
Requirements Documentation Containing Natural
Language: A Systematic Tertiary Literature

Review

Larissa Pereira Gonçalves[0000−0002−3355−9527], Edna Dias
Canedo[0000−0002−2159−339X], Daniel Alves da Silva[0000−0001−7617−6609], Carlos

Eduardo Lacerda Veiga[0000−0002−2677−1458], Rafael Timóteo de Sousa
Junior[0000−0003−1101−3029], and Fábio Lúcio Lopes de

Mendonça1[0000−0001−7100−7304]

University of Brasilia (UnB), Brasilia – DF, Brazil
larissa.goncalves@redes.unb.br, ednacanedo@unb.br,

daniel.alves@redes.unb.br, carlos.veiga@agu.gov.br,desousa@unb.br,
fabio.mendonca@redes.unb.br

Abstract. Context: Requirements documentation in natural language
has diverse artifacts, but few studies address their suitability to types
of requirements or ease of communication. Methods: We conducted a
systematic tertiary literature review (STLR) and identified 22 relevant
review papers that address natural language artifacts used by practi-
tioners to document software requirements. We also investigated which
types of requirements are addressed by artifacts and if there are guide-
lines for each. Results: A variety of artifacts used for this purpose were
identified, of which the most referenced in the literature were diagrams,
use cases, conceptual models, user stories, and prototypes. The analy-
sis highlighted that artifacts are applied differently to functional and
non-functional requirements. In general, diagrams, use cases, scenarios,
and prototypes can be used for both types of requirements, depending
on the content (usability, security, etc.). However, user stories and de-
rived artifacts are more recommended for functional requirements and
have limitations for non-functional requirements. Conclusion: Further-
more, the study explored different guidelines, structures, and formats
used in documentation artifacts, reflecting the diversity in requirements
documentation practices in software projects.

Keywords: Requirements documentation · Specification · Software re-
quirements · Natural language artifacts · Systematic Review.

1 Introduction

Growing software complexity presents a significant challenge for stakeholders
and software professionals who must find an equilibrium between cost, time,
and quality, while continuously innovating to meet customer expectations [7].

For instance, less documentation can impact future changes and mainte-
nance, as it helps stakeholders to use, understand and evolve a system [1]. The

Proceedings of the 27th Workshop on Requirements Engineering (WER24), August 07-09, 2024, Buenos Aires, Argentina.
DOI: 10.29327/1407529.27-20

2 Gonçalves et al.

term "software documentation" refers to the set of information that describes
the functionalities, architecture, and use of a software system. In traditional
approaches, all or most of the documentation is concentrated in a single docu-
ment, while agile methodologies adopt documentation as a collection of smaller
artifacts, making requirements easier to read [26].

During documentation phase, some requirements (mainly non-functional) can
be under-specified or undocumented. Inefficient management of requirements
changes, especially when documentation is not clear, may result in project failure
or schedule and scope deviation [4]. A lack of standards across documents can
also happen due to a large set of available templates for recording requirements.

Therefore, the goal of this study is to capture the current state of the art in
academic literature regarding artifacts for software requirements documentation.
We investigate what are the most used artifacts containing natural language
and their suitability to each type of requirement (functional or non-functional).
To reach this goal, we conducted a Systematic Literature Review (SLR) and
identified 22 relevant papers.

The main contributions of this paper are the understanding of patterns in
software requirement specification (SRS) artifacts chosen in literature and their
suitability regarding functional and non-functional requirements. The paper is
organized as follows: Section 2 presents the methodology for SLR, followed by
Section 3 which describes its results. Section 4’s discussion delves into important
topics about the results and section 5 describes our limitations and possible
threats to validity. Our conclusions on the study are described in section 6.

2 Methodology

Our Tertiary Systemic Literature Review (TSLR) followed the Kitchenham and
Charters protocol [17], in order to answer how are software requirements docu-
mented by practitioners in a way that provides a common understanding of the
software and allows collaboration between different actors. We divided our work
in two research questions:

– RQ.1What are the artifacts used in the literature for documenting require-
ments in natural language?

– RQ.2 How are different documentation artifacts used to address functional
and non-functional requirements in software projects?

Five databases were elected to perform the research, following Kitchenham’s
guidelines: [18]: ACM, IEEEXplore, SCOPUS, Springer Link and Web of Science.
PICOC framework [35] was applied to choose the search string (Supplementary
Material available at https://zenodo.org/records/11217791, file ´´SLR Require-
ments Documentation - PICOC terms.pdf").

Search string:
(“Requirements") AND (“specification" OR “documentation" OR “nat-
ural language") AND (“artifact" OR “model" OR “guidelines" OR

https://dl.acm.org
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/home.uri
https://link.springer.com
https://access.clarivate.com/login
https://zenodo.org/records/11217791

Requirements documentation with natural language: Tertiary SLR 3

“format") AND (“systematic review" OR “review" OR “systematic
mapping").

Inclusion and exclusion criteria were defined according to Kitchenham’s guide-
lines [16]. Inclusion criteria addressed the main theme of studies, which followed
our work’s purpose and generated artifacts: (IC 1) studies must address artifacts,
models, guides, or formats related to documenting requirements in natural lan-
guage; (IC 2) studies must present at least one type of requirements documen-
tation; (IC 3) studies must present information about existing documentation
artifacts and their applications to illustrate functional and non-functional re-
quirements.

Exclusion criteria (EC) were : (EC 1) studies that are not exclusively re-
lated to requirements documentation or do not directly address the mentioned
research questions; (EC 2) Studies that are not written in a language other
than that understood by the authors (Portuguese, Spanish and English); (EC
3) Studies that are not a literature review (e.g., book chapters, research studies,
case studies, dissertations, theses, works in progress, position papers, duplicated
works); (EC 4) Published before 2013; (EC 5) The focus of the study is not the
analysis of natural language documentation artifacts, but other procedures (i.e.:
automation, classification with NLP, application of machine learning, elicitation
techniques, etc.); (EC 6) The main subject of the study is not related to software
engineering or related areas, but other areas of research.

Despite previous filters already applied by exclusion criteria, it was necessary
to check the quality of the selected studies, with the following quality assessment:
(QA 1) Were the research questions clearly defined? (QA 2) Is the methodology
clear, adequate, and replicable for the search, selection, and analysis of included
studies? (QA 3) Were the limitations of the review highlighted and explained?
(QA 4) Do the studies consider the practical applicability of the results and their
implications for the research area, providing useful and relevant recommenda-
tions? (QA 5) Do the studies make an original contribution to knowledge in
the area, whether by identifying gaps in the literature, synthesizing conflicting
results, or proposing new perspectives or research directions?

Each selected study was evaluated with the 5 questions, and we included in
our analysis only studies that met all proposed criteria.

To answer the proposed questions, data extraction comprised data relating
to the publication and data related to the research questions (Supplementary
Material available at https://zenodo.org/records/11217791, file “ Table-Tertiary
SLR on requirements documentation.xlsx").

2.1 SLR Conducting

To carry out this review, Parsifal1 was the main tool used. Figure 1 illustrates
the studies that remained after each conduction step.

The study collection period through the search string was until December
2023, resulting in a total of 574 papers (3 from ACM, 150 from IEEEXplore,

1 https://parsif.al

https://zenodo.org/records/11217791
https://dl.acm.org
https://ieeexplore.ieee.org/Xplore/home.jsp
https://parsif.al

4 Gonçalves et al.

Fig. 1. Remaining studies after each SLR step.

35 from Web of Science, 115 from SCOPUS and 271 from Springer Link), as
seen in Figure 1. 17 duplicated papers were removed, and 557 remained, (3
from ACM, 143 from IEEEXplore, 33 from Web of Science, 106 from SCOPUS
and 269 from Springer Link) to apply inclusion and exclusion criteria on title
and abstract. Although the studies analyzed addressed the requirements topic,
517 were removed due to non-compliance with one or more criteria. Finally,
the full text was read for more in-depth analysis and application of the quality
assessment of 40 studies (zero from ACM, 19 from IEEEXplore, 8 from Web of
Science, 6 from SCOPUS and 7 from Springer Link). 17 papers were removed
and 22 papers remained (zero from ACM, 7 from IEEE, 8 from Web of Science,
3 from SCOPUS and 4 from Springer Link).

3 SLR Results

3.1 RQ.1 - What are the artifacts used in the literature for the
documentation of natural language requirements?

In the selected studies, 12 types of artifacts used in the documentation of re-
quirements and present in more than one study were identified 1. Among these,
UML diagrams, use cases, scenarios, conceptual models, user stories, and pro-
totypes were, respectively, the most recurrent artifacts 2. Although prototypes

https://access.clarivate.com/login
https://www.scopus.com/home.uri
https://link.springer.com
https://dl.acm.org
https://ieeexplore.ieee.org/Xplore/home.jsp
https://access.clarivate.com/login
https://www.scopus.com/home.uri
https://link.springer.com
https://dl.acm.org
https://ieeexplore.ieee.org/Xplore/home.jsp
https://access.clarivate.com/login
https://access.clarivate.com/login
https://www.scopus.com/home.uri
https://link.springer.com
https://dl.acm.org
https://access.clarivate.com/login
https://www.scopus.com/home.uri
https://link.springer.com

Requirements documentation with natural language: Tertiary SLR 5

are more common during elicitation phase, they can be used for documentation
as well [24].

UM
L

dia
gr
am

Use
ca

se

Sc
en

ar
io

Con
ce
pt

ua
l m

od
el

User
sto

ry

Pr
ot
oty

pe

Ont
olo

gy

M
ind

map

Pe
rso

na

St
or
yb

oa
rd

Sy
ste

m
Com

po
ne

nt
s

Kan
ba

n
bo

ar
d

St
or
yc

ar
d
Ta

sk

Visi
on

5

10

13
12

10 10

8
7

4
3 3

2 2 2 2 2 2

N
um

b e
r

of
m

en
ti

on
s

pe
r

ar
ti

fa
ct

Fig. 2. Number of mentions of each documentation artifact in the selected studies.

Following the sequence, ontologies, mind maps, storyboards, personas, system
components, kanban boards, storycards, tasks, and visions were cited in more
than one paper. Although they are not cited as much as the first six, they may
indicate different documentation in certain contexts. It is important to note that
there are many types of ontologies, but we are considering those presented in
natural language [8].

Artifacts mentioned only once were not included in the graphic, but are men-
tioned as follows: tables, formal specification, HTML reports, figures, storyboard
tasks, videos, documented user experiences, wall, pin board, event-driven pro-
cess chain (Event-driven Process Chain - EPC), domain models, tags, user wish
list, user journey, product backlog, roadmap, the definition of "done", sprint
burndown chart, and generic terms such as "product requirement", "market re-
quirement" and "technical requirement" (Supplementary material available at
https://zenodo.org/records/11217791, file “ Table-Tertiary SLR on requirements
documentation.xlsx"). Following Schon et. al (2017), we will highlight artifacts
that are present in at least 20% of the studies [38]. For the percentage, we con-
sider the number of mentions divided per 22 (total number of studies).

Diagrams are organized visual representations, used to represent various sit-
uations and relationships at a sequential, hierarchical, or structural level [20].
The unified modeling language (UML) allows the creation of several instances,
such as class diagrams, use case diagrams, activity diagrams, and sequence dia-
grams [20]. The BPMN notation is considered the standard in business process

https://zenodo.org/records/11217791

6 Gonçalves et al.

modeling [9]. The presence of a unified language (UML) and the possibility of
customization even creating new extensions [19] - such as security in IoT [11]
- are characterized as the reasons why this artifact was the most cited in the
literature found (59.1%).

In our findings, use cases were mentioned almost as much as diagrams (54.5
%). Use cases are widely used in documenting software requirements and are
adaptable, enabling the inclusion of various behavior flows [39]. Despite the risk
of presenting too much information and the effort involved in describing many
scenarios [25], they are considered more technical artifacts than user stories
[38], with the possibility of reusing the documented requirements for generating
manuals and effort estimate [29].

Scenarios and conceptual models were mentioned in 45.4% of the studies. Sce-
narios describe dynamic and context-dependent interactions between the system
and external actors: user, network, and other devices. They are quite significant
for checking if all relevant cases are covered [14], in addition to facilitating test
automation [14]. Conceptual models are used as a bridge between stakeholders
or users and the technical team [40]. Next, user stories appear in 36.3 % of stud-
ies evaluated. However, they are described as the most used artifact for agile
software development in one of the studies [38], and not in another [41]. User
stories are artifacts that document needs from the users’ point of view, written
in natural language and generally following a semi-structured [22] format, such
as "I [user type], I want [something] for [goal]" [14].

In contrast to textual artifacts, prototypes are also widely used in require-
ments documentation (31.8 %), mainly related to visual aspects. However, there
are different definitions of the prototype in the literature [38], covering both infor-
mal paper drawings (low fidelity), wireframes (medium to high fidelity) and also
interactive HTML mockups [29]. Lower fidelity prototypes were recommended
when the purpose is communication between stakeholders and agile teams [23],
as well as discussions with users [32].

3.2 RQ.2 - How are different documentation artifacts used to
address functional and non-functional requirements in software
projects?

Documentation artifacts in software development have characteristics that en-
hance their suitness for recording and tracking certain types of requirements.
In this way, Table 1 shows which types of requirements are illustrated by the
artifacts found in this tertiary review, according to the selected studies.

Requirements documentation with natural language: Tertiary SLR 7

Artifacts (%) Type of require-
ment addressed

Multimedia
classification

References

UML Diagram
(59,1%)

Non reported. Hybrid [3,36,6,21,12,38,40,2,10,27,28,33,5].

Use case (54,5%) FRs e NFRs. Textual [25,14,21,12,38,40,2,27,28,33,39,41].

Scenario (45,4%) FRs e NFRs. Textual [3,25,14,30,27,28,33,39,5,38,10].

Conceptual model
(45,4%)

FRs e NFRs. Hybrid [6,3,40,34,38,2,10,27,41,12].

User story (36,3%) Recommended
for FRs, can be
adapted for NFRs

Textual [22,38,3,25,15,14,27,41].

Prototype (31,8%) FR, NFR. Visual [22,3,15,38,33,41,25]

Ontology (18,1%) FRs e NFRs. Hybrid [3,14,10,5].

Mind map (13,6%) FR e NFR. Hybrid [15,38,2].

Storycard (13,6%) Recommended for
FRs, can be used
for NFRs.

Textual [25,38,41].

Persona (13,6%) NFR. Visual [38,3,41].

Storyboard (13,6%) FRs. Hybrid [38,22].

System components
(9%)

NFR. Textual [25,12].

Kanban board (9%) Non reported. Textual [38,37].

Tasks (9%) FR e NFR. Textual [38,41].

Vision (4,5%) FR e NFR. Textual [38].

Table 1: Artifacts and documentation type found.

In general, we observed that artifacts with similar characteristics tend to be
used in a similar way when approaching functional and non-functional require-
ments 1. In this way, we divided the artifacts into 3 categories in relation to
the predominance of multimedia elements they present: Hybrid format, predom-
inantly textual, and predominantly visual.

In general, Hybrid artifacts incorporate small texts, graphic elements, and/or
images, often showcasing sequences of events or hierarchies with a higher level of
abstraction. Predominantly textual artifacts consist of structured, semi-structured,
or unstructured texts written in natural language. Lastly, predominantly visual

8 Gonçalves et al.

artifacts typically pertain to predicting interfaces and behaviors that will be
viewed by one or more groups of users.

4 Discussion

The most cited artifacts found in our study partially corroborate the previous
pape by Schon et. al [38]. In fact, user stories, prototypes, use cases and sce-
narios remain the most discussed artifacts in the literature. However, diagrams
and conceptual models did not predominate as strongly as ours (only 11%). In
part, this can be explained by the year of publication of the works, since most
of the reviews found in our approach that mentioned diagrams are after 2017
[3,6,21,12,40,2,10,27,28,5], year of publication of the previous work [38]. Another
possible point of divergence is in relation to the scope, since the work of Schon
et. al [38] performs an explicit filter for agile documentation, and our work does
not have this segmentation.

Regarding the least cited artifacts, it is interesting to highlight some con-
tradictory points. Firstly, tasks, storyboards, and story cards are most used by
agile teams during task distribution and schedule execution, to the detriment of
requirements documentation. However, the artifacts were included because, in
the studies evaluated, they were actively used in documentation. The Kanban
board, normally used to divide and visualize tasks, was presented as a way of
recording and tracking requirements [38], as well as tasks, storyboards, and story
cards [38]. Some artifacts were also mentioned as complementary to "main" ar-
tifacts, such as personas [38,3] and story cards [25]. As pointed by Schon et. al
[38], it is important to highlight that the literature may not reflect the totality
of the most used artifacts, since some classic artifacts (such as product backlog)
are rarely mentioned in [38] studies.

Hybrid artifacts:
Due to their higher level of abstraction, hybrid artifacts can address both

functional and non-functional requirements. However, abstract models can have
two conflicting roles: they must be general enough to facilitate communication
between different actors with varied knowledge but also have enough formality
to contain all the necessary information [40]. Even so, diagrams, conceptual
models, and mind maps can be used to document functional and non-functional
requirements [30,27]. Mornie et. al [27] list the use of class and sequence diagrams
as facilitators for the software team’s decision-making regarding the best way to
implement the functional requirements requested by stakeholders [27].

Nguyen et. al [30] bring together examples of different types of diagrams for
modeling static and dynamic aspects in a system, with a focus on non-functional
security requirements [30]. In contrast, Mustafa et. al [28] explained that UML
diagrams are extensively used to address functional requirements, but are not
suitable for use as input material for generating non-functional test cases.

Predominantly textual artifacts:
Predominantly textual artifacts can be classified as those that mainly use

natural language to record and document software requirements. They are quite

Requirements documentation with natural language: Tertiary SLR 9

variable among themselves on level of detail and types of information presented.
Scenarios, for example, are short context-dependent descriptions of interactions.
They can be described in the textual form [14], as alternative or main scenarios
in use cases [39] or represented as diagrams [30]. They are commonly used to
illustrate and record functional requirements raised during the elicitation stage,
but they can be used to represent usability [32] or security requirements.

Regarding User stories, there is a certain consensus that they serve to record
functional requirements from the user’s point of view, and are incomplete or
inadequate to describe technical or very complex aspects [25,38,27,22]. Despite
this, they are artifacts widely used in software requirements documentation.

The selected literature suggests extending the user story format to include
more detail, hierarchy, and tracking, as well as combining HUs with additional re-
quirements documentation [15,27,3]. The emergence of epics, tasks, story cards,
and storyboards stems from the need for segmentation, tracking, and/or in-
clusion of other information - story cards, for example, allow you to capture
time estimation, development accountability and goals, prioritization, and even
requirements needed for the next elements from customer interactions [38]. Like-
wise, dividing requirements into smaller units makes reading and understanding
easier, but can compromise the unity of documentation [25,38].

In turn, use cases are considered more complete user stories from a technical
point of view [38] and existing use case templates focus on points of variability
between scenarios and their traceability [39]. Use cases can be used to address
functional [13] and non-functional [31] requirements. However, the complexity
supported by use cases was also presented as a negative point by Medeiros et.
al [25]. Ontologies are used to mitigate ambiguity problems in [3] requirements
and can address functional and non-functional requirements. Bellendorf et. al
[5] used ontologies for interoperability requirements since the same term can
have different uses within the context of each type of system [5]. In another
study, ontologies are used as additional information for generating test cases
[10]. Finally, the vision artifact, despite being mentioned in two studies, was not
attributed to the approach to functional or non-functional requirements.

Predominantly visual artifacts:
Visual artifacts are associated with representation of software interface ele-

ments that will be viewed by end users. They are closely related to functional
requirements due to the proximity of interaction with the end user, however,
they can be used to address non-functional aspects. Prototypes can elucidate
functional flows requested by stakeholders and users, as well as assist in spec-
ifying usability requirements [38]. Ogata et. al suggests combining functional
prototypes with UML diagrams to address functional and non-functional require-
ments more completely [33]. Personas, in general, are mentioned as artifacts that
mainly address usability requirements [38,41].

In general, a notable trend in the analysis of the studies is the attention
given to non-functional security requirements [34,39,30,25,38,10,28,5,3], usability
[15,39,30,25,38,5] and performance [34,25,30,2,5]. One explanation is the increas-
ing complexity of software systems and the threat of cyber attacks that violate

10 Gonçalves et al.

personal and sensitive data, demanding increasingly greater security require-
ments. Additionally, modern users have higher expectations regarding usability
and performance. The regulations and standards to which companies are subject
also reinforce the adoption of preventive and protective measures.

5 Limitation and threats to validity

Despite the solid methodology, we still found some limitations while conducting
our study. As an example, even though we set time constraints, some of the cited
studies can be outdated or not reflect reality, and therefore, might not capture
the full picture of artifacts in requirements engineering. It’s possible too that
literature itself does not represent the current practices of software engineering.
Also, different types of software can also deviate from the pattern found here,
due to specific needs, such as IOT devices or chatbots, for example.

Regarding the quality of the studies, during the selection phase, we applied
extensive inclusion/exclusion criteria and quality assessment measures, following
similar systematic reviews of the software area. However, there is the possibility
that the filters were too restrictive or too permissive. We also were able to
highlight patterns and classify artifact representation dominance, but since this
is the first work to address the theme, to our knowledge, it is interesting to
have future works trying to replicate the results found here and see if they are
maintained.

6 Conclusion

Our study presented the findings from our Tertiary SLR about requirements doc-
umentation artifacts and their characteristics. In the selected papers, we found
that UML diagrams, use cases, scenarios, conceptual models, user stories, and
prototypes were present in many studies. We were also able to identify patterns
in the artifacts’ representation predominance (hybrid, visual, or textual) and
address the types of requirements each artifact is suited to represent. In general,
predominantly visual artifacts are mostly used to mimicry a software expected
behavior regarding design and usability, because they are actually shown to the
user. Textual requirements are more suitable for non-visible or non-perceptive
features and they can be associated with complex requirements, that require
longer explanations. Hybrid artifacts (visual and textual) are the most versatile
and can be used for a wide range of situations. It is common that more than one
artifact is used for SRS. Future studies should try to reproduce this methodology
see if results still apply, and investigate the most used artifacts for each software
context, to see if distinct software characteristics can influence on SRS artifact
choice.

Requirements documentation with natural language: Tertiary SLR 11

7 Acknowledgments

The authors would like to thank the technical and computational support from
the LATITUDE Laboratory, at the University of Brasília, to TED 01/2019 from
the "Advocacia Geral da União - AGU" (AGU 697.935/2019), to TED 01/2021
from "Secretaria Nacional de Assistência Social" – SNAS/DGSUAS /CGRS to
the SISTER City Project – Secure and Real Time Smart Systems for Smart
Cities (Grant 625/2022), to the Project “Project Control and Unification Sys-
tem for the Federal District Government – Sispro-DF” (Grant 497/2023), to the
project “Methodology to Support the Elicitation of Ethical and Privacy Require-
ments” (Grant e 514/2023) Deanship of Research and Innovation – DPI/UnB
and FAP/DF.

References

1. Aghajani, E., Nagy, C., Linares-Vásquez, M., Moreno, L., Bavota, G., Lanza,
M., Shepherd, D.C.: Software documentation: the practitioners’ perspective. In:
Rothermel, G., Bae, D. (eds.) ICSE ’20: 42nd International Conference on Soft-
ware Engineering, Seoul, South Korea, 27 June - 19 July, 2020. pp. 590–601. ACM
(2020). https://doi.org/10.1145/3377811.3380405

2. Amjad, A., Azam, F., Anwar, M.W., Butt, W.H., Rashid, M.: Event-
driven process chain for modeling and verification of business requirements-
a systematic literature review. IEEE Access 6, 9027–9048 (2018).
https://doi.org/10.1109/ACCESS.2018.2791666, https://doi.org/10.1109/
ACCESS.2018.2791666

3. Amna, A.R., Poels, G.: Systematic literature mapping of user story research. IEEE
Access 10, 51723–51746 (2022). https://doi.org/10.1109/ACCESS.2022.3173745,
https://doi.org/10.1109/ACCESS.2022.3173745

4. Behutiye, W., Seppänen, P., Rodríguez, P., Oivo, M.: Documentation of quality
requirements in agile software development. In: Li, J., Jaccheri, L., Dingsøyr,
T., Chitchyan, R. (eds.) EASE ’20: Evaluation and Assessment in Software En-
gineering, Trondheim, Norway, April 15-17, 2020. pp. 250–259. ACM (2020),
https://doi.org/10.1145/3383219.3383245

5. Bellendorf, J., Mann, Z.Á.: Specification of cloud topologies and orches-
tration using TOSCA: a survey. Computing 102(8), 1793–1815 (2020).
https://doi.org/10.1007/S00607-019-00750-3, https://doi.org/10.1007/
s00607-019-00750-3

6. Bozyiğit, F., Özlem Aktaş, Kılınç, D.: Linking software require-
ments and conceptual models: A systematic literature review. Engi-
neering Science and Technology, an International Journal 24(1), 71–
82 (2021). https://doi.org/https://doi.org/10.1016/j.jestch.2020.11.006,
https://www.sciencedirect.com/science/article/pii/S2215098620342580

7. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring principles of user-centered
agile software development: A literature review. Inf. Softw. Technol. 61, 163–181
(2015). https://doi.org/10.1016/J.INFSOF.2015.01.004

8. Castañeda, V., Ballejos, L.C., Caliusco, M.L.: Improving the quality of software
requirements specifications with semantic web technologies. In: WER (2012)

https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ACCESS.2018.2791666
https://doi.org/10.1109/ACCESS.2018.2791666
https://doi.org/10.1109/ACCESS.2018.2791666
https://doi.org/10.1109/ACCESS.2022.3173745
https://doi.org/10.1109/ACCESS.2022.3173745
https://doi.org/10.1145/3383219.3383245
https://doi.org/10.1007/S00607-019-00750-3
https://doi.org/10.1007/s00607-019-00750-3
https://doi.org/10.1007/s00607-019-00750-3
https://doi.org/https://doi.org/10.1016/j.jestch.2020.11.006
https://www.sciencedirect.com/science/article/pii/S2215098620342580
https://doi.org/10.1016/J.INFSOF.2015.01.004

12 Gonçalves et al.

9. Chergui, M.E., Benslimane, S.M.: A valid BPMN extension for supporting security
requirements based on cyber security ontology. In: Abdelwahed, E.H., Bellatreche,
L., Golfarelli, M., Méry, D., Ordonez, C. (eds.) Model and Data Engineering - 8th
International Conference, MEDI 2018, Marrakesh, Morocco, October 24-26, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 11163, pp. 219–232. Springer
(2018), https://doi.org/10.1007/978-3-030-00856-7_14

10. Clark, A.G., Walkinshaw, N., Hierons, R.M.: Test case generation for agent-based
models: A systematic literature review. Inf. Softw. Technol. 135, 106567 (2021).
https://doi.org/10.1016/J.INFSOF.2021.106567, https://doi.org/10.1016/j.infsof.
2021.106567

11. Compagnucci, I., Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A
systematic literature review on iot-aware business process modeling views, re-
quirements and notations. Softw. Syst. Model. 22(3), 969–1004 (2023), https:
//doi.org/10.1007/s10270-022-01049-2

12. Duran, M.B., Mussbacher, G.: Reusability in goal modeling: A sys-
tematic literature review. Inf. Softw. Technol. 110, 156–173 (2019).
https://doi.org/10.1016/J.INFSOF.2019.03.004, https://doi.org/10.1016/j.
infsof.2019.03.004

13. Farid, W.M.: The NORMAP methodology: Lightweight engineering of non-
functional requirements for agile processes. In: Leung, K.R.P.H., Muenchaisri,
P. (eds.) 19th Asia-Pacific Software Engineering Conference, APSEC 2012, Hong
Kong, China, December 4-7, 2012. pp. 322–325. IEEE (2012), https://doi.org/10.
1109/APSEC.2012.23

14. Farooq, M.S., Omer, U., Ramzan, A., Rasheed, M.A., Atal, Z.: Behavior driven
development: A systematic literature review. IEEE Access 11, 88008–88024
(2023). https://doi.org/10.1109/ACCESS.2023.3302356, https://doi.org/10.1109/
ACCESS.2023.3302356

15. Heikkil"̈a, V.T., Damian, D.E., Lassenius, C., Paasivaara, M.: A mapping study
on requirements engineering in agile software development. In: 41st Euromicro
Conference on Software Engineering and Advanced Applications, EUROMICRO-
SEAA 2015, Madeira, Portugal, August 26-28, 2015. pp. 199–207. IEEE Computer
Society (2015). https://doi.org/10.1109/SEAA.2015.70, https://doi.org/10.1109/
SEAA.2015.70

16. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele
University 33(2004), 1–26 (2004)

17. Kitchenham, B.A.: Systematic review in software engineering: where we are and
where we should be going. In: Proceedings of the 2nd international workshop on
Evidential assessment of software technologies. pp. 1–2 (2012)

18. Kitchenham, B.A., Pretorius, R., Budgen, D., Brereton, P., Turner, M., Niazi, M.,
Linkman, S.G.: Systematic literature reviews in software engineering - A tertiary
study. Inf. Softw. Technol. 52(8), 792–805 (2010), https://doi.org/10.1016/j.infsof.
2010.03.006

19. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) Business Process Model and Notation - 4th In-
ternational Workshop, BPMN 2012, Vienna, Austria, September 12-13, 2012. Pro-
ceedings. Lecture Notes in Business Information Processing, vol. 125, pp. 38–52.
Springer (2012), https://doi.org/10.1007/978-3-642-33155-8_4

20. Koç, H., Erdoğan, A.M., Barjakly, Y., Peker, S.: Uml diagrams in software en-
gineering research: A systematic literature review. Proceedings 74(1) (2021),
https://www.mdpi.com/2504-3900/74/1/13

https://doi.org/10.1007/978-3-030-00856-7_14
https://doi.org/10.1016/J.INFSOF.2021.106567
https://doi.org/10.1016/j.infsof.2021.106567
https://doi.org/10.1016/j.infsof.2021.106567
https://doi.org/10.1007/s10270-022-01049-2
https://doi.org/10.1007/s10270-022-01049-2
https://doi.org/10.1016/J.INFSOF.2019.03.004
https://doi.org/10.1016/j.infsof.2019.03.004
https://doi.org/10.1016/j.infsof.2019.03.004
https://doi.org/10.1109/APSEC.2012.23
https://doi.org/10.1109/APSEC.2012.23
https://doi.org/10.1109/ACCESS.2023.3302356
https://doi.org/10.1109/ACCESS.2023.3302356
https://doi.org/10.1109/ACCESS.2023.3302356
https://doi.org/10.1109/SEAA.2015.70
https://doi.org/10.1109/SEAA.2015.70
https://doi.org/10.1109/SEAA.2015.70
https://doi.org/10.1016/j.infsof.2010.03.006
https://doi.org/10.1016/j.infsof.2010.03.006
https://doi.org/10.1007/978-3-642-33155-8_4
https://www.mdpi.com/2504-3900/74/1/13

Requirements documentation with natural language: Tertiary SLR 13

21. Kuhar, S., Polancic, G.: Conceptualization, measurement, and application
of semantic transparency in visual notations. Softw. Syst. Model. 20(6),
2155–2197 (2021). https://doi.org/10.1007/S10270-021-00888-9, https://doi.org/
10.1007/s10270-021-00888-9

22. Kustiawan, Y.A., Lim, T.Y.: User stories in requirements elicitation: A systematic
literature review. In: 8th IEEE International Conference On Software Engineering
and Computer Systems, ICSECS 2023, Penang, Malaysia, August 25-27, 2023.
pp. 211–216. IEEE (2023). https://doi.org/10.1109/ICSECS58457.2023.10256364,
https://doi.org/10.1109/ICSECS58457.2023.10256364

23. Lucia, A.D., Qusef, A.: Requirements engineering in agile software development.
J. Emerg. Technol. Web Intell. 2(3) (Aug 2010)

24. Mannio, M., Nikula, U.: Requirements elicitation using a combination of prototypes
and scenarios. In: WER. pp. 283–296 (2001)

25. Medeiros, J., Goulão, M., de Vasconcelos, A.M.L., Silva, C.T.L.L.: Towards a
model about quality of software requirements specification in agile projects. In:
Paulk, M.C., Machado, R.J., Brito, M.A., Goulão, M., Amaral, V. (eds.) 10th
International Conference on the Quality of Information and Communications
Technology, QUATIC 2016, Lisbon, Portugal, September 6-9, 2016. pp. 236–
241. IEEE Computer Society (2016). https://doi.org/10.1109/QUATIC.2016.058,
https://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.058

26. Medeiros, J., de Vasconcelos, A.M.L., Silva, C., Goulão, M.: Requirements speci-
fication for developers in agile projects: Evaluation by two industrial case studies.
Inf. Softw. Technol. 117 (2020), https://doi.org/10.1016/j.infsof.2019.106194

27. Mornie, M.N., Jali, N., Junaini, S.N., Mit, E., Shiang, C.W., Saee, S.: Visualisa-
tion of user stories in UML models: A systematic literature review. Acta Inform.
Pragensia 12(2), 419–438 (Oct 2023)

28. Mustafa, A., M. N. Wan-Kadir, W., Ibrahim, N., Arif Shah, M., Younas, M., Khan,
A., Zareei, M., Alanazi, F.: Automated test case generation from requirements: A
systematic literature review. Comput. Mater. Contin. 67(2), 1819–1833 (2021)

29. Nawrocki, J.R., Ochodek, M., Jurkiewicz, J., Kopczynska, S., Alchimowicz, B.:
Agile requirements engineering: A research perspective. In: Geffert, V., Preneel,
B., Rovan, B., Stuller, J., Tjoa, A.M. (eds.) SOFSEM 2014: Theory and Practice
of Computer Science - 40th International Conference on Current Trends in Theory
and Practice of Computer Science, Nový Smokovec, Slovakia, January 26-29, 2014,
Proceedings. Lecture Notes in Computer Science, vol. 8327, pp. 40–51. Springer
(2014), https://doi.org/10.1007/978-3-319-04298-5_5

30. Nguyen, P.H., Kramer, M.E., Klein, J., Traon, Y.L.: An extensive systematic review
on the model-driven development of secure systems. Inf. Softw. Technol. 68, 62–81
(2015). https://doi.org/10.1016/J.INFSOF.2015.08.006, https://doi.org/10.1016/
j.infsof.2015.08.006

31. Nguyen, Q.L.: Non-functional requirements analysis modeling for software product
lines. In: ICSE Workshop on Modeling in Software Engineering, MiSE 2009, Van-
couver, BC, Canada, May 17-18, 2009. pp. 56–61. IEEE Computer Society (2009),
https://doi.org/10.1109/MISE.2009.5069898

32. Obendorf, H., Finck, M.: Scenario-based usability engineering techniques in agile
development processes. In: Czerwinski, M., Lund, A.M., Tan, D.S. (eds.) Extended
Abstracts Proceedings of the 2008 Conference on Human Factors in Computing
Systems, CHI 2008, Florence, Italy, April 5-10, 2008. pp. 2159–2166. ACM (2008),
https://doi.org/10.1145/1358628.1358649

33. Ogata, S., Matsuura, S.: A review method for UML requirements analysis model
employing system-side prototyping. Springerplus 2(1), 134 (Dec 2013)

https://doi.org/10.1007/S10270-021-00888-9
https://doi.org/10.1007/s10270-021-00888-9
https://doi.org/10.1007/s10270-021-00888-9
https://doi.org/10.1109/ICSECS58457.2023.10256364
https://doi.org/10.1109/ICSECS58457.2023.10256364
https://doi.org/10.1109/QUATIC.2016.058
https://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.058
https://doi.org/10.1016/j.infsof.2019.106194
https://doi.org/10.1007/978-3-319-04298-5_5
https://doi.org/10.1016/J.INFSOF.2015.08.006
https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1109/MISE.2009.5069898
https://doi.org/10.1145/1358628.1358649

14 Gonçalves et al.

34. Ouhbi, S., Idri, A., Alemán, J.L.F., Toval, A.: Software quality requirements: A
systematic mapping study. In: Muenchaisri, P., Rothermel, G. (eds.) 20th Asia-
Pacific Software Engineering Conference, APSEC 2013, Ratchathewi, Bangkok,
Thailand, December 2-5, 2013 - Volume 1. pp. 231–238. IEEE Computer So-
ciety (2013). https://doi.org/10.1109/APSEC.2013.40, https://doi.org/10.1109/
APSEC.2013.40

35. Petticrew, M., Roberts, H.: Systematic Reviews in the Social Sciences. Blackwell
Publishing Ltd, Oxford, UK (2006). https://doi.org/10.1002/9780470754887

36. Rashid, M., Anwar, M.W., Azam, F., Kashif, M.: Model-based require-
ments and properties specifications trends for early design verification
of embedded systems. In: 11th System of Systems Engineering Confer-
ence, SoSE 2016, Kongsberg, Norway, June 12-16, 2016. pp. 1–7. IEEE
(2016). https://doi.org/10.1109/SYSOSE.2016.7542917, https://doi.org/10.1109/
SYSOSE.2016.7542917

37. dos Santos, P.S.M., Caetano, A., de Souza, B.P., Travassos, G.H.: On the benefits
and challenges of using kanban in software engineering: a structured synthesis
study. J. Softw. Eng. Res. Dev. 6, 13 (2018). https://doi.org/10.1186/S40411-
018-0057-1, https://doi.org/10.1186/s40411-018-0057-1

38. Schon, E., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering:
A systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017).
https://doi.org/10.1016/J.CSI.2016.08.011, https://doi.org/10.1016/j.csi.2016.08.
011

39. de Sousa Santos, I., Andrade, R.M.C., de Alcântara dos Santos Neto, P.: Tem-
plates for textual use cases of software product lines: results from a system-
atic mapping study and a controlled experiment. J. Softw. Eng. Res. Dev.
3, 5 (2015). https://doi.org/10.1186/S40411-015-0020-3, https://doi.org/10.1186/
s40411-015-0020-3

40. Verbruggen, C., Snoeck, M.: Practitioners’ experiences with model-
driven engineering: a meta-review. Softw. Syst. Model. 22(1), 111–129
(2023). https://doi.org/10.1007/S10270-022-01020-1, https://doi.org/10.1007/
s10270-022-01020-1

41. Wagenaar, G., Overbeek, S., Lucassen, G., Brinkkemper, S., Schneider, K.: Work-
ing software over comprehensive documentation - rationales of agile teams for arte-
facts usage. J. Softw. Eng. Res. Dev. 6, 7 (2018). https://doi.org/10.1186/S40411-
018-0051-7, https://doi.org/10.1186/s40411-018-0051-7

https://doi.org/10.1109/APSEC.2013.40
https://doi.org/10.1109/APSEC.2013.40
https://doi.org/10.1109/APSEC.2013.40
https://doi.org/10.1002/9780470754887
https://doi.org/10.1109/SYSOSE.2016.7542917
https://doi.org/10.1109/SYSOSE.2016.7542917
https://doi.org/10.1109/SYSOSE.2016.7542917
https://doi.org/10.1186/S40411-018-0057-1
https://doi.org/10.1186/S40411-018-0057-1
https://doi.org/10.1186/s40411-018-0057-1
https://doi.org/10.1016/J.CSI.2016.08.011
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1186/S40411-015-0020-3
https://doi.org/10.1186/s40411-015-0020-3
https://doi.org/10.1186/s40411-015-0020-3
https://doi.org/10.1007/S10270-022-01020-1
https://doi.org/10.1007/s10270-022-01020-1
https://doi.org/10.1007/s10270-022-01020-1
https://doi.org/10.1186/S40411-018-0051-7
https://doi.org/10.1186/S40411-018-0051-7
https://doi.org/10.1186/s40411-018-0051-7

