
Multi-Word Entity Extraction And Rich Relationship 

Identification To Derive Conceptual Models From 

Natural Language Specifications 

Giuliana Maltempo1[0009-0005-7441-5828], Juliana Delle Ville1[0009-0007-7888-7544],  

Santiago Cecconato1[0009-0005-1715-4713], Federico Pellegrino1[0009-0008-4809-2406],  

Damiano Distante2[0000-0002-8467-535X], and Leandro Antonelli1,3[0000-0003-1388-0337] 

1 LIFIA, Fac. de Informática, UNLP, La Plata, Bs. As., Argentina 
2 University of Rome Unitelma Sapienza 

3 CAETI - Facultad de Tecnología Informática - Universidad Abierta Interamericana 

{gmaltempo, jdelleville, sceconato, lanto}@lifia.info.unlp.edu.ar 

pampapellegrino@gmail.com 

damiano.distante@unitelmasapienza.it 

Abstract. Requirements engineering is a critical phase in software development. 

Errors in requirements specifications may become costly problems later on; 

therefore, such errors should be found and corrected early in the engineering pro-

cess. Describing requirements in natural language is propitious for both the do-

main experts and the software development team. However, natural language 

may give rise to diverse interpretations as a consequence of the different back-

grounds of the two participants involved. It is therefore necessary to provide 

guidance on the specification of unambiguous requirements. In previous work, 

we have advanced the notion of kernel sentences as an appropriate structure for 

the specification of knowledge. We have also discussed conceptual models as a 

useful technique to summarize specifications so that all participants have a con-

cise overview of the domain. To achieve consistent and coherent specifications, 

we presented a two-step method: first compliance with kernel format is checked, 

and then a conceptual model is derived to summarize the knowledge gathered. 

This paper extends the conceptual model previously derived from kernel sen-

tences by identifying multi-word entities and establishing various new relation-

ships among entities. This is intended to help achieve better quality specifica-

tions. We also describe a prototype that uses natural language processing and 

artificial intelligence tools to support the method. Finally, we present the results 

of a preliminary evaluation of our method, which show a promising applicability. 

Keywords: Requirements specification, Kernel sentences, Conceptual model, 

Natural language. 

Proceedings of the 27th Workshop on Requirements Engineering (WER24), August 07-09, 2024, Buenos Aires, Argentina. 
DOI: 10.29327/1407529.27-5

mailto:pampapellegrino@gmail.com


2  G. Maltempo et al. 

 

   

 

1 Introduction 

Requirements engineering is a critical phase in software development. Errors arising 

from faulty requirements specifications could be 200 times more expensive to fix in 

later stages; therefore, such errors should be found and corrected as early as possible in 

the engineering process [5].  

Two different groups of people take part in the requirements phase: clients (or do-

main experts), and the software development team. Clients state their needs and provide 

knowledge to be included in the software application. The development team must un-

derstand said needs and knowledge in order to provide the clients with a satisfactory 

software application. Clients and developers belong to different worlds and express 

themselves through different specialised languages [31]. The former group uses the 

language of the relevant domain (e.g., agriculture, finances, etc.), whereas the develop-

ment team uses the jargon of computer science. Using natural language artifacts that 

are intelligible to both parties is the most suitable course of action for bridging this 

communicative gap [23]. However, natural language specifications are not free of de-

fect. 

Natural language may give rise to diverse interpretations, in part as a consequence 

of the different backgrounds of the participants involved in the requirements process 

[28]. It is therefore necessary to provide guidance on the specification of unambiguous 

requirements. Ambiguity is the possibility of attributing diverse interpretations to one 

expression. The source of ambiguity may lie in a single word, a phrase, or even a whole 

sentence. Furthermore, ambiguities may manifest as the result of an inadequate form of 

expression as well as from incomplete information [4]. Requirements specifications are 

generally described in long, complex sentences, thus increasing the probability that they 

present some sort of ambiguity [14]. Also, the context in which specifications are pro-

duced usually differs from their context of interpretation, giving raise to further chal-

lenges [29].  

In view of the need to simplify requirement descriptions while also preventing the 

problems of decontextualization, we advance the notion of ‘kernel sentences’ as a use-

ful point of departure to specify requirements. A kernel sentence (KS) is defined as a 

simple, declarative sentence with only one verb, all the arguments of which are overt 

and explicit. 

KSs are simple and self-contained units which can help reduce some of the ambigu-

ities found in requirements specifications [7]. In order to solve other issues, such as 

duplication and inconsistency, Zhao et al. [38] recommend that the requirements be 

summarised and organised using a model synthesis technique. The synthesis of a large 

set of requirements into a conceptual model not only improves their quality but is an 

interesting technique for coping with the complexity of the domain [11]. 

This paper proposes a method that receives a natural language specification as input, 

inspects it for compliance with KS structure, and summarises the specification by de-

riving from the input text a conceptual model that includes entities and relationships. 

Our method is intended to help the requirements engineer achieve better quality speci-

fications, and can be applied under various circumstances. For instance, if employed by 

an individual analyst who elicits requirements from different people, the method could 



 Multi-Word Entity Extraction And Rich Relationship Identification 3 

   

 

help achieve a consolidated summary of the whole landscape, providing the analyst 

with a consistent and coherent specification. More significantly, the method could be 

used by a group of analysts working together, so the resulting conceptual model ensures 

the consistency of requirements. Finally, if an organisation already has a large amount 

of consolidated documentation that needs to be better organised, the method could help 

in this challenge. 

This is a revised version of the method presented in Antonelli et al. [1]. Improve-

ments on the identification of multi-word entities and different types of relationships 

are described. This paper also describes a prototype that was developed to support the 

proposed method. This prototype manages different types of requirements specifica-

tions in natural language (ranging from plain text to complex Use Cases), checks KS 

structure, and renders a conceptual model graphically. Finally, the paper presents some 

preliminary evaluations of the method presented in [1] using SUS survey [8][9] to 

measure its applicability. We assessed (i) the recommendation to improve specifica-

tions by applying KSs, and (ii) the summary resulting from the conceptual model. The 

prototype tool was not assessed. 

The rest of the paper is organised as follows: Section 2 defines kernel sentences. 

Section 3 details our contribution, namely the method proposed. Section 4 describes 

the tool that supports the method. Section 5 presents the preliminary evaluation. Section 

6 is a review of some related work. Finally, Section 7 discusses our conclusions. 

2 Kernel Sentences 

Kernel sentences (sometimes referred to as ‘basic sentences’) are those with a minimal 

number of obligatory grammatical attributes. This means that a kernel sentence fulfils 

the following basic conditions [26]: 

(1) It has only one verbal head. 

(2) It is unmarked in mood, therefore it is declarative. 

(3) It is unmarked in voice, therefore it is in the active voice. 

(4) It is unmarked in polarity, therefore it is affirmative. 

This theoretical construct was first introduced in 1957 by Z. S. Harris [18] and fea-

tured in the early work of Noam Chomsky [10]. Broadly, these grammarians have ar-

gued that the more complex (non-kernel) structures are built upon a number of simpler 

underlying elements (the kernel forms). Thus, a sentence such as “The ripe tomatoes 

are harvested by a farmer” can be decomposed into the following kernels: “The toma-

toes are ripe,” and “A farmer harvests the tomatoes.” 

Alternatively, a KS could be understood as a primitive construction which has not 

undergone any transforms. This would also exclude the processes of deictic reference 

and ellipsis. Deixis is the use of a word such as a pronoun or adverb to refer to some-

thing in the context instead of naming it. For instance, in “He buys supplies there,” the 

pronoun “he” points to a male third person in the singular, whereas “there” is a location 

far from the speaker—who this person is, and where the supplies are actually bought, 

must be inferred from context. Ellipsis, on the other hand, is the omission of words that 

are recoverable from the context. In other words, the name of an entity is substituted 



4  G. Maltempo et al. 

 

   

 

with an empty element. Thus, in the sentence “The farmer fertilizes in the summer,” 

the direct object of “fertilize” has been elided and, again, what is fertilized must be 

inferred from context. The last two examples are not kernel sentences, whereas the fol-

lowing are: “The stock manager buys supplies at ABC depot,” “The farmer fertilizes 

the soil for tomatoes in the summer.” Put in formal terms, kernel sentences should also 

meet the following conditions: 

(5) All verbal arguments are overt. 

(6) All verbal arguments have explicit (i.e., non-deictic) referents. 

In sum, kernel sentences are defined by conditions (1)-(6). This notion will serve as 

a useful point of departure for improving requirements specifications by reducing 

sources of ambiguity. 

3 Our Contribution 

We devised a method for deriving a rich conceptual model from a set of specifications 

described in natural language. This method makes it possible to (i) extract relevant en-

tities (such as actors and resources), (ii) identify the behaviours associated with each 

entity, and (iii) establish various kinds of relationship among entities. 

Our approach consists of two steps: first, the input (a set of specifications described 

in natural language) is checked for compliance with KS format; and second, a concep-

tual model is derived by applying a set of heuristic rules. 

This approach can be applied to different kinds of artifacts, ranging from plain text 

specifications to more structured artifacts such as User Stories or Use Cases. It is im-

portant that the artifacts contain sentences in kernel format. Therefore, the first step of 

our approach consists in checking sentence by sentence to ensure that kernel format is 

used throughout. At this stage, the analyst should look for sentences containing tacit 

subjects, multiple verbs, verbs in the passive voice, and any other feature that is not 

compatible with kernel format. The sentences are rewritten as necessary. It may be 

necessary to consult with the experts to fill in any missing information or to resolve 

ambiguities. 

Once kernel sentence verification is completed, a conceptual model can be derived. 

In our approach, this is done by analysing the syntactic dependencies established by the 

verb. First, the main verb of the sentence is identified and classified. Depending on the 

type of verb, we can distinguish relationships (which relate two entities) and behaviours 

(which apply to single entities). Next, we look for the relevant entities affected by the 

verb. In other words, it is necessary to identify the main verbal arguments—that is, 

subject and objects [3]. Subjects and objects are expressed as noun phrases (NP), which 

can be structurally complex. In our approach, attention is directed first to the nominal 

heads directly dependent on the verb. Multi-word entities are then extracted by exploit-

ing the NP. Finally, the appropriate relationships/behaviour is assigned to the entities 

thus identified. Figure 1 summarizes our approach.  

Let’s consider an example. The following specification, although grammatically cor-

rect, does not satisfy KS format: “The client of the bank opens and closes an account. 

The client deposits and withdraws in the account.” The analysis performed in the first 



 Multi-Word Entity Extraction And Rich Relationship Identification 5 

   

 

step of our approach will reveal that there are multiple verbs within the sentences. This 

feedback will require that the analyst confirm whether the four actions (opening, clos-

ing, depositing, and withdrawing) can all be performed by the client. The sentences are 

rewritten accordingly.  

 

 
Fig. 1. Synthesis of our approach. 

 

Now let’s consider how a conceptual model is derived from the revised KS “The 

client of the bank opens an account.” The main verb is “open,” which is classified as a 

transitive verb. Following our heuristics (described in 3.1), this means that a non-hier-

archical relationship is established between two entities, and that one of the entities 

possesses the behaviour “to open”. There are three nouns in this sentence: “client,” 

“bank,” and “account.” However, only two of them depend directly on the verb, namely 

“client” (which is the subject head) and “account” (the direct object head). 

So far in our example we identified a non-hierarchical relationship between the sim-

ple entities “client” and “account.” Next, we verify whether these entities can be ex-

tended by exploring the noun phrases of which they are heads. Applying further rules, 

we can finally recognize a complex entity “client of the bank.” Figure 2 summarizes 

this example.  

Continuing our example, let’s consider the revised sentence “The client deposits in 

the account.” Again, the analysis begins by identifying the verb “deposit,” which also 

establishes a non-hierarchical relationship between two entities. However, there is only 

one NP head directly related to the verb, namely “client.” Analysis of syntactic depend-

encies reveals that a direct object is missing: the client deposits what in the account? 

(Here “account” belongs to the prepositional phrase headed by “in”; normally a 

Specification 

Kernel Sentence Checking 

Revised Specification 

Conceptual Model 

Conceptual Model Derivation 

Identify verb 
Identify relevant 

NP heads 

Analyse com-

plex NP 



6  G. Maltempo et al. 

 

   

 

prepositional phrase cannot be a direct object.) This example shows how conceptual 

model derivation may reveal omissions, inconsistencies and other kinds of errors in the 

requirements, implying that the sentence needs further revision. Thus the upward arrow 

in Figure 1. 

 

 
Fig. 2. An example of conceptual model derivation. 

 

The following subsections describe the heuristic rules that are applied to derive a 

conceptual model. 

3.1 Identifying Relationships And Behaviour 

Our method begins by identifying a verb and classifying it in order to determine which 

kind of relationship it establishes, how many entities are affected, and which entity 

actually realizes the behaviour. 

We distinguish three types of relationship:  

(i) hierarchical relationships (also known as “is a” relationships) 

(ii) non-hierarchical relationships (also known as “knowledge” relationships) 

“The client of the bank opens and closes an account. The 

client deposits and withdraws in the account.” 

Kernel Sentence Checking 

“The client of the bank 

opens an account.” 

Conceptual Model Derivation 

“open” 
“client” 

“account” 

“client of the 

bank” 



 Multi-Word Entity Extraction And Rich Relationship Identification 7 

   

 

(iii) possessive relationships (which include both aggregation and composition 

relationships) 

We also classified verbs into four groups, each of which is associated to a particular 

type of relationships. The four groups are: (i) copulative verbs; (ii) possessive verbs; 

(iii) transitive verbs; and (iv) intransitive verbs. 

First, copulative verbs (such as “to be”) establish a hierarchical relationship between 

two entities and no behaviour. The subject of a copulative sentence is the subclass, 

whereas the superclass is either the nominal attribute or a concatenation of the nominal 

subject and the adjectival attribute. Figure 3 shows an example of each case. 

 

NP + Copulative verb + NP NP + Copulative verb + AdjP 

A cow is an animal. The account is empty. 

  
Fig. 3. Hierarchical relationships derived from copulative structures. 

 

A second group consists of verbs with a possessive meaning, such as “have,” “in-

clude,” or “contain.” These verbs establish a possessive (part-whole) relationship be-

tween two entities and no behaviour. The subject is the ‘possessor’, and the direct object 

is the ‘possessed.’ We also include in this group the existential structure “there is/there 

are”. In this case, the ‘possessor’ is contained in the locative prepositional phrase and 

the ‘possessed’ is the attribute of the verb “be.” Figure 4 shows examples of possessive 

sentences.  

 

The cow has four legs. There is money in the account. 

(= The account has money) 

  
Fig. 4. Possessive relationships. 

 

The third group is that of transitive verbs, that is, verbs which take a subject and at 

least one object, such as “buy,” “activate,” or “send.” These verbs establish a non-hier-

archical relationship between the subject and object entities, and indicate a behaviour 

of the direct object entity. Figure 2 above contains an example of transitive verb “open.” 

Finally, the fourth group includes two types of verbs: (a) intransitive verbs, that is, 

verbs which do not take any objects, such as “wait,” “bloom,” or “shake;” and (b) re-

flexive verbs, or verbs where the subject and object are the same entity, as in “The door 

locks automatically.” These verbs do not establish any relationship but only indicate a 

behaviour of the subject entity. Figure 5 shows examples with verbs in this group. 



8  G. Maltempo et al. 

 

   

 

Many verbs can be either transitive or intransitive, sometimes with a difference in 

meaning. The analyst must not mistake a transitive structure with an elided object (as 

in “The client deposits in the account,” see above) for an intransitive structure. 

 

(a) The tomato fruit ripens after 30 days. (b) The door locks automatically. 

  
Fig. 5. An intransitive verb (a) and a reflexive verb (b). 

3.2 Extracting Multi-Word Entities 

Once the heads of the subject and object NPs have been identified, multi-word entities 

can be extracted by finding the syntactic dependents of these heads. Related research 

in the area of terminology extraction have shown that specific NP patterns are language- 

and domain-dependent (e.g. [33][13]).  

We suggest looking for the longest possible NP, ignoring purely functional elements 

such as determiners “the” and “a”. Since our approach is based on kernel sentences, 

which by definition have only one verb, the complexity of NPs is reduced significantly. 

Consequently, multi-word entities will generally be expressed by means of a noun com-

bined with other nouns, adjectives, and/or prepositional phrases. Also, by searching 

first for the subject and object heads, which always have associated relations or behav-

iours, the burdensome task of filtering through empty candidate entities is eased. 

A multi-word entity could be decomposed into further entities, with associated rela-

tions and behaviours. Such possibility, however, will not be considered in this article. 

4 Supporting Tool 

A software tool was implemented to support the method proposed in this article. The 

prototype is a web application with a service-oriented architecture. The core of the ap-

plication and its services are implemented in Python [32], whereas the web components 

use Django [12], and the APIs use Flask [15]. Python is also used to communicate with 

natural language processing libraries provided by Spacy [36] and NLTK [27]. The ap-

plication is responsive; users can therefore contribute to the acquisition of knowledge 

from a variety of platforms such as desktop computers and mobile phones. 

The prototype implements two user roles: (i) project administrators, and (ii) users 

(experts and analysts). Project administrators create a project, add users, and define the 

type of artifact to be used for the specifications. The artifacts are based on natural lan-

guage. The prototype provides the means to define a structure for the artifacts. For ex-

ample, instead of using plain sentences the structure could be defined as User Stories 

with three attributes (“As a,” “I want,” and “so as to”) or as Use Cases with more at-

tributes (id, actor, goal, happy path, alternative path, exceptional path, and so on). 

Experts and analysts can contribute by adding new artifacts or editing someone 

else’s artifacts. While the user types in the specification text, the prototype checks for 



 Multi-Word Entity Extraction And Rich Relationship Identification 9 

   

 

compliance with kernel format. If a conflict is detected, the cause of the error is in-

formed to the user. Figure 6 is a screenshot showing that non-kernel lack of subject was 

detected. 

 

 
Fig. 6. The prototype detected a non-kernel sentence. 

 

Among other features, the prototype implements a module that derives a UML class 

diagram from a set of natural language sentences. The module consists of five main 

subprocess that are run in the following order: (i) a subprocess identifies and classifies 

the sentence root; (ii) a subprocess identifies the subject and object heads, and creates 

a preliminary relationship record depending on the type of root; (iii) a subprocess cre-

ates a preliminary behaviour record, depending on the type of root; (iv) a subprocess 

extracts multi-word entities by matching patterns that contain the subject and object 

heads and updates the relationship and behaviour records; and finally (v) a subprocess 

merges all the relationship and behaviour records into individual class records contain-

ing entity name, relationships (including relationship type and target entity), and asso-

ciated behaviours. This information is finally translated into a UML class diagram using 

the PlantUML [30] framework. 

The module uses Spacy’s dependency matcher [37] to process the syntactic relations 

among sentence tokens. In contrast with traditional matchers, the dependency matcher 

allows us to analyse patterns independently of the position of tokens in the sentence. 

Dependency matchers are particularly useful when analysing languages with a flexible 

word-order such as Spanish. 

5 Preliminary Evaluation 

This section describes an evaluation of the approach proposed in [1], upon which the 

current article is based. The former approach also describes a method to derive simple 

conceptual models from kernel sentences. The results of this evaluation will serve as a 

point of comparison for the new approach proposed here (evaluation in progress). 

We assessed the applicability of the processes of kernel sentence checking and con-

ceptual model derivation. The evaluation was applied to the domain of agriculture using 

scenarios [21]. In particular, a set of existing scenarios describing the process of tomato 

production was used. The content of the scenarios ranged from basic agricultural con-

cepts to advanced concepts and techniques. The participants to the evaluation were 14 

students of a post-graduate course on requirements engineering. All participants had 

experience in the industry of software development; however, none of them had 



10  G. Maltempo et al. 

 

   

 

experience as farmers (except for some basic experience related to agriculture, mainly 

gardening). Thus, the participants played the role of requirements engineers who ob-

tained information from domain experts (farmers) and needed to consolidate the 

knowledge gathered through scenarios. 

We provided the participants with the scenarios and asked them to check for com-

pliance with KS format and to rewrite the scenarios when necessary. Since KS rules are 

based on intuitive linguistic competence, the participants were able bring the scenarios 

to KS format with ease. Once the scenarios had been corrected, we asked the partici-

pants to apply the rules proposed in [1] to derive a conceptual model. The participants 

worked on artifacts they had not written and were able to improve them. The partici-

pants were also able to derive a conceptual model from the artifacts. After the evalua-

tion, the participants showed a good understanding of the knowledge described in the 

scenarios.  

The Systems Usability Scale (SUS) [8][9] was used to evaluate the results of the 

case study regarding the applicability of the former approach. Although SUS is mainly 

applied to the assessment of software systems usability, it has proved to be an effective 

means to assess products and processes [2]. SUS consists of a ten-item questionnaire. 

Each question must be marked on a scale ranging from 1 (“Strongly disagree”) to 5 

(“Strongly agree”). The ten items are grouped in pairs asking the same question from a 

complementary point of view in order to obtain high confidence results. Calculation of 

the SUS score is performed as follows: first, items 1, 3, 5, 7, and 9 are scored consid-

ering the value ranked minus 1; then items 2, 4, 6, 8, and 10 are scored considering 5 

minus the value ranked. Next, each participant’s scores are added up and multiplied by 

2.5 to obtain a new value ranging 0-100. Finally, the average is calculated. There are 

three possible outcomes: “Non acceptable” 0-64, “Acceptable” 65-84, and “Excellent” 

85-100 [25]. The score obtained in our evaluation was 69.73; thus the approach is con-

sidered “Acceptable.” 

6 Related Work 

This is a revised version of the method presented in Antonelli et al. [1]. We take from 

their work the concept of KS and adjust it by adding two more conditions to the defini-

tion. Also, instead of separating the identification of entities and relationships as two 

different processes, we reorganised the algorithm so that entity extraction relies on re-

lationship identification. This logical reorganisation of both processes, which distin-

guishes our contribution from most other related works, enables us to reduce the num-

ber of meaningless entities in the derived conceptual model.  

Shuttleworth et al. [35] propose a semi-automatic approach to generate a conceptual 

model from descriptions of a phenomenon. Narratives describing the problem are trans-

formed into a list of concepts and relationships and visualized using a network graph. 

They use pattern-based grammatical rules and an NLP dependency parser as we do, but 

they do not use machine learning techniques. Moreover, they are concerned about sim-

ulation process.  



 Multi-Word Entity Extraction And Rich Relationship Identification 11 

   

 

Robeer et al. [34] and Lucassen et al. [24] propose a method to derive conceptual 

models automatically from User Stories. Their main aim, however, is to identify de-

pendencies, redundancies, and conflicts. Also, they advocate for a fully automated ap-

proach with no human participation, whereas we believe that human participation is 

vital in the interactive construction of knowledge. Gupta et al. [17] also are interested 

in User Stories and attempt to solve the problem of ambiguity through the derivation of 

a conceptual model. Their approach is iterative and incremental, providing information 

while the User Stories are described.  

Fliedl et al. [16] describe the work performed within the NIBA project and present 

a strategy to analyse complex sentences such as 'if/then-constructions' and to transform 

them into dynamic model components. Although this is not a classical conceptual 

model, their analysis of conditional sentences is interesting. More recently, Kop et al. 

[20] focus on semi-automatic derivation. They claim that there is no direct correspond-

ence between natural language elements (e.g., words) and conceptual model elements, 

and therefore require the transformation into an interlingua, wherein the designer plays 

an important part. 

Letsholo et al. [22] propose a tool for automatically constructing analysis models 

from natural language in the context of model driven development. Their approach re-

lies on a set of conceptual patterns. Although interesting, the results of their approach 

are conditioned by the patterns used. Kashmira et al. [19] concentrate on the derivation 

of an entity relationship model from natural language specifications. Thus they only 

deal with concepts (entities and attributes), relationships, and constraints, whereas our 

approach is concerned with entities, relationships, and behaviours. Bogatyrev et al. [6] 

present a framework for conceptual modelling and advance modelling techniques that 

combine the usage of conceptual graphs and Formal Concept Analysis. Conceptual 

graphs serve as semantic models of text sentences and the data source for formal context 

of concept lattice. We believe that incorporating semantic analysis can improve the 

analysis in general domains; however, specific application domains usually have spe-

cific semantics that cannot be captured by general tools. 

7 Conclusions And future work 

This paper presents an approach to derive a conceptual model from specifications writ-

ten in natural language. The proposed approach also provides guidance on the writing 

of specifications, suggesting the adoption of kernel format to reduce ambiguity. We 

also describe a software prototype that uses natural language processing and artificial 

intelligence tools to support the method. Further work is needed to continue improving 

the prototype. For instance, it would be interesting to evaluate LLMs for such processes 

as KS compliance checking. Our main concern, however, is the improvement of the 

method, and not to develop a full application. 

The approach can be used in different circumstances: to summarize documents pro-

duced by other people, to consolidate and summarize specifications elicited by a single 

analyst from multiple sources, or to consolidate and summarize requirements produced 

collaboratively by a group of analysts or experts. In either case, the objective of the 



12  G. Maltempo et al. 

 

   

 

approach is to provide an overview of the consolidated knowledge in order to obtain 

consistent and coherent specifications. 

Our contribution is part of a greater enterprise. Our aims are not restricted to a par-

ticular type of artifacts but rather consider different inputs, including large documents 

produced for legacy systems, short pieces of information such as instant messaging 

produces, and specifications produced by experts. We have already developed and 

tested some pieces of the general approach and continue working in the development 

of the tool, mainly improving its usability and correcting performance issues. Usability 

is essential to make users adopt the tool, and hence the approach. Performance concerns 

are also important insofar as different strategies to check conditions and to derive new 

information are time consuming. New evaluations of the revised method remain to be 

done. 

Acknowledgments. This paper is partially supported by funding provided by the STIC AmSud 

program, Project 22STIC-01. 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article.  

References 

1. Antonelli, L., Delle Ville, J., Adorno, M. A., Ballestero, L. P., Cecconato, S. A., Fernández, 

A., Maclen, G., Maltempo, G., Mattei, J. E., Tanevich, L., Torres, D.: An Approach to Ex-

tract a Conceptual Model from Natural Language Specifications. In: Workshop in Require-

ments Engineering (WER), Porto Alegre, Brazil (2023) DOI 10.29327/1298356.26-12 

2. Bangor, A., Kortum, P. T., Miller, J. T.: An empirical evaluation of the system usability 

scale. Intl. Journal of Human–Computer Interaction 24(6), 574-594 (2008)  

3. Bashir, N., Bilal, M., Liaqat, M., Marjani, M., Malik, N., Ali, M.: Modeling Class Diagram 

using NLP in Object-Oriented Designing. In: 2021 National Computing Colleges Confer-

ence (NCCC), pp. 1-6, Taif, Saudi Arabia (2021) 

4. Berry, D., Kamsties, E., Krieger M.: From Contract Drafting to Software Specification: Lin-

guistic Sources of Ambiguity. Handbook, University of Waterloo (2003) 

5. Boehm, B.W.: Software Engineering, Computer society Press, IEEE (1997) 

6. Bogatyrev, M., Samodurov, K.: Framework for Conceptual Modeling on Natural Language 

Texts. CDUD@CLA, 13-24 (2016) 

7. Boyd, N. S.: Using Natural Language in Software Development. Journal of Object-Oriented 

Programming - Report on Object Analysis and Design, 11-9 (1999)  

8. Brooke, J.: SUS-A quick and dirty usability scale. In: Jordan, P. W., Thomas, B., McClel-

land, I. L., Weerdmeester, B. (eds.), Usability evaluation in industry, pp. 189-194 (1996)  

9. Brooke, J: SUS: a retrospective. Journal of usability studies 8(2), 29-40 (2013) 

10. Chomsky, N.: The Logical Structure of Linguistic Theory. Plenum Press, New York (1975) 

11. Dick, J., Hull, E., Jackson, K.: Requirements Engineering, 4th edition, Springer (2011)  

12. Django Homepage, https://www.djangoproject.com/, last accessed 2024/03/15 

13. Fang, A. C., Cao, J., Song, Y.: A New Corpus Resource for Studies in the Syntactic Char-

acteristics of Terminologies in Contemporary English. In: TIA (2009) 

https://dblp.org/db/conf/cla/cdud2016.html#BogatyrevS16
http://www.educery.com/papers/rhetoric/road/
https://www.djangoproject.com/


 Multi-Word Entity Extraction And Rich Relationship Identification 13 

   

 

14. Ferrari, A., Spagnolo, G. O., Gnesi, S.: PURE: A Dataset of Public Requirements Docu-

ments. In: 25th International Requirements Engineering Conference (RE), pp. 502-505, Lis-

bon, Portugal (2017) 

15. Flask Documentation, https://flask.palletsprojects.com/, last accessed 2024/03/15 

16. Fliedl, G., Mayerthaler, W., Winkler, C., Kop, C., Mayr, H. C.: Enhancing requirements 

engineering by natural language based conceptual predesign. In: IEEE International Confer-

ence on Systems, Man, and Cybernetics (Cat. No.99CH37028), pp. 778-783, Tokyo, Japan 

(1999)  

17. Gupta, A., Poels, G., Bera, P.: Creation of Multiple Conceptual Models from User Stories – 

A Natural Language Processing Approach. In: Advances in Conceptual Modeling. ER 2019. 

Lecture Notes in Computer Science, vol 11787. Springer (2019) 

18. Harris, Z. S.: Co-Occurrence and Transformation in Linguistic Structure. Language 33(3-1) 

283-340 (1957) 

19. Kashmira, P. G. T. H., Sumathipala, S.: Generating Entity Relationship Diagram from Re-

quirement Specification based on NLP. In: 3rd International Conference on Information 

Technology Research (ICITR), pp. 1-4, Moratuwa, Sri Lanka (2018) 

20. Kop, C., Fliedl, G., Mayr, H.: From Natural Language Requirements to a Conceptual Model. 

In: International Workshop on Design, Evaluation and Refinement of Intelligent Systems 

(DERIS2010), pp 646-67 (2010) 

21. Leite, J. C. S. d. P., Rossi, G., Balaguer, F., Maiorana, V., Kaplan, G., Hadad, G., Oliveros, 

A.: Enhancing a requirements baseline with scenarios. Requirements Engineering 2(4), 184-

198 (1997) 

22. Letsholo, K. J., Zhao, L., Chioasca, E. V.: TRAM: A tool for transforming textual require-

ments into analysis models. In: 28th IEEE/ACM International Conference on Automated 

Software Engineering (ASE), pp. 738-741, Silicon Valley, CA, USA (2013) 

23. Lim, S. L., Finkelstein, A.: StakeRare: Using Social Networks and Collaborative Filtering 

for Large-Scale Requirements Elicitation. IEEE transactions on software engineering 38(3) 

707-735 (2012) 

24. Lucassen, G., Robeer, M., Dalpiaz: Extracting conceptual models from user stories with 

Visual Narrator. Requirements Engineering 22, 339–358 (2017)  

25. McLellan, S., Muddimer, A., Peres, S. C.: The effect of experience on System Usability 

Scale Ratings. Journal of Usability Studies 7, 56-67 (2012)  

26. Moitra, S.: Generative Grammar and Logical Form. In: Pranab, K. S. (ed.), Logic Identity 

and Consistency. Allied Publishers (1998) 

27. NLTK Documentation, https://www.nltk.org/, last accessed 2024/03/15 

28. Norlyk, B.: Miscommunication and discourse practices in occupational cultures. Interna-

tional Journal of Applied Linguistics 6(1), 7-20 (1996) 

29. Nystrand, M.: The Role of Context in Written Communication. The Nottingham Linguistic 

Circular 12(1), 55-65 (1983)  

30. PlantUML Homepage, https://plantuml.com/, last accessed 2024/03/15 

31. Potts, C.: Using schematic scenarios to understand user needs. In: Proceedings of the 1st 

conference on Designing interactive systems: processes, practices, methods, & techniques 

(1995) 

32. Python Homepage, https://www.python.org/, last accessed 2024/03/15 

33. Rico, M., Calleja, P., Martin, P., and Montiel, E.: Extracting terminologies in the legal do-

main: a syntactic pattern-based approach for Spanish. In: Iberlegal workshop at JURIX con-

ference (2019) 

https://flask.palletsprojects.com/
https://www.nltk.org/
https://plantuml.com/
https://www.python.org/


14  G. Maltempo et al. 

 

   

 

34. Robeer, M., Lucassen, G., van der Werf, J. M. E. M., Dalpiaz, F., Brinkkemper, S.: Auto-

mated Extraction of Conceptual Models from User Stories via NLP. In: 24th International 

Requirements Engineering Conference (RE), pp. 196-205, Beijing, China (2016) 

35. Shuttleworth, D. Padilla, J.: From Narratives to Conceptual Models via Natural Language 

Processing. In: 2022 Winter Simulation Conference (WSC), pp. 2222-2233, Singapore 

(2022) 

36. SpaCy Homepage, https://spacy.io/, last accessed 2024/03/15 

37. SpaCy Dependency Matcher, https://spacy.io/api/dependencymatcher, last accessed 

2024/03/15 

38. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E., Batista-

Navarro, R. T.: Natural Language Processing for Requirements Engineering: A Systematic 

Mapping Study. ACM Computing. Surveys 54(3) 1-41 (2021) 

https://spacy.io/
https://spacy.io/api/dependencymatcher

