Hospital.

Considering the respondents’ previous experience, Table 2 presents the average,
standard deviation, minimum, and maximum values of answers received in questions
4, 5, and 6. The average respondent has roughly 9 years of experience with software
development and has practiced Design Thinking for 3 years.

Table 2. Respondents’ experience with Software Development and Design Thinking

Question Avg Stdev Min Max

4. Experience in years with software development 8.9 6.9 1.0 28.0

5. Experience in years with Design Thinking 2.9 1.7 0.5 8.0

6. Number of Previous Projects with Design Thinking 5.1 4.2 1.0 20.0

6.2 Design Thinking Workshop (Q7 to Q10)

Questions 7 to 10 focused on gathering the participants’ thoughts on the workshop in
eliciting NFR. Table 3 presents the average, standard deviation, minimum and maxi-
mum values of answers regarding the perception of successfulness of respondents (in a
range of 1 to 5, per questions 7-9). Fig. 2 presents a visual representation of these re-
sponses: the scatter plot presents each individual answer (grouped for NFR, excluding
usability), while vertical bars present the mean values obtained.

Table 3. Respondent’s perception of successfulness.

Successfulness Perception Avg Stdev Min Max
7. Design Thinking 4.09 0.83 2 5
8. Functional Reqs. 4.13 0.85 2 5
9.a) Usability 4.35 0.81 2 5
9.b) Performance 3.28 1.00 1 5
9.c) Compatibility 3.58 1.13 1 5
9.d) Reliability 3.68 1.13 1 5
9.e) Security 3.28 1.12 1 5
9.f) Maintainability 3.15 1.22 1 5

9

9.g) Portability 3.40 1.15 1 5

Fig. 2. Scatter plot and average values for the successfulness perception.

The average successfulness perception with eliciting requirements for Design Think-
ing has been 4.09. This value is close to the one of 4.13 that was found for the elicitation
of functional requirements. The perception increased for usability requirements (4.35)
but saw a sharp decline for all other NFR (averaged excluding usability: 3.40).

Most respondents have considered the successfulness perception of both the elicita-
tion of functional requirements (81% of respondents), as well as the elicitation of usa-
bility requirements (87% of respondents) to be greater or equal to the averaged percep-
tion regarding the elicitation of the other NFR (excluding usability).

As per Question 10 about techniques used in the Workshop, a total of 44 different
ones were cataloged. The most popular techniques along with the percentage of re-
spondents that cited them were: User Journey (40%), Storyboards (25%), Empathy Map
(19%), Feedback Interviews (15%), Personas (9%), and CSD Matrix (8%).

Regarding the difficulties found with the elicitation of Non-Functional requirements
with Design Thinking (Question 11), a total of 29 answers were given. Some of the
highlights for problems with NFR that were given by respondents are presented as fol-
lows (translated into English):

“Some questions like data security or performance are neglected when they are not an evident
problem.”
 “Requirements like performance and security were hard to be represented.”
“Error tolerance was not foreseen in the process, and it led to a high degree of (software)
maintenance.”
“Discussions on non-functional requirements were too fast and superficial.”
“Scalability, capacity, safety and privacy were not discussed.”
“After DT, it is necessary that a dedicated technical team brings up the technical requirements
and a list of technical non-negotiables concerning security, maintainability, versioning and
portability.”

10

6.3 Software Development post-Workshop (Q12 to Q16)

Concerning questions 12 and 13, the average (not median) respondent claimed that the
development of the last project they participated in reached a percentage of conclusion
of 80%, whereas the deployment reached 71%.

Regarding the perception of usefulness of DT’s artifacts (question 14), respondents
averaged a value of 4.04 (in a range of 1-5), with a standard deviation of 0.94.

When we turn to requirements not foreseen in the DT Workshop that became known
during software development (questions 15 and 16), the most cited categories were of
performance (49% of respondents), maintainability (49%) and security (47%). Despite
DT’s strength on usability requirements, 32% of respondents also adhered to the sur-
facing of new requirements. Most respondents claimed the rise from new NFR from
testing (74% of respondents), developers’ input (66%) and users’ input (52%).

7 Discussion of Results

This section presents a discussion of the obtained results from the survey.

7.1 RQ1 – NFR Problems with DT

The first proposed research question aimed at identifying the existence of problems
regarding the elicitation of NFR that can arise with the Design Thinking approach. The
main identifiable problem lies in the neglect of NFR during the DT Workshop. It is also
remarkable the respondents’ consensus on a lower successful perception of all NFR
apart from usability in comparison to it, to functional requirements and to Design
Thinking altogether. Several respondents have also commented on this issue directly.

A counterpoint to this was also present: two of the 53 respondents have given feed-
back in reminding that DT’s focus is not on NFR, but on innovation. One can ponder,
however, how relevant is the DT result, should it prove unfeasible due to unidentified
NFR. The innovation effect might be somewhat unrealized without the proper guidance
that NFR can provide to help with defining what are the design constraints. One re-
spondent commented on the fragile hypotheses that the DT results were based on, which
proved to be unjustifiable when further analyzed. Another participant also pointed out
that the ideas suggested during the workshop were too superficial without the correct
guidance, and thus rendered useless. This echoes a case study by Mahe et al. [13], in
which the authors reported that DT’s focus in the future facilitates the creation of unre-
alistic expectations, and the promises of elements that are seen in the workshop are left
aside.

7.2 RQ2 – NFR discovered after the DT Workshop

The second research question aimed at identifying whether NFR not identified during
the DT workshop would become known only during the software development phase.
It was addressed with questions 15 and 16. They asked participants to point out if new
NFR have been elicited after the DT workshop (in categories), and how they became

11

known. Only 2 responses to question 16 were discarded (blanks), as it was not manda-
tory, and no answers were left blank for question 15 (also not mandatory). This brings
some evidence to the fact that not all NFR become known during the DT Workshop,
what would be expected as DT is not a requirements elicitation technique.

Despite DT’s focus on usability, 32% of respondents claimed that new usability re-
quirements also arose during software development. Also, the most problematic cate-
gories were performance, maintainability, and security. It is not possible to say whether
these new NFR are expected to arise, or if it is a potential drawback of DT.

It is reasonable to assume that DT is strongly concentrated on identifying users’ di-
rect needs and mostly in a functional manner, but short-sighted as to defining the means
of how best to accomplish them. Moreover, it offers no clear benchmarks for assessing
if said results are adequate or if additional requirements will be needed for improving
the overall quality of the underlying software project.

7.3 RQ3 – Tools for helping NFR with DT

The third research question aimed at identifying whether the software community has
tools for mitigating the issue presented and confirmed in the previous research ques-
tions. When asked about techniques that were used for eliciting non-functional require-
ments, a total of 44 support techniques were cited by respondents (question 10). How-
ever, it is conceivable that most of the techniques were simply used in the workshop as
the chosen tools of the session, and not directly as means of improving NFR elicitation.
Some of the most interesting that were cited, and it is left to be analyzed whether they
could be used to help elicit NFR are: Developer Journey, Service Blueprint, and Event
Storming.

7.4 Threats to validity

A first threat to validity is the one regarding additional RE techniques to be considered.
Each project has its own decisions regarding approaches to best elicit requirements, and
Design Thinking is not necessarily applied as a standalone approach, but rather as a
complementary one aimed at innovation. In this way, from a purely innovative perspec-
tive, it cannot be said if DT needs any structural changes. However, it’s argued that this
potential for innovation in DT might not be fully tapped, and NFR can be a key into
better understanding how to enhance it.

Another threat to validity regarding RQ2 is that some of the requirements to appear
after a DT workshop are expected due to agile software development, and that does not
necessarily implicate a shortcoming of DT. Also in this manner, it is important to notice
that this study was approached by simplifying the possible uses of integrating DT into
RE to the upfront approach: the use of workshops followed by software development.
As previously discussed, DT can also be used as a mindset or a toolbox, and also infused
into other RE processes [2, 11]. While the workshop approach is less resource-inten-
sive, it is to be expected that other manifestations of DT, such as the use of a higher
number of iterations can help mitigate the aforementioned problems.

12

It is also important to notice that, albeit this work was elaborated with the help of
several practitioners that provided valuable insights, no interviews were conducted.

8 Conclusion

This paper presented a survey conducted with software developers to analyze whether
the Design Thinking (DT) approach faces challenges with the elicitation of Non-Func-
tional Requirements in software development projects. We sent 669 invites using
LinkedIn, obtaining 53 responses. We conclude that there can be issues regarding NFR
in software development projects especially if Design Thinking is deemed as a
standalone approach for eliciting requirements.

In its current state and given DT’s focus on functional requirements and usability, it
is to be expected that any other NFR be neglected unless explicitly referenced in the
DT Workshop as a user need, and that is a complication. It is not probable, for example,
that maintainability requirements will show up during a DT Workshop, and that can
mean a missed opportunity at designing innovative solutions that properly consider said
requirement. In this way, the following RE activities can distort what has been dis-
cussed and agreed upon during the DT sessions simply because they are unachievable,
leaving unrealized innovation potential. Similar scenarios can be played out for each of
the other NFR categories.

Some users are aware of this shortcoming and turn to complementary techniques, by
using DT only to its extent of innovation and creativity. Notwithstanding, one could
ponder about the order of such techniques for better results, or even if DT’s single re-
sults are relevant without the needed additions, in the event of the presence of a NFR
that was not identified by DT and that can change the direction of the project entirely.

It is also noteworthy that several NFR can be expected during the software develop-
ment stages, and so it becomes appropriate to make provisions and adjust estimates.

References

1. Volkova, T., Jākobsone, I.: Design Thinking as a Business Tool to Ensure Continuous Value
Generation. Intellectual Economics. (2016). https://doi.org/10.1016/j.intele.2016.06.003.

2. Brenner, W., Uebernickel, F., Abrell, T.: Design Thinking as Mindset, Process, and
Toolbox. In: Design Thinking for Innovation: Research and Practice. pp. 3–21. Springer
International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-26100-3_1.

3. Plattner, H., Meinel, C., Leifer, L. eds: Design Thinking: Understand – Improve – Apply.
Springer-Verlag, Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-13757-0.

4. Vetterli, C., Brenner, W., Uebernickel, F., Petrie, C.: From Palaces to Yurts - Why Require-
ments Engineering Needs Design Thinking. IEEE Internet Computing. 17, (2013).
https://doi.org/10.1109/MIC.2013.32.

5. Beyhl, T., Giese, H.: Connecting Designing and Engineering Activities III. In: Plattner, H.,
Meinel, C., and Leifer, L. (eds.) Design Thinking Research: Making Design Thinking Foun-
dational. pp. 265–290. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-19641-1_16.

13

6. Pinto, F., Siqueira, F.L.: Problemas do Design Thinking para a Engenharia de Requisitos:
uma Revisão Sistemática da Literatura. WER 2020. 14 (2020).

7. Hehn, J., Uebernickel, F.: The Use of Design Thinking for Requirements Engineering: An
Ongoing Case Study in the Field of Innovative Software-Intensive Systems. In: 2018 IEEE
26th International Requirements Engineering Conference (RE). pp. 400–405 (2018).
https://doi.org/10.1109/RE.2018.00-18.

8. Brown, T.: Design Thinking. Harvard Business Review. 86, 84–92 (2008).
9. Kolko, J.: Design Thinking Comes of Age. Harvard Business Review. Organizational Be-

havior, 7 (2015).
10. Design Council: What is the framework for innovation? Design Council’s evolved Double

Diamond, https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-
design-councils-evolved-double-diamond.

11. Hehn, J., Mendez, D., Uebernickel, F., Brenner, W., Broy, M.: On Integrating Design
Thinking for a Human-centered Requirements Engineering,
http://arxiv.org/abs/1908.07223, (2019). https://doi.org/10.48550/arXiv.1908.07223.

12. Dobrigkeit, F., de Paula, D.: Design thinking in practice: understanding manifestations of
design thinking in software engineering. In: Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2019). pp. 1059–1069. , New York, NY, US (2019).
https://doi.org/10.1145/3338906.3340451.

13. Mahe, N., Adams, B., Marsan, J., Templier, M., Bissonnette, S.: Migrating a Software Fac-
tory to Design Thinking: Paying Attention to People and Mind-Sets. IEEE Software. 37,
32–40 (2020). https://doi.org/10.1109/MS.2019.2958646.

14. Rozante de Paula, T., Santana Amancio, T., Nonato Flores, J.A.: Design Thinking in Indus-
try. IEEE Softw. 37, 49–51 (2020). https://doi.org/10.1109/MS.2019.2959473.

15. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990. 1–
84 (1990). https://doi.org/10.1109/IEEESTD.1990.101064.

16. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830-
1998. 1–40 (1998). https://doi.org/10.1109/IEEESTD.1998.88286.

17. Glinz, M.: On Non-Functional Requirements. In: 15th IEEE International Requirements
Engineering Conference (RE 2007). pp. 21–26. IEEE, Delhi (2007).
https://doi.org/10.1109/RE.2007.45.

18. Chung, L., do Prado Leite, J.C.S.: On Non-Functional Requirements in Software Engineer-
ing. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., and Yu, E.S. (eds.) Conceptual Mod-
eling: Foundations and Applications: Essays in Honor of John Mylopoulos. pp. 363–379.
Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02463-4_19.

19. ISO/IEC JTC 1/SC 7 Software and systems engineering: ISO/IEC 25010:2011,
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/stand-
ard/03/57/35733.html, last accessed 2020/09/30.

20. Landes, D., Studer, R.: The treatment of non-functional requirements in MIKE. In: Schäfer,
W. and Botella, P. (eds.) Software Engineering — ESEC ’95. pp. 294–306. Springer, Berlin,
Heidelberg (1995). https://doi.org/10.1007/3-540-60406-5_21.

21. Carell, A., Lauenroth, K., Platz, D.: Using Design Thinking for Requirements Engineering
in the Context of Digitalization and Digital Transformation: A Motivation and an Experi-
ence Report. In: Gruhn, V. and Striemer, R. (eds.) The Essence of Software Engineering.

14

pp. 107–120. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-
3-319-73897-0_7.

22. Carroll, N., Richardson, I.: Aligning healthcare innovation and software requirements
through design thinking. In: Proceedings of the International Workshop on Software Engi-
neering in Healthcare Systems. pp. 1–7. Association for Computing Machinery, Austin,
Texas (2016). https://doi.org/10.1145/2897683.2897687.

23. Hildenbrand, T., Meyer, J.: Intertwining Lean and Design Thinking: Software Product De-
velopment from Empathy to Shipment. In: Maedche, A., Botzenhardt, A., and Neer, L.
(eds.) Software for People: Fundamentals, Trends and Best Practices. pp. 217–237.
Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31371-4_13.

24. Prestes, M., Parizi, R., Marczak, S., Conte, T.: On the Use of Design Thinking: A Survey
of the Brazilian Agile Software Development Community. In: Stray, V., Hoda, R.,
Paasivaara, M., and Kruchten, P. (eds.) Agile Processes in Software Engineering and Ex-
treme Programming. pp. 73–86. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-49392-9_5.

25. Schmiedgen, J., Spille, L., Köppen, E., Rhinow, H., Meinel, C.: Measuring the Impact of
Design Thinking. In: Plattner, H., Meinel, C., and Leifer, L. (eds.) Design Thinking Re-
search: Making Design Thinking Foundational. pp. 157–170. Springer International Pub-
lishing, Cham (2016). https://doi.org/10.1007/978-3-319-19641-1_11.

26. Linåker, J., Sulaman, S.M., Maiani de Mello, R., Höst, M.: Guidelines for Conducting Sur-
veys in Software Engineering. (2015).

27. Kitchenham, B.A., Pfleeger, S.L.: Principles of survey research part 2: designing a survey.
SIGSOFT Softw. Eng. Notes. 27, 18–20 (2002). https://doi.org/10.1145/566493.566495.

28. Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C., Sillito, J.: Qualitative research in soft-
ware engineering. Empirical Software Engineering. 16, 425–429 (2011).
https://doi.org/10.1007/s10664-011-9163-y.

29. Felderer, M., Travassos, G.H.: The Evolution of Empirical Methods in Software Engineer-
ing. In: Felderer, M. and Travassos, G.H. (eds.) Contemporary Empirical Methods in Soft-
ware Engineering. pp. 1–24. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-32489-6_1.

30. Sandelowski, M.: Sample size in qualitative research. Research in Nursing & Health. 18,
179–183 (1995). https://doi.org/10.1002/nur.4770180211.

31. Guest, G., Bunce, A., Johnson, L.: How Many Interviews Are Enough? Field Methods -
FIELD METHOD. 18, 59–82 (2006). https://doi.org/10.1177/1525822X05279903.

32. Boddy, C.R.: Sample size for qualitative research. Qualitative Market Research: An Inter-
national Journal. 19, 426–432 (2016). https://doi.org/10.1108/QMR-06-2016-0053.

33. Creswell, J.W., Poth, C.N.: Qualitative Inquiry and Research Design: Choosing Among
Five Approaches. SAGE Publications (2016).

34. Wagner, S., Mendez, D., Felderer, M., Graziotin, D., Kalinowski, M.: Challenges in Survey
Research. In: Felderer, M., Travassos, G. (eds) Contemporary Empirical Methods in Soft-
ware Engineering. Springer, Cham (2020).

