
WER2000194

Requirements Engineering for COTS Selection

Carina Frota Alves1, Fernanda M. R. de Alencar2, Jaelson F. B. Castro1♠

1Universidade Federal de Pernambuco, Centro de Informática,
Av. Prof. Luiz Freire, s/n – Cidade Universitária

CEP 50732-970 Recife, Pernambuco
E-mail: {cfa, jbc}@di.ufpe.br

2 UFPE - Universidade Federal de Pernambuco
CT - Departamento de Eletrônica e Sistemas

Rua Acadêmico Hélio Ramos, s/n - Cidade Universitária
Recife - PE - CEP: 50.740-530

E-mail: fmra@npd.ufpe.br

Abstract

There is growing interest in the notion of software development through the planned integration
of COTS (Commercial Off-The-Shelf) products. The potential advantages of this integration-
centric approach are shorter development time and reduced cost. Often a COTS based
development process consists of an evaluation, selection, adaptation, integration, and evolution
of components obtained from external vendors. However, most methods focus on system
adaptation and integration but neglect the processes of evaluation and selection of COTS. This
paper introduces a COTS-Based Requirements Engineering Model that focuses on non-
functional requirements to assist the processes of evaluation and selection of COTS products.

Key Words: COTS development process, non-functional requirements, product evaluation and
selection.

1. Introduction

The construction of software products through the planned and deliberate reuse of
previously constructed components has long been heralded (Sommerville 1996) as
one of the key challenges in moving software production forward to cost-efficient,
planned, engineering discipline. More recently, the idea of reuse-centred software
development is becoming know as Component-Based Software Engineering (CBSE)
were these components are often COTS (Commercial Off-The-Shelf) products.

The interest in COTS is based on a long history of work in modular systems,
structures design and most recently in object-oriented systems. Component-based
development has many potential advantages such as shorter time to market, lower
prices, and higher quality software solutions. This engineering approach emphasizes
the acquisition and integration of reusable COTS products over development from
scratch.

The nature of COTS suggests that the model of component-based software
development should be different from the conventional development model. It has

III Workshop de Engenharia de Requisitos 195

resulted in a significant shift away from the development-centric toward a
procurement-centric approach. In general, existing software engineering models,
such as Waterfall and Spiral models do not address the extensive process and cost
associated with the identification, evaluation, selection, and integration of reusable
software components in COTS development. As a result, implementing these systems
using such models often leads to unrealistic project planning. In this way, many
models has been proposed to address the various aspects of the component based
development process that have been largely ignored in conventional development
models (Tran and Liu 1997).

It looks very promising to use components in order to improve productivity and
quality of software development. However, the use of COTS software introduces new
problems and risks, including difficulty in selecting suitable components and
insufficient requirements analysis. This work discusses some of the problems and
challenges raised during the phases of evaluation and selection of COTS products as
well as investigates the importance of requirements engineering to obtain a consistent
and mature COTS process model. We present the CRE (COTS based on
Requirements Engineering) Model, it focuses on non-functional requirements to assist
the processes of evaluation and selection of COTS products.

The paper is organized as follows. Section 2 provides a description of essential
COTS-based development activities. Section 3 describes some challenges in COTS
selection activity. Next section shows the NFR Framework which is an approach to
representing non-functional requirements. Section 4 presents the CRE Method and in
particular, its life-cycle processes. Finally, section 5 concludes our discussion and
shows future work.

2. Essential COTS-based Development Activities

Most COTS life-cycle models encountered in literature consider the activities of
identification, selection, integration, and adaptation, as part of the development
process to construct systems based on COTS products (Tran and Liu 1997), (Wallnau,
Carney and Pollak 1998), see figure 1.We describe briefly each of them following.

COTS market evaluation. This phase includes gathering the overall system
requirements, identifying and classifying COTS product into product sets, and
prioritizing them for the subsequent selection. The COTS candidates may come from
a variety of vendors and hence a process of investigation into the properties and
qualities of the COTS is required. These properties include component functionality
(i.e. what services are provided), aspects of a component’s interface such as the use of
standards. Normally, it is also reasonable to discover non-technical aspects such as,
vendor reputation and maturity. Evaluation is a difficult and ill-defined process,
usually available product information is difficult to analyze and; in some cases,
difficult to obtain. There are two extreme visions to evaluate COTS products, the first
one and simpler is called superficial. This kind of evaluation process consists of
buying the components that apparently are suitable to use. This approach ensures
minimal cost to the evaluation effort by eliminating products set that failed a

WER2000196

particular evaluation stage and selecting the first one that passes all evaluation stages.
The second one is more detailed and is known as exhaustive. For the exhaustive
approach, all COTS candidates are evaluated in detail through all identified stages.
The goal of exhaustive evaluation is to ensure that an optimal product set will be
selected for the final integration at the cost of additional evaluation time and
resources. In situations where a high level of uncertainty and a large number of
candidates exist, the first option offers less risks. Other product evaluation approaches
fall between these two extremes.

Fig. 1 – Activities of the component-based development process

Component selection. Selecting an appropriate product typically requires trade-off
analysis. As a result, establishing the criteria for products selection is a very important
task in COTS development. Some criteria are concerned with the product vendors.
Others reflect the limitation of time and resources to support evaluation effort, such as
the deadline associated with the final product selection decision, and the resources
available for the evaluation activity. In COTS-based development, the selection
process must occur early in the life cycle. COTS evaluation and selection become a
critical part of the early analysis process rather than a peripheral activity within the
later design process which occur in conventional development. If an unsuitable
component is selected much effort will be necessary to adapt and integrate it into the
actual system. A complete selection process includes far more simply considering the
desired functionality. To make use of a product, one must also understand non-
functional aspects, such as performance, reliability, flexibility, etc; as well as the
implicit assumptions made by the product about the operating environment.

Component adaptation. This activity includes the development of all necessary
software adapters and enhancements to the selected COTS. Components adaptation
should be based on rules that ensure conflicts minimization among components.
Normally, scripts are written as a buffer between user request and component actions.
However, fault injection techniques can also be used to identify unacceptable
behavior exhibited by a COTS component. A common approach is component
wrapping, to avoid robustness and dependability problems in COTS software.
Wrappers can filter the component’s inputs, outputs or both (MacGraw and Viega
1998). This approach disallows COTS software from exhibiting undesired
functionality by placing a software barrier around the components; limiting what it
can do.

Component integration. The integration phase encompasses all development efforts
required to interconnect different selected COTS products into a single integrated

COTS
Market

Select Adapt Integrate Update

? ?

?

III Workshop de Engenharia de Requisitos 197

system. This phase also consists of the development of other system’s parts that were
not supported by commercially available COTS products and testing the final system.
Since the efforts often require in-house development, a conventional development
approach such as Waterfall or Spiral model should be deployed (Tran and Liu 1997).

Component update. At a first glance, component-based systems may appear to be
relatively easy to evolve and upgrade since component’s paradigm is based on reuse
and change. For example, to repair an error, an updated component may replace a
defective one. However, this practice is not so simple. Component replacements is
often a time-consuming and arduous task. Without careful planning, a change to one
component can have extensive unforeseen repercussions on many others components.
In order to mitigate these problems, this activity must be well-supported as an
essential activity through appropriate definition of component interfaces and
controlled interaction among components.

3. Challenges in COTS Selection

It has been argued that a well defined selection process is the cornerstone for any
effective COTS development process (Ncube and Maiden 1999), (Fox and Lantner
1997). However, the COTS selection process is prone to some potentially problems.
The decisions made at this point will be critical and will have a considerable impact
on project success or failure. Most projects are often assigned under schedule pressure
and necessitate quick decision make, usually in the face of unavoidable uncertainty.

The selection of suitable COTS products is often a non-trivial task and requires
careful consideration of multiple criteria (Fox and Lantner 1997). We have identified
four main dimensions that should be considered during the selection phase, see figure
2.

• Domain coverage – The components have to provide all or part of the
required capabilities necessaries to meet core essential customer requirements,
where non-functional requirements play a critical role during the assessment
process. In some cases, extra new components need to be develop to meet the
shortfalls.

• Time restriction – Software companies normally operate with very rigid
development schedule, on which their competitiveness depends. Selection is a
time consuming activity, a considerable amount of time is necessary to search
and screen all potential COTS candidates.

• Costs rating – The available budget is a very important variable. The
expenses when selecting a particular COTS will be influenced by factors such
as: acquisition license, cost of support, adaptation expenses, and maintenance
prices. Aoyama et al. (1998) provides an economic model for estimating the
cost of COTS-based system development.

• Vendor guaranties – An important aspect to consider during selection
activity is verify the technical support provided by the vendor. Some issues

WER2000198

need to be taken into account, for example: vendor reputation and maturity,
number and kind of the applications that already use de COTS, clauses
characteristics of the maintenance licenses.

Fig. 2 – Main dimensions of COTS selection

Considering the dimensions presented above, we observe that quality aspects such as:
dependability, reliability and robustness are important issues during the selection of
COTS products. Unfortunately, most methods do not define these properties
adequately during the early phases of development process. Normally, they are deeply
examined only in the phases of adaptation and integration. We claim that the NFR
framework (Chung, Nixon, Yu and Mylopoulos 2000) is well suitable for representing
non-functional requirements. Next section provides a brief description of this
approach.

4. Representing Non-Functional Requirements

The NFR Framework is a process-oriented approach where non-functional
requirements are explicitly represented as goals to be achieved during the process of
system development. Each goal will be decomposed into satisficing goal represented
by a graph structure inspired by the and/or trees used in problem solving (Chung,
Nixon, Yu and Mylopoulos 2000).

One fundamental premise of this approach is that non-functional requirements have
the property of potentially interacting with each other, in conflict or synergy (Chung
and Nixon 1995). We explain how this property may be used to systematically guide
selection among COTS products. In using the NFR Framework, one constructs an
initial goal interdependency graph by identifying the main non-functional
requirements that the particular system under development should meet. By treating
these high level requirements as goals to be achieved, we can decompose them into
more specific subgoals which together satisfice the higher level goals. Goals
contribute, positively or negatively, to fulfilling other goals. The NFR framework

III Workshop de Engenharia de Requisitos 199

includes a stage for Knowledge Acquisition and Application of the framework
(Chung and Nixon 1995).

Knowledge acquisition – consists of two activities:

• Acquisition of knowledge specific to NFRs – This activity encodes
knowledge about the particular type of requirement into a catalogue,
which contains a terminology for the quality requirements, a list of generic
techniques, and their tradeoffs and interactions. Normally, system
developers can access existing catalogues but they can be extended to deal
with additional or more refined concepts.

• Acquisition of domain knowledge – During this activity, the developer
acquires and uses information about the domain in which the COTS
products will be used. This includes items such as functional
requirements, organizational priorities and existing systems.

Application of the NFR-Framework

• Identification of NFR-related concepts – This phase includes identification
of important NFR goals and an initial estimate of what is important,
critical, etc. It also includes identification of design rationale and
recording the relevant arguments used.

• Linking NFR-related concepts – The developer starts with an initial set of
goals, and then refine them into other NFR goals. To satisfice NFR goals,
the developer considers design alternatives, called satisficing goals, along
with their tradeoffs, refines them, makes selections and justifies them by
recording design rationale. Throughout this process, the impact of each
design decision is propagated towards top-level NFR goals.

These steps are not necessarily sequential, and one may also iterate over them many
times during the design process. In the next section, we present the CRE Model and
describe how the NFR Framework can help the developer to adequately represent
non-functional requirements which drives the selection of suitable COTS candidates.

5. The CRE (COTS-Based Requirements Engineering)
Model

The success of a Component-Based development process largely depends on the
appropriate selection of COTS software components that meet core customer
requirements (Ncube and Maiden 1999). However, the activities of COTS evaluation
and selection have received little attention in the literature. Most research in
Component-based systems are interested on adaptation and integration processes.

A consensus seems to be emerging in the CBSE community that the COTS
development process should be an iterative activity of requirements engineering and
COTS processes of evaluation, selection, adaptation, integration and update (Tran and
Liu 1997), (Fox and Lantner 1997). Most COTS approaches treat quality aspects only

WER2000200

during the later phases of development. This attitude increases the risks of COTS
failure and the costs of the final system. However, Chung (1995) emphasises that non-
functional requirements should be addressed as early as possible in the systems
lifecycle.

To remedy the problems caused because of later definition of non-functional
requirements, a more disciplined approach is needed for improving our ability to
understand the high level system constraints and the rationales behind COTS products
choices. The CRE Model facilitates a systematic, well-defined and requirements-
driven COTS selection process. A key issue supported by this model is the definition
and analysis of non-functional requirements during the phases of COTS evaluation
and selection.

The selection of COTS products is made by rejection. The products that do not meet
customer requirements are rejected and removed from the candidate list. As the
candidate list decreases, the number and detail of customer requirements increases.
The result of this process is an iterative activity of requirements acquisition that
enables the selection of COTS products and this selection process also gives
information about user requirements, see figure 3 (Ncube and Maiden 1999).

Fig. 3 – Overview of the PORE’s iterative process

Within this iterative process, we propose a new model, called CRE that emphasizes
quality requirements as a way to enrich the selection process of COTS products. This
model has four iterative phases: Product Identification, Product Description,
Requirements Acquisition, and Product Acceptance, see figure 4. In the sequence, we
describe each phase individually.

Increasing number
and detail of
Requirement
statements

Decreasing number of
candidate products

III Workshop de Engenharia de Requisitos 201

Fig 4 – The CRE Model

5.1 Product Identification Phase

The primary objective of this phase is to identify and find all suitable and potential
COTS candidates. This phase is driven by the evaluation criteria which takes as input
high level requirements, such as services and limitations under which the component
should operate and any revised requirements that are part of the feedback mechanism.
At a first stage, the evaluation criteria does not need to be very detailed or formally
defined but it is necessary to be unambiguous. Therefore, the identification phase can
be initiated as soon as the main features of the required component have been defined.

Card Sorts is a simple and useful technique for acquiring high level requirements that
are used as basis for the definition of the evaluation criteria. When using this
technique, the requirements engineer writes candidate product names on cards and
asks the stakeholders to use the cards to sort the products into categories. Criteria for
these sorts, such as “the system must be secure”, indicate customer requirements that
discriminate between products. Discriminating requirements then provide a starting
point for more thorough requirements acquisition using other techniques. We then
describe some steps that should be taken during this phase.

1. COTS candidates identification - identify products that could meet the evaluation
criteria, several sources can be used for identifying products available in the market,
such as: in-house reuse libraries, Internet, magazines, and Agora (Robert, Scott and
Kurt 1998), a Web search engine to finding components in the software marketplace,
this tool creates an indexed, worldwide database of software products classified by
component type (e.g., JavaBeans or ActiveX control);

2. Product information/clarification - create a repository with relevant product
information obtained above;

3. List of COTS candidates - generate a list of candidate COTS products.

Product
Identification

Product
Description

Product
Acceptance

COTS
Products

System
Requirements

Requirements
Acquisition

WER2000202

Fig. 5 – The Product Identification Phase

It is quite possible that among the COTS alternatives, some extra functionality (not
initially considered) may be available. Some of these new requirements, upon a
careful consideration, might indeed be required. This is an important feedback
mechanism that can be used to enhance the development process and user satisfaction.
Figure 5 describes this phase. It is important to note that there is not an optimal
evaluation criteria. It will depends on each domain and environment.

The evaluation criteria should includes at least functional requirements. Although, in
such cases the evaluation criteria often is not detailed enough to contribute as a basis
for systematic technical evaluation. Furthermore, we observe that at this moment the
requirements statements are still poorly described, specially non-functional
requirements because they are usually very difficult to be quantified by customers. In
this way, they need to be refined and formalized before initiating the technical
evaluation. The following phase attempts to describe these requirements in adequate
detail.

5.2 Requirements Acquisition Phase

Requirements acquisition must be an iterative and simultaneous process with product
identification and product description, see figure 4. The product specification
provided by the vendor usually gives a good description of product’s functionality. In
this way, they can be considered first during the evaluation process. However, quality
attributes such as reliability, security and performance are important issues and are
not described in details. Hence, it is necessary to use methods to clarify and refine
these requirements. Indeed, we propose the use of the NFR Framework (Chung,
Nixon, Yu and Mylopoulos 2000) to assist the decision making process. Figure 6
describes the activities addressed during the requirements acquisition phase. It starts
with system requirements and COTS alternatives, then the NFR Framework is used in
order to clarify non-functional requirements. Disputed requirements are negotiated
and prioritized to identify critical requirements and to help the decision making
process. Therefore, some products that do not meet the requirements are eliminated

Product
Information

List
of COTS

Candidate

COTS
Product

System
Requirements

Search
Alternatives

Card Sort
Technique

COTS
candidates

Identification

Criteria
Feedback

Changes to
Requirements

Alternatives
for

Technical
Evaluation

Evaluation
Criteria

III Workshop de Engenharia de Requisitos 203

from the candidate list. Finally, the result of this phase is an updated list of COTS
candidates.

Fig. 6 – The Requirements Acquisition Phase

For the sake of illustration, consider a case study related to the development of an e-
commerce application based on COTS products. Functional requirements include
providing catalogue browsing facilities, search engines, on-line ordering, etc.
Moreover, this application also needs to provide user-friendly access, security of
information and good performance. After posing these non-functional requirement as
goals to satisfice, the developer attempts to decompose them, as shown in figure 7
(Chung, Nixon, Yu and Mylopoulos 2000).

Fig. 7 – Decomposition of non-functional requirements using the NFR Framework

Products
Elimination

System
Requiremen

ts

NFR
Framework

Decision
Making

Negotiation
and

Prioritization

Alternatives

for
Technical
Evaluation

Non-functional
Requirements

COTS
Alternatives

Product
Identification

Product
Description

Good Performance

Throughput Response
time

-

Validate access against
eligibility rules

User
identification

Access control

Security of Information User-friendly

-

Operationalizating GoalNFR Goal AND OR Hurt

-
Legend

[Search]

[Search][Search]

[Data]

{Critical}

[Transaction] [Transaction]

[Transaction]

WER2000204

The refinement process continues until the developer considers that the possible
solutions for the target system are sufficiently detailed, and that no other alternatives
need be considered. The goal security of information is decomposed into the subgoals
validate access against eligibility, user identification and access control through OR
type of contribution (i.e. only one of these goals needs to be met for the overall secure
information goal to be achieved). While the goal good performance is decomposed
into throughput and response time. In this case, the contribution among the goals is of
type AND (i.e. only if all subgoals are met the overall goal is achieved).

Interestingly, it is necessary to address interactions between different kinds of non-
functional requirements even though the non-functional requirements were initially
stated as separate requirements. Note that access control contributes negatively (show
as “-“) for user friendly. As user friendly is a critical goal, it is not adequate to
operationalize access control. Similarly, validate access against eligibility rules
makes a negative contribution towards the goal time response. Therefore, in the
context, user identification is the best alternative to guarantee the security of the
information. In this way, COTS components that support user identification are
clearly preferred.

It is important to note that architectural and environmental aspects are fundamental
when modelling non-functional requirements. For example, in order to asses the
performance of a COTS product it is necessary to considering the architecture (Garlan
1995) and nature of input events in the environment.

Product1 Product2 Product3 Product4

User Friendly ++ + - -

Good Performance ++ + + --

Secure Information

(user identification)

+ ++ -

Legend: [++] strong positive satisficing [+] weak positive satisficing
[] lack of significant contribution [--] strong negative satisficing [-] weak negative satisficing

Table 1 – Evaluation of COTS products based on NFR Framework

The advantages of the NFR Framework are many folded: developers are able to
explicitly and systematically express non-functional requirements, which in turn
drives the COTS evaluation process. Indeed, after the refinement of non-functional
requirements, the process of evaluation among COTS products become easier because
the number of products that meet these refined requirements decreases. As shown
before, the goal user identification is the most promising operationalization of the
goal secure information. So, when evaluating COTS products against security of
information, we should concentrate on products that support user identification.

Table 1 illustrates the compliance among the non-functional requirements of the
domain application and four COTS candidates. The product 4 is not in accordance
with any of the non-functional requirements and will be removed from the candidate
list. The product 3 does not satisfice the requirement user friendly, which is a critical
attribute then it will be also discarded. Note that products 1 and 2 will continue in the

III Workshop de Engenharia de Requisitos 205

list. Therefore, it is both necessary and cost-effective to select only the most
promising candidates for detailed evaluation.

5.3 Product Description Phase

This phase provides a detailed description of all products that continue in the list of
COTS candidates after the rejection of products during the NFR framework analysis.
Besides the requirements specification used to evaluate COTS products, it is also
necessary to consider non-technical issues for prioritizing candidates. Product
specifications, documentation, briefings and demonstrations are used in order to better
understand each product. We present the Description Checklist that guides the
evaluation process. The developer should verify all these issues:

• Components’ costs and benefits;

• Components’ capabilities;

• Easiness of installation;

• Future standards;

• Vendor assessment;

• Quality and cost of support;

• Vendor reputation and maturity;

• Vendor infrastructure;

• Access to internal component information;

• Version choice and control;

• Risk analysis.

Throughout the analysis of the Description Checklist, a comparative evaluation is
performed of the product description against the customer requirements. Therefore,
the iteration between this phase and the requirements acquisition is performed again.
It is important to note that during the selection process both functional requirements
and non-functional requirements need to be equally considered. Although, as
described above, non-functional requirements usually are more critical than functional
ones.

As the COTS alternatives have been evaluated, the evaluation data needs to be used
for making a decision. The AHP (Analytic Hierarchy Process) (Saaty 1990) is one
technique to aid in the decision making process. This technique is based on the idea of
decomposing a multiple criteria decision making problem into a criteria hierarchy. At
each level in the hierarchy, the relative importance of factors is assessed by pair-wise
comparisons. We apply this technique in the following fashion: the product’s
characteristics, such as functional requirements, quality characteristics and non-
technical aspects are considered as criteria during the decision making process. Each
criterion is assigned a weight or a score. In the case of weighting non-functional

WER2000206

requirements, we can use the estimation made during the application of the NFR
framework where each requirement was described as: irrelevant, important, critical,
etc. Finally, COTS alternatives are compared in pairs with respect to the criteria.

During the description phase, developers should also verify the quality of the
components. We suggest a methodology described by Voas (1998) for determining
the quality of COTS products. This approach does not require that a COTS software
vendor disclose information concerning internal development process. However, it is
necessary to obtain the product to perform it. To limit costs, customer may obtain a
loaner copy, a demonstration copy or a copy borrowed from another organization
(after arranging any required transfers license with the vendor).

These techniques are very useful during the evaluation process because they provide
information about the component’s impact on the system. For instance, customers
obtain more resources to assess COTS products. The level of complexity regarding
COTS products evaluation increases significantly when multiple products will have to
be evaluated in combination. Carney and Wallnau (1998) provide additional
discussions about evaluation of COTS-Intensive systems.

5.4 Product Acceptance Phase

The main objective of this process is to screening the products that were considered
suitable to integrate the system after detailed analysis of non-functional requirements
and other issues. Another activity is to negotiate the legal contract with vendors and
resolve legal issues pertaining to the purchasing of the product and licensing. A
license between the vendor and the customer should minimally specify:

• The rights the vendor authorizes the customer to exercise in the software;

• Who owns the component and modifications to the component;

• The risks and liability each party assumes under the license;

• Support, maintenance, and warranties for the component;

If the selected components do not provide all required functionality for typical
systems in the domain, extra new components need to be developed to meet the
necessities, but they may be specific to a particular system and not generally reusable.

6. Conclusions and Future Work

Component-Based Software Engineering is an important development approach for
software systems. The promise of shorter development schedule, lower resource cost,
and higher product quality has led to the increasing adoption of COTS. However,
many new risks and problems have emerged, such as difficulty in meeting non-
functional requirements, use of low-quality components, and insufficient technical
support.

III Workshop de Engenharia de Requisitos 207

Indeed, the components community aims to make CBSE an effective and efficient
practice. A first step to reach these objectives is develop a consistent and well-defined
process model. The CRE Model presented here is our attempt to address this need. As
far as we know, there are not any COTS selection models that treat exclusively
functional requirements or non-functional requirements. Most papers only emphasizes
the importance of acquiring user requirements. The CRE model identifies the
important efforts required in evaluating and selecting COTS components. In addition,
it provides a practical model for acquiring and dealing with user non-functional
requirements.

As observed above, the processes of non-functional requirements prioritization and
decision making are very complex. Therefore, further work on the CRE Model
includes the analysis of interdependencies between non-functional requirements and
the improvement of rationale behind COTS choice.

Furthermore, we intend to apply the CRE Model in a real situation, for that we are
currently undertaking case studies. Another future work is to extend this model
through the phases of adaptation and integration of COTS products. Finally, we
believe that requirements engineering provides significant implications for CBSE
practice and research.

References
Aoyama, M.: New Age of Software Development: How Component-Based Software

Engineering Changes the Way of Software Development. International Workshop
on Component-Based Software Engineering, April (1998)

Bergner, K., Rausch, A., Sihling, M.: Componentware--The Big Picture. International
Workshop on Componet-Based Software Engineering, April (1998)

Brown, A.W., Wallnau, K.C.: Engineering of Component-Based Systems, Component-Based
Software Engineering. Selected Papers from the Software Engineering Institute, IEEE
Computer Society Press (1996)

Chung, L, Nixon, B., Yu, E.: Dealing with Change: An Approach using Non-Functional
Requirements. Requirements Engineering, Vol. 1, No. 4, 1996, pp. 238-260 (printed 1997).

Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publisher (2000)

Chung, L., Nixon, B.: Dealing with Non-Functional Requirements: Three Experimental Studies
of a Process-Oriented Approach. 17th International Conference on Software Engineering,
April (1995)

Chung, L., Nixon, B.A., Yu, E.: Using Non-Functional Requirements to Systematically Select
Among Alternatives in Architectural Design. Proceedings of 17th ICSE Workshop on
Architectures for Software Systems, Seattle (1995)

D’Souza, D.F., Wills, A.C.: Objects, Components and Frameworks with UML: The Catalysis
Approach. Addison Wesley (1998)

Fox, G., Marcom, S., Lantner, K.: A Software Development Process for COTS-based
Information System Infrastructure. Proceedings of the Fifth International Symposium on
Assessment of Software Tools - SAST’97. June (1997)

Garlan, D. R., Ockerbloom, J.: Architectural Mismatch: Why its Hard to Build Systems Out of
Existing Parts. Proc. Of the International Conference on Software Engineering, April (1995)

WER2000208

Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: or Why It's Hard to Build
Systems Out of Existing Parts. Proceedings of the 17th International Conference on Software
Engineering, Seattle (1995)

Lichota, R.W., Vesprini, R.L., Sawanson, B.: PRISM Product Examination Process for
Component Based Development. Proceedings of the Fifth International Symposium on
Assessment of Software Tools - SAST’97. June (1997)

MacGraw, G., Viega, J.: Why COTS Software Increases Security Risks. Reliable Software
Technologies. Sterling VA USA. June (1998)

Maiden, A.N., Ncube, C.: Acquiring COTS Software Selection Requirements. IEEE
Software, Vol 15 n°1-3, April (1998)

Ncube, C., Maiden, N.A.M.: PORE: Procurement-Oriented Requirements Engineering Method
for the Component-Based Systems Engineering Development Paradigm. International
Workshop on Component-Based Software Engineering, May (1999)

Nwosu, C.K., Seacord, R.C.: Workshop on Component-Based Software Engineering Processes.
held in conjunction with Technology of Object-Oriented Languages and Systems Tools
Conference, August (1999)

Robert, C.S., Scott, A.H., Kurt, C.W.: AGORA: A Search Engine for Software Components.
Software Engineering Institute, Carnagie Mellon University, USA (1998)

Saaty, T. L.: The Analytic Hierarchy Process, New York: McGraw-Hill (1990)
Seacord, R., Nwosu, K.: Life Cycle Activity Areas for Component-Based Software

Engineering Processes. Workshop on Component-based Software, August (1999)
Sommerville, I.: Software Engineering. 5 th Edition ed: Addison-Wesley (1996)
Szyperski, C.: Component Software. Addison-Wesley (1998)
Tran, V., Liu, D.: A Procurement-centric Model for Engineering Component-based Software

Systems. Proceedings of the Fifth International Symposium on Assessment of Software
Tools - SAST’97. June (1997)

Voas, J. M.: Certifying Off-the-Shelfs Software Componentes. IEEE Computer Society. June
(1998)

Wallnau, K.C., Clements, P., Zaremski, A.: Correcting, Identifying, and Avoiding
Interface Mismatch: Theory and Practice. Draft Paper, Software Engineering
Institute, Carnegie Mellon University (1997)

Wallnau, K.C., Carney, D., Pollak, B.: How COTS Software Affects the Design of COTS-
Intensive Systems. Software Engineering Institute, Carnegie Mellon University, USA. June
(1998)

