An approach for Reverse Engineering from Web
Applications into the Language of the Domain
using the LEL Glossary

Angela Verénica Granizo Rodriguez!-310000—-0001=8117-275X] 'T aandro
Antonellj!2[0000-0003-1388-0337] ' Seroio Firmenich!-410000-0001-9502-2189] ;)
Diego Firmenich?[0000-0002—7212-4454]

! LIFIA, Facultad de Informatica, UNLP. La Plata. Calle 50 y 120, S/N. Buenos
Aires. Argentina.
2 CAETI, Facultad de Tecnologia Informatica, Universidad Abierta Interamericana.
Buenos Aires. Argentina.
3 BEscuela Superior Politécnica de Chimborazo. Panamericana Sur km 1y 1/2 .
Riobamba. Ecuador

4 CONICET. Godoy Cruz 2290. Ciudad Auténoma de Buenos Aires. Argentina.

5 Departamento de Informatica, Facultad de Ingenieria, Universidad Nacional de la
Patagonia San Juan Bosco. Argentina.
{vgranizo, lanto, sergio.firmenich}@lifia.info.unlp.edu.ar
dafirmenich@ing.unp.edu.ar

Abstract. Requirement engineering plays a crucial role in the software
lifecycle, since errors made in the requirements require significant ef-
fort to be corrected in later stages. The main source of requirements
is people; however, it is common to analyze existing applications when
developing new software. This is particularly the case in the process of
reengineering. On the other hand, the language of the domain is essential
to understanding the domain and thus comprehending the requirements.
Language Extended Lexicon (LEL) is a structured glossary designed to
capture this language. This paper proposes an approach for obtaining
the language of an application domain from a web application using the
LEL glossary. The process comprises three main activities: general analy-
sis of the web application, domain language capture, and the verification
of the generated domain language. Additionally, this paper describes a
web browser extension tool designed to support the process. Finally, the
paper presents the results of a preliminary evaluation with promising
outcomes regarding the applicability of the approach.

Keywords: Reverse engineering - Software web applications - Domain
language - LEL - Software requirements - Application domain - Software
application.

1 Introduction

Requirement engineering is a very important stage in the software lifecycle, as
errors made in the requirements need a great effort to be corrected in the sub-
sequent stages [10]. Furthermore, it is a critical stage in software development

Proceedings of the 27th Workshop on Requirements Engineering (WER24), August 07-09, 2024, Buenos Aires, Argentina.
DOI: 10.29327/1407529.27-2

2 Granizo et al.

because if the requirements are not correct, the software development team will
create an artifact that will not meet the customer’s expectations [17]

Understanding the language of the application to gather requirements is cru-
cial because, essentially, if the language is not understood, it will not be possible
to write requirements, or they will not meet the necessary quality. The LEL,
which stands for "Language Extended Lexicon", is a glossary [21] to understand
the language of an application domain without the need to be concerned about
the application’s software. The LEL categorizes terms into four categories: sub-
jects, objects, verbs, and states, and employs two attributes: notion and behav-
ioral responses, to describe these terms. It has been demonstrated that the LEL
glossary is an appropriate method for capturing language. There are some early
reports about three significant characteristics of an LEL: it is easy to learn, it is
easy to use, and it has good expressiveness [15]. Besides, the LEL can be used to
obtain requirements [7]; thus, it can be considered as a first step in requirements
elicitation.

Traditional software engineering involves starting with requirements to de-
velop an application. Typically, requirements are gathered from people or doc-
umentation, but at times, people’s involvement may not be available, being the
main source of requirements. With the growth of the software industry, it has
become common to analyze existing applications to obtain requirements when
developing new software. Extracting requirements from other systems for subse-
quent development is known as reverse engineering [16].

Applications are a suitable source to understand language, as they contain
packaged knowledge about the domain [14]. Since capturing language requires
significant effort, it is crucial to have tools that simplify this task. Web browser
extension technologies allow adding applications to any web page. It would be
desirable to have a web browser extension that enables capturing the language
of an application directly from it.

The goal of this paper is to propose a method for reverse engineering to obtain
the language of an application domain from a web application. The method uses
the glossary LEL as a template to capture the language. The method is partially
supported by a tool that is a web browser extension during the domain language
capture stage. The paper also shows a preliminary validation of the method using
the SUS [12] survey.

The rest of the paper is organized in the following way. Section 2 describes the
background necessary to understand the proposed approach. Section 3 describes
the proposed approach. Sections 4 and 5 provide evidence about the applicabil-
ity of the approach. Section 6 discusses some related works. Finally, section 7
presents some conclusions.

2 Language Extended Lexicon

The Language Extended Lexicon (LEL) is a glossary that describes the language
of an application domain, where a definition of a software application is not
necessarily present. LEL aims to record the definitions of terms that belong to

An Approach for Reverse Engineering 3

a domain to “understand the language of a problem without worrying about the
problem” [20].

A prerequisite for understanding the domain involves learning the language
used in that domain (LEL), which is why building an LEL is so important.
Within an organization, experts, end-users, and customers have some knowledge
of the domain, but they have different and complementary perspectives. There-
fore, LELs must provide a unified and coherent presentation of the language used
by them. Language is represented through symbols, which can be terms or short
expressions, defined through two attributes: notion and behavioral responses.
Notion describes denotation, i.e., the intrinsic and substantial characteristics of
the symbol, while behavioral responses describe the connotation of the symbol,
i.e., the relationship between the term being described and other terms (Table

L [4]).

Table 1. Template to describe an LEL symbol

Category: symbol
Notion: description
Behavioral responses: Behavioral response 1

Behavioral response 2

Each symbol in the LEL belongs to one of four categories: subject, object,
verb, or state. This categorization guides and assists the requirements engineer
during the description of attributes. Furthermore, it allows for the organization
of domain concepts and provides a template for describing attributes. Table 2 [4]
outlines each category along with its characteristics and how to describe them.

Table 2. Template to describe LEL symbols according to its category

Category Notion Behavioral responses

Subject Who is he? What does he do?

Object What is it? What actions does it receive?

Verd What goal does it pursue? How is the goal achieved?

State What situation does it represent? What other situations can be reached?
3 Approach

The proposed approach aims to analyze a web application (this is the input
of the approach) and obtain the knowledge and requirements from it described
through its language, which constitutes the output of the approach. Particularly,

4 Granizo et al.

the proposed approach uses a glossary LEL to describe its language. Thus, the
proposed approach is a reverse engineering method, since from an application,
it obtains a specification of the knowledge and requirements where both can be
used to develop another application.

The proposed approach consists of three main stages carried out by the re-
quirements engineer: (A) general analysis of the web application, (B) domain
language capture, and (C) verification of the generated domain language. The
method is partially supported by a web browser extension during the domain
language capture stage.

Each of these stages is organized into steps, with each step involving the exe-
cution of one or more activities. This structured approach ensures thoroughness
and effectiveness in the implementation of each stage.

The first stage (general analysis of the web application) aims to conduct an
initial and preliminary study of the web application in order to understand its
goal, data, and functionality.

The second stage (domain language capture) aims to conduct a detailed
study of the web application in order to identify essential components and define
glossary expressions based on these components.

The third stage (verification of the generated domain language) aims to re-
view the definitions of the expressions, both individually and also the consistency
among different terms. Figure 1 summarizes the proposed approach. It is impor-
tant to mention that the proposed approach is not strictly a sequential pipeline,
in fact stages two and three can be performed iteratively.

STEP BY STEP GUIDE @

INPUT OUTPUT
GENERAL ANALY SIS
Web [N OF THE WiEB ::> DOMAIN
Application [~ APPLICATION LANGUAGE o ::TTEHTIE‘:-D
CATIO , - E GENERATE!
APPLICATION BOMAIN CAFTURE DOMAIN LANGUAGE LEL

&

Fig. 1. The proposed approach

The following subsections describe in detail each one of the stages. Every
stage is exemplified using a website to sell agricultural products. It provides
phytosanitary products for crop protection and nutrition, pest control, and both
general and specific agricultural consultancy. To facilitate this, it offers a cat-
egorized knowledge base of crop solutions, as well as information about local
vendors. They also offer the opportunity to contact agricultural professionals

An Approach for Reverse Engineering 5

and make inquiries. It is important to mention that the website provides infor-
mation about African professionals.

3.1 General Analysis of the Web Application

This stage (the first one of the approach), consists in turn of two steps. On one
hand, conducting a (i) general analysis of the web application to be studied,
and on the other hand, conducting an (ii) exploratory study of the application’s
domain. That is, both elements are studied: the web application and the appli-
cation’s domain.

To carry out step (i) (the general analysis of the application to be stud-
ied), it is necessary to perform three activities. First, it is necessary to navigate
the application exploratively to understand its purpose. This, in turn, should
be described in a short sentence that starts with a verb. For example: the ob-
jective of the web application Greenlife Crop Protection Africa is "supplying
phytosanitary products for crop protection, nutrition, pest control, and general
agricultural consultancy in agricultural domains in Africa".

Second, it is necessary to navigate the application in more detail in order to
create its navigation map. To create this map, squares should be used to identify
the pages, and lines with arrows to indicate the direction of the navigation. It is
important to note that pages should be identified conceptually. As an example for
clarification, consider an application that sells products; it should be identified
one square as the product description page does not matter how many products
are sold.

The Greenlife Crop Protection Africa website features a main page from
which it is possible to access three different sections: crop solutions, products,
and services. From the crop solutions page, various categories can be viewed,
ultimately allowing users to find a specific solution. In the products section,
different types of products are presented, making it easy to select a particular
one, from where it is also possible to locate a distributor. Finally, the services
section offers three options: asking a question, finding a professional agronomist,
and locating places to purchase the products. The navigation map for the website
depicted in Figure 3 is shown in Figure 2.

Figure 3 shows some snapshots from the website used. The first webpage is
the home page. Next, the webpage on the right shows the types of products,
followed by the product information. Finally, the webpage on the left presents
the page for locating a distributor. These pages can be found in the navigation
map described in Figure 2. Thus, first webpage is the root of the navigation
map. The second web page is the node "types of products" in the second level.
Then, the third web page is the node "product information" in the third level,
and the fourth web page is the node "locate a distributor" in the fourth level.

Third, it is necessary to list the general functionality that the application
provides. For example, the previously mentioned Greenlife web application is an
African website that offers the following functionalities: it provides phytosani-
tary products for crop protection and nutrition. It offers both general and specific
agricultural consulting services. It includes a knowledge base of crop solutions

6 Granizo et al.

Greanlifs Crop
Protection Africa
Home Fagze
h 4 Y h A
Solution Tvpes of Listof
Catesories products Services
Product Askz Find an Whers to
Information quastion| | Asronomist by

Locatz 2
Distributor

Fig. 2. The navigation map for Greenlife Crop Protection web application sections

Fungicides
Achieve more when
farming with us!

Find a store near you

e Mode of Action Download(s)

Fig. 3. Website example

organized by categories. It provides information about local vendors and agri-
cultural professionals.

To carry out (ii) the exploratory study of the domain, it is necessary to refer
to additional documentation based on what was obtained in (i).

3.2 Domain Language Capture

In this stage (the second one of the approach), the identification, categorization
(subject, object, verb, and state) and description of symbols are carried out.
The process involves defining the terms of the LEL (symbols) and linking them
to the web application. The notion and behavioral response for each identified
symbol should be described. It is important to note that exploring all pages of
the site is necessary to capture the domain language comprehensively.

An Approach for Reverse Engineering 7

This stage (domain capture language) is composed of three steps: (i) iden-
tify symbols and their categories, (ii) describe the notion, and (iii) describe the
behavioral responses.

The first step (identifying symbols and their categories) involves navigating
through the entire web application, using the navigation map, to identify and
categorize symbols. As a result, there will be a list of symbols, along with their
categories, and a "link" to the HTML where the symbol appears. It is worth
noting that the same symbol could be "linked" to several elements on different
pages.

The second step (describe the notion) involves defining the notion of the
symbols. It is advisable to do this as a second step because, after navigating
through the entire web application and "linking" the symbols to the HTML,
there is a better understanding of the symbols. In this way, the description of
the notion becomes more comprehensive.

The third step (describe the behavioral responses) involves writing sentences
like "a certain subject performs an action on a certain object," where the subject,
action, and object should be symbols identified in the LEL.

Regarding the activities to carry out the first step (identifying symbols and
their categories), each element of the web application should be analyzed and
categorized as a subject, object, verb, or state.

For the identification and categorization of subjects, it is necessary to rec-
ognize one of the following situations: (i) each user role, (ii) any element in the
web application (text, images, or any piece of information from any medium)
representing a person or organization must correspond to a subject symbol. Its
title is the text of a user role, person, or organization. For example, farmer,
agronomist, or company. See Figure 4.

. Home Crop Solutions v
Greenlife

Achieve more when famer

farming with us! a
f Africa

Here at Greenlife Crop Protection Africa, we offer

support to grow their know-how, market, and capital bases.

Fig. 4. Farmer Subject linked in the Greenlife web application - home page

For the identification and categorization of objects, it is necessary to rec-
ognize any element in the web application (text, images, or any piece of infor-
mation from any medium) that represents resources, tools, or data. Its title is
a common noun or a short phrase representing the passive element. For exam-
ple, 'phytosanitary product,” 'question,” ’best product,’ 'store,” ’crop solution,’
or 'technical assistant.’

8 Granizo et al.

For the identification and categorization of verbs, it is necessary to recognize
one of the following situations: (i) each button, (ii) any element of the web
application (text, images, or any piece of information from any source) that
performs an action must correspond to a verb symbol. Its title is the text of the
element, and a verb name in infinitive is chosen. For example, the verb "ask a
question" on the home page of the Greenlife web application.

States are situations in which subjects, objects, or verbs can find themselves.
For the identification and categorization of states, it is necessary to recognize any
element of the web application (text, images, or any piece of information from
any source) that can be in a certain state. Its title is the name of the transition of
the identified subject, object, or verb. For example, "pending receipt of response
to a question state".

The second step (describe the notion) involves gradually defining the notion
of the symbols identified in the first step.

The notion of the identified subject is the characteristics or conditions that
the subject satisfies. It can be specified with words such as "is," "has," or any
other characteristic. Table 3 provides an example of the farmer subject and its
notion.

Table 3. Farmer Subject - Notion

Subject: Farmer
Notion: It is an anonymous user of the web application
They navigate the website to obtain agricultural information

The notion of the identified object refers to its characteristics or attributes,
and it can be specified using words such as ’is,” ’has,” or ’is characterized by.’
For example, a question object is composed of a location, crop type, full name,
email, phone number, farming county, and the text of the question.

The notion of the identified verb refers to the goal it pursues and can be
specified through phrases that answer questions such as "what for" or "why"
the verb exists. For example, "Action to ask a question to an agronomist or
technical assistant."

The notion of the identified state is the represented situation; for example,
the pending state of receiving a response via email or phone to a question asked
by the farmer. For example, it is a situation where a farmer is waiting for the
answer of some expert from the website.

The third step (describe the behavioral responses) consists of describing the
behavioral responses of the identified symbols.

The behavioral responses of the identified subject are the actions it performs.
Table 4 provides an example of the farmer subject and its behavioral responses.
A subject may have neither notion nor behavioral responses, as in the case of
the company subject.

An Approach for Reverse Engineering 9

Table 4. Farmer Subject - Behavioral responses

Subject: Farmer
Notion: It is an anonymous user of the web application

They navigate the website to obtain agricultural information
Behawvioral responses: The farmer asks a question

The farmer consults the best phytosanitary product

The farmer searches for an agricultural topic

The farmer contacts an agronomist

The farmer consults a store

The behavioral responses of the identified object are the actions that are
performed on the object.

The behavioral responses of the identified verb involve describing the neces-
sary steps to carry out the action that the element performs. In other words,
it entails explaining how the steps or actions associated with the verb are exe-
cuted. The behavioral responses are obtained by clicking or interacting with the
element and observing the actions that are taken.

The behavioral responses of the identified state are the actions that must be
carried out to transition to another state. The subsequent state is derived from
the behavioral responses of the preceding state.

3.3 Verification of the Generated Domain Language

This involves reviewing the symbols from the stage of capturing the domain
language and making adjustments if necessary. As a result, we obtain the verified
symbols. Tt consists of three steps: (i) verification of the description of each
symbol according to the proposed template in tables 1 and 2 of the background
section, (ii) searching for repetitions, and (iii) identification of new symbols.

The first step, involving the verification of the description of each symbol
according to the proposed template (internal consistency), consists of reviewing
both the accuracy of the notion and its behavioral responses, thus achieving a
better understanding of the identified symbol. It is also possible to review the
correct definition of the symbol’s title.

In the second step, searching for repetitions (external consistency), it may
happen that the same symbol is found on the website in two different places (with
a different title) and is defined twice. In such a case, the symbol is repeated, so
a new symbol is created with both titles and the sum of the definitions. Another
case is having the same symbol repeated, and the same title is used.

The third step, the identification of new existing symbols, involves reviewing
the definition of a symbol and realizing that there is a symbol worthy of being
defined. This new symbol also has to appear on the website being analyzed. It is
added to the LEL glossary, following the steps of capturing the domain language.
Subsequently, these added symbols would be verified according to the first and
second activities of this verification stage.

10 Granizo et al.

4 Tool Support

A browser extension tool for the Google Chrome web browser was implemented
to support the application of the proposed approach during the domain language
capture stage. Figure 5 shows an example of the Greenlife Crop Protection Africa
website that has been worked on. To the right is a box with a view of the
developed web browser extension.

v O Greenlife Crop Protection Africa X+ =
3 @ % greenlifecoke b4 9 0 O 2
G0
. Home Crop Solutions v ‘ Home ‘
Greenlife —
Select Type Symbol:
Verb
Know-how for your Agribusiness VERBASKA QUESTION
Notion
. 4
Achieve more when Behavioral responses
f i ith us! ”
arming with us!

Here at Greenlife Crop Protection Africa, we offer farmers of Africa Imagen Delete

support to grow their know-how, market, and capital bases. S m.,_,. E

©; Askus a question Discover our products

Fig. 5. Web browser extension

The architecture of our tool has the following structure: a user interface layer
through a web browser extension, a microservices layer, and a data layer. Addi-
tionally, our tool was developed using JavaScript. In the front end, we utilized
the AngularJS [2] framework, while in the backend, we employed the Express
[24] framework. In addition, the database we utilized is MongoDB [22]. Our tool
operates within the web browser as an extension of it. The main functional-
ity of the web browser extension developed focuses on identifying symbols from
the LEL glossary within an already developed web application. This is achieved
through web augmentation techniques, visually capturing each DOM element
(image), its location on the site, and the XPATH of DOM object. All of this is
stored in JSON format within the database.

5 Evaluation

The proposed approach was evaluated using the web browser extension tool de-
signed to support the process. Specifically, the second stage of the approach was
assessed, involving the capture of domain language related to the identification
of symbols and categories, as well as the description of notions and behavioral
responses.

An Approach for Reverse Engineering 11

The participants in the evaluation were 12 members of a research project
at the University of the Plata, in Argentina. All participants have experience
in software development and they played the role of requirements engineers to
perform reverse engineering and had to identify an object symbol anywhere on
the IMDb (Internet Movie Database) website and write down the notion and be-
havioral responses following the proposed approach. The mentioned website is a
well-known online database for movies, television, and video games. A guide was
provided, and participants carried out the activity explained above with the sup-
port of the web browser extension. It is important to note that participants had
no experience using the LEL glossary. They received training on the proposed
approach related to the domain language capture stage before the experiment.

The System Usability Scale (SUS) [12] [13] was used to assess the applicability
of the proposed approach. Although the SUS is primarily employed to evaluate
the usability of software systems, it has proven effective in assessing processes
and products [9]. It consists of a 10-item questionnaire; each question must be
answered on a five-point scale, ranging from "1" ("Strongly Disagree") to "5"
("Strongly Agree"). Despite having 10 questions, they are paired, asking the
same question but from a complementary perspective to obtain a result of high
confidence. The SUS score is calculated as follows. Firstly, items 1, 3, 5, 7, and
9 are scored considering the ranked value minus 1. Then, items 2, 4, 6, 8, and 10
are scored considering 5 minus the ranked value. Afterward, each participant’s
scores are summed and then multiplied by 2.5 to obtain a new value ranging
from 0 to 100. Finally, the average is calculated. The approach can fall into
one of the following categories: "Not acceptable" 0-64, "Acceptable" 65-84, and
"Excellent" 85-100 [15]. The obtained score was 71.04. Therefore, the approach
can be considered "acceptable."

6 Related works

The use of reverse engineering to derive requirements from previously developed
systems has been explored from various perspectives. The approach by Hassan
et al. [19] focuses on extracting requirements from the source code of a legacy
system. Our approach aims to obtain and understand the language of a domain
from a web application using the LEL. Both approaches use reverse engineering,
but they apply to different contexts and use other methods to achieve their goals.

Similarly, with Aman et al. [1], we use reverse engineering to gather infor-
mation about requirements. However, they present a framework based on XML
that creates a UML framework to generate software requirements specifications.
Fahmi et al. highlight the concept of employing reverse engineering in applica-
tion renewal tasks [16]. This approach identifies retained functions, redundan-
cies, and reusable elements, aligning with our goal of deeper domain language
understanding through reverse engineering. Tramontana [27] introduces an ap-
proach for reverse engineering web applications, differing from our method in the
specific details of the employed methodology, particularly in the use of reverse
engineering along with UML diagram reconstruction.

12 Granizo et al.

Su et al. [26] propose an aspect-oriented software reverse engineering frame-
work for understanding crosscutting properties in legacy systems at the require-
ments level. In contrast, our approach emphasizes understanding the domain-
specific language through the LEL glossary and reverse engineering. Sabir et
al. [25], propose a model-driven reverse engineering (MDRE) framework called
"Source to Model Framework (Src2MoF)" to generate structural (class) and be-
havioral (activity) diagrams of the Unified Modeling Language (UML) from Java
source code. Both approaches share the application of reverse engineering. How-
ever, their approach produces UML diagrams, unlike ours which generates an
LEL. Bolchini et al. [11], introduces a lightweight methodology that combines
goal-directed requirements engineering and scenario-based techniques. While our
approach aims to extract the language of a domain from a web application, theirs
focuses on conceptual tools and a lightweight methodology for requirements anal-
ysis in web applications.

Mukhtar et al.[23] use general dictionaries to identify compound words that
contain fundamental or atomic words. While our approach focuses on reverse
engineering from web applications to the domain language, theirs focuses on
understanding the specific vocabulary of a software application. The applica-
tion’s vocabulary is a subset of domain language. Antonelli et al. [6] propose
and validate a strategy for collaboratively capturing the domain language us-
ing the LEL. Our approach focuses on obtaining the domain language from the
web application. Garrido et al. [18] propose an agile methodology for building
mathematical programming models using LEL and scenarios. Both approaches
use LEL to capture the domain language but differ in the specific application,
domain of interest, and methodology used. Also, Antonelli et. al [5] use Kernel
sentences as input and use cases as output. These can be integrated into the
LEL, resulting from our methodology. Besides Antonelli et al. [3] propose an ap-
proach that creates a multidimensional schema from the language of the domain
captured through the LEL. The LEL from our web application can be used as
input for this approach. In another research work, Antonelli et al. [4], propose an
approach to consider the language of the application domain, captured through
its vocabulary, to refine it and obtain a language limited to the boundaries of
the software application. In our case, the input comes from a web application,
and the output is an LEL, which could be used as input for their approach.
Other research work from Antonelli et al. [8] proposes a collaborative approach
to derive a conceptual model from specifications in natural language using kernel
sentences. Although it differs from our approach, it could be integrated into the
behavioral responses section of the LEL using kernel sentences.

7 Conclusions and future work

This paper proposes an approach for reverse engineering to obtain the language
of an application domain from a web application using the LEL glossary. The
approach consists of three main activities: general analysis of the web appli-
cation, domain language capture, and the verification of the generated domain

An Approach for Reverse Engineering 13

language. A preliminary evaluation was performed to show the applicability of
the approach. This paper also presents a web browser extension tool designed
to support the process.

The language of the domain is essential to understanding the domain and
thus comprehending the requirements and if they have errors require significant
effort to be corrected in later stages of the software development. Also, it is
common to analyze existing applications for developing new software. LEL is
a structured glossary designed to capture the language of the domain and it is
the contribution proposed in this paper that generates an LEL to extract the
language of a domain from a web application.

To refine and improve the proposed method, it is proposed to conduct a
more comprehensive evaluation through a case study. Also, the effectiveness of
the approach will be demonstrated and a baseline will be established to compare
the tool’s performance with human performance.

References

1. Aman, H., Ibrahim, R.: Reverse engineering: From xml to uml for gen-
eration of software requirement specification. In: 2013 8th International
Conference on Information Technology in Asia (CITA). pp. 1-6 (2013).
https://doi.org/10.1109/CITA.2013.6637575

2. AngularJS: https://angular.io/, accessed 2024-03-18

3. Antonelli, L., Bimonte, S., Rizzi, S.: Multidimensional modeling driven from
a domain language. Automated Software Engineering 30(1), 6 (2022).
https://doi.org/10.1007 /s10515-022-00375-5

4. Antonelli, L., Leite, J., Oliveros, A., Rossi, G.: Defining the language of the soft-
ware application using the vocabulary of the domain. Electronic Journal of SADIO
22(3), 2-14 (2023)

5. Antonelli, L., do Prado Leite, J.C.S., Oliveros, A., Rossi, G.: Specification cases: a
lightweight approach based on natural language. In: Workshop em Engenharia de
Requisitos (2021). https://doi.org/10.29327/1298728.24-5.

6. Antonelli, L., Rossi, G., Oliveros, A.: A collaborative approach to describe the
domain language through the language extended lexicon. Journal of Object Tech-
nology 16(3), 1-27 (Jun 2016). https://doi.org/10.5381/jot.2016.15.3.a3

7. Antonelli, L., Rossi, G., do Prado Leite, J.C.S., Oliveros, A.: Deriving requirements
specifications from the application domain language captured by language extended
lexicon. In: Anais do WER12 - Workshop em Engenharia de Requisitos, Buenos
Aires, Argentina, April 24-27, 2012 (2012)

8. Antonelli, L., Ville, J.D., Adorno, M., Ballestero, L., Cecconato, S., Fernandez, A.,
Maclen, G., Maltempo, G., Mattei, J., Tanevitch, L., Torres, D.: An approach to
extract a conceptual model from natural language specifications. In: Antonelli, L.,
Lucena, M., Portugal, R.L.Q. (eds.) Anais do WER23 - Workshop em Engenharia
de Requisitos, Porto Alegre, RS, Brasil, Agosto 15-17, 2022. LFS (UFRN, Brasil)
(2023). https://doi.org/10.29327/1298356.26-12

9. Bangor, A., Kortum, P.T., Miller, J.T.: An Empirical Evaluation of
the System Usability Scale. Intl. Journal of Human-Computer Inter-
action 24(6), 1-44 (2008). https://doi.org/10.1080/10447310802205776,
https://doi.org/10.1080,/10447310802205776

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

Granizo et al.

Boehm, B.W.: Software Engineering. Computer society Press, IEEE (1997)
Bolchini, D., Paolini, P.: Capturing web application requirements through goal-
oriented analysis. In: WER. pp. 16-28 (2002)

Brooke, J.: "SUS-A quick and dirty usability scale." Us-
ability evaluation in industry. CRC Press (June 1996),
https://www.crcpress.com/product/isbn/9780748404605, iSBN: 9780748404605
Brooke, J.: SUS: a retrospective. Journal of usability studies 8(2), 29-40 (2013)
Brooks, F.P.: The Mythical Man-Month. Addison-Wesley Professional, 2 edn.
(1997)

Cysneiros, L.M., do Prado Leite, J.C.S.: Using the language extended lexicon to
support non-functional requirements elicitation. In: Proceedings of the Workshop
em Engenharia de Requisitos. pp. 139-153. Buenos Aires, Argentina (2001)
Fahmi, S.A., Choi, H.J.: Software reverse engineering to requirements. In: 2007
International Conference on Convergence Information Technology (ICCIT 2007).
pp. 2199-2204 (2007). https://doi.org/10.1109/ICCIT.2007.228

Forsberg, K., Mooz, H.: The relationship of system engineering to the project cycle.
In: Proceedings of the First Annual Symposium of National Council on System
Engineering. pp. 57-65 (1991)

Garrido, A., Antonelli, L., Martin, J., Alemany, M., Mula, J.: Using lel
and scenarios to derive mathematical programming models. application in a
fresh tomato packing problem. Computers and Electronics in Agriculture 170,
105242 (2020). https://doi.org/https://doi.org/10.1016 /j.compag.2020.105242,
https://www.sciencedirect.com/science/article/pii/S0168169919317338

Hassan, S., Qamar, U., Hassan, T., Waqas, M.: Software reverse engineering to
requirement engineering for evolution of legacy system. In: 2015 5th Interna-
tional Conference on IT Convergence and Security (ICITCS). pp. 1-4 (2015).
https://doi.org/10.1109/ICITCS.2015.7293021

Leite, J., Franco, A.: A strategy for conceptual model acquisition. In: Proceedings
of the IEEE International Symposium on Requirements Engineering. pp. 243-246
(1993)

Meservy, T.O., Zhang, C., Lee, E.T., Dhaliwal, J.: The business rules ap-
proach and its effect on software testing. IEEE Software 29(4), 60-66 (2012).
https://doi.org/10.1109/MS.2011.120

Mongodb: https://www.mongodb.com/es, accessed 2024-03-18

Mukhtar, T., Afzal, H., Majeed, A.: Vocabulary of quranic concepts:
A semi-automatically created terminology of holy quran. In: 2012
15th International Multitopic Conference (INMIC). pp. 43-46 (2012).
https://doi.org/10.1109/INMIC.2012.6511467

Nodejs: https://nodejs.org/en, accessed 2024-03-18

Sabir, U., Azam, F., Haq, S.U., Anwar, M.W., Butt, W.H., Amjad, A.:
A model driven reverse engineering framework for generating high level
uml models from java source code. IEEE Access 7, 158931-158950 (2019).
https://doi.org/10.1109/ACCESS.2019.2950834

Su, Y., Zhou, X.W., Zhang, M.Q.: Approach on aspect-oriented software re-
verse engineering at requirements level. In: 2008 International Conference
on Computer Science and Software Engineering. vol. 2, pp. 321-324 (2008).
https://doi.org/10.1109/CSSE.2008.834

Tramontana, P.: Reverse engineering web applications. In: 21st IEEE Inter-
national Conference on Software Maintenance (ICSM’05). pp. 705-708 (2005).
https://doi.org/10.1109/ICSM.2005.77

