

 166

Automatic Derivation of Workflow Specifications from
Organizational Structures and Use Cases1

Mª Carmen Penadés, José H. Canós, Juan Sánchez
Departamento de Sistemas Informáticos y Computación,Universidad Politécnica de Valencia

{mpenades|jhcanos|jsanchez }@dsic.upv.es

Abstract. Workflow technology has reached a reasonable degree of maturity,
with a number of both research prototypes and commercial systems available.
However, methodological issues have received little attention, and WF
developers often have to face the WF development process with neither a
methodological support nor a global view of the process. In this paper, we
introduce a requirements engineering layer in the workflow development
lifecycle. It is organization-based, and follows a bottom-up modeling strategy.
In order to capture business processes requirements to obtain a workflow
model, we describe the tasks in the process as use cases. The use case model is
refined by applying specialization, use and extension relationships, as we go up
in the organizational hierarchy. A preliminary workflow model implementing
the business processes is obtained automatically from the use case model. The
transformation is driven by a set of rules derived from the equivalencies
between use case and workflow concepts plus a set of process patterns. A tool
supporting our method has been implemented and is outlined in this work.

Keywords: Workflow specification, use cases, business processes
requirements.

1. Introduction and Motivation

A workflow (WF) has been defined as “the automation of a business process (BP),
in whole or part, during which documents, information or tasks are passed from one
participant to another for action, according to a set of procedural rules” [1].
Workflow Management Systems (WFMSs) are software systems that allow users to
define, manage and execute WFs in heterogeneous and distributed environments.

During the last decade, WF technology has reached a reasonable degree of
maturity, with a number of both research prototypes and commercial systems
available. However, most of the work done so far in the WF management field has
been tool-oriented and technological in nature. Methodological issues have received
little attention, and WF developers often have to face the WF development process
with neither methodological support nor a global view of the process [2]. This often
leads developers to build WF models from scratch, without a clear statement of the BP

1 This work has been supported by CICYT (Project DOLMEN-SIGLO) TIC2000-
1673-C06-01)

 167

they are trying to represent in terms of WF concepts. Moreover, the level of expertise
needed to specify a WF model is rather high and WFMS-dependent due to the lack of
a widely accepted WF model (the Workflow Management Coalition (WfMC)
Reference model [3], though published in 1994, is not fully implemented in current
WFMSs).

In [4], we claimed that many of the principles of Software Engineering could be
applied to the WF development process if WFs are considered as complex software
products. In particular, techniques, methods and tools used in Requirements
Engineering can be applied to WF modeling and help us to build complete and correct
WF models.

In this paper, we introduce a requirements engineering layer to capture BP
requirements and obtain a WF model from them. It is organization-based and follows
a bottom-up modeling strategy. We describe the tasks in the process as extended use
cases (UC) that are refined by applying specialization, use (uses) and extension
(extends) relationships, as you go up in the organizational hierarchy. A preliminary
WF model implementing the BP is obtained automatically from the UC model. The
transformation is driven by a set of rules which is derived from the equivalencies
between UC and WF concepts, as well as a set of process patterns. The WF model
generated is finally improved using the editing tool of the WFMS used to automate the
BP.

This paper is organized as follows. The target WF model and the organizational
model used in our proposal are defined in section 2 and section 3, respectively.
Section 4 describes the extensions made to the UML’s use case model [5] in order to
cope with all dimensions of BPs. Section 5 describes the rules that govern the
generation of WF models from UC models. The generation procedure consists of five
steps, which are described using an example in section 6. Our method is supported by
a tool, the architecture of which is shown in Section 7. The last section gives the
conclusions and links this work with other related works.

2. Workflow Model

A WF specification (also called WF type) is the description in an executable

language of a BP as a set of activities which use resources and which are performed in
a given order (defined by the control flow) by zero or more actors within an
organization. Different kinds of conditions specify the circumstances under which
activities can be started or terminated, as well as how control flow passes from one
activity (or a set or activities) to the following one. An activity may produce output
data that can be used as input by its successor in the control flow (data flow).
Figure 1 shows the WF definition metamodel that we use in this paper. It is specified
in UML notation [5]. The main elements of the model are the following:
• Process: a process is composed by activities and/or subprocesses and/or transition

conditions. The control flow connects these elements and establishes the correct
process execution order. For a good understanding of the model, the
relationships modeling the control flow between these elements are not explicitly

 168

represented in figure 1. Among other attributes, every process has an identifier, a
name, a description, a start condition, an end condition and a state.

• Activity: it is any atomic piece of work that constitutes a logical step within a
process. Like a process, every activity has an identifier, a name, a description, a
start condition, an end condition, a state and a set of specifically associated
actions An activity may be manual or automatic; human actors execute manual
activities (e.g., filling out a form or making a decision), whereas the automatic
ones are executed by a computer and normally consist in the invocation of an
external application.

• Subprocess: A subprocess is a process that is part of another process, that is, it
constitutes a complex step in a process. This allows the introduction of
modularity in WF models.

M

I

F

Actividad
Manual

Actividad
Automática

Actividad
Inicial

Actividad
Final

Subproceso

Recursos

R

A

Unión
Total

Unión
Parcial 1

Unión
Parcial N

1

N
c1

c2 ci

B

c1
c2

ci
or

c1
c2

ci
xor T/F

Bifurcación
Total

Bifurcación
condicional sin
exclusión mutua

Bifurcación
condicional con
exclusión mutua

Bifurcación
booleana SP

 Figure 2. Graphical language to represent WF models

Flujo de
Control

Figure 1. Workflow model

 169

• Transition Condition: It is possible to include the following transition conditions
in the control flow of a process: AND-Join, OR-Join, AND-Split and OR-Split.

• Data: they are all the information needed for the process execution (either as
activity input/output or in the evaluation of the transition conditions). Normally,
they are persistent (stored in a database or repository). When an activity begins, it
consults the input data from the repository; when the activity ends, it stores the
output data in the same repository.

• Actor: it represents the human participation in the WF. It is the connecting point to
the organizational model we introduce in the next section.

We have defined a graphical language to represent WF models in an intuitive way.
The symbols representing the above concepts are shown in figure 2.

3. Organizational Model

The organizational model we use is represented in the UML class diagram of

figure 3. It is similar to the organizational models proposed in the WF literature (e.g.
[3], [6]). We describe an organization as a hierarchy of actors who perform different
activities inside the organization. Actors may be individuals called users or
organizational units (e.g. departments) including several actors. A user may play
different roles in the organization replacing another user in the fulfillment of an
activity.

The hierarchy of the organization is defined in terms of two relationships. First, a
membership relationship defines the composition of each organizational unit. It is
represented by the aggregations has_users and has_units in figure 3. Users may
belong to one or more organizational units, whereas an organizational unit may be
only part of a higher-level organizational unit. And second, every organizational unit
is managed_by a user.

Figure 3. Organizational model

 170

Our proposal consists in the definition of an iterative requirements elicitation
process driven by the structure of the organization. Specifically, in section 6 we show
how the BP requirements are captured by means of interviews with the members of the
organization through a bottom-up traversal of the organizational hierarchy. We start
describing the activities performed by individuals inside an organizational unit; later,
activities are time-ordered using the knowledge the unit manager has about the global
responsibility of the unit. This process iterates in higher levels of the organization
until a WF model representing the BP is completed.

4. Modeling Business Processes with Extended Use Cases

Nowadays, building the UC model is the initial step in most of the object-oriented
software development methods (e.g. Fusion [7], Octopus [8], UML [9][10]). UCs
allow us to capture the software functional requirements in a structured, process-
oriented way, and their simplicity makes them particularly valuable for interacting
with both customers and project managers.

A UC describes a process or task as a sequence of events which are exchanged
between the actors in the process and the system when (part of) the functionality
defined in the UC is executed. A UC has a name, a numeric identifier, a purpose, a
reference to the UC diagram in which it is placed and a description of the process it
represents. This description is composed of the following elements:
• Precondition: the state of the system required for the UC to be executed.
• Post-condition: the state that the execution of the UC leads the system to.
• Actors: an ordered list of actors. By actor we mean any entity which is able to

exchange information with the system (people, devices, other systems). The first
actor in the list is called the main actor, and the remaining ones are secondary actors.

• Event flow: it shows the events generated by the actors and the system
commitments, as well as the extension points of the UC that cope with the
exceptional behavior of the system.

UC model refinement can be done by linking UCs using any of the following
relationships:
• Use (uses2): literal insertion of a UC into another UC at a given point in the event

flow (the use point).
• Extension (extends): similar to the use relationship, but in this case, the insertion

at the extension point takes place only if some condition (the extension condition)
holds.

• Specialization: close to the notion of specialization in object-oriented models [5].
We say that a UC is elementary if it does not use nor is extended by another UC, and
that it is a complex UC otherwise.
UCs are particularly useful to process-oriented modeling. However, some aspects of
the WF model needed to perform an automatic generation must also be taken into
account. In particular, we have extended the properties of a UC with the following:

2 In recent versions of UML, the uses relationship among UCs has been renamed to includes.

• Input data: data needed by the UC for its execution; they can come from a database
or any other source.

• Output data: data produced by the UC.
• Type of process: in an elementary UC the process can be either manual or

automatic. Regarding complex UCs, it may be impossible to precise the nature of the
process as it can be composed of both manual and automatic activities. In this case,
we just say that the type of the process is complex.

UCs can be described using two different notations: a graphical one (which is very
concise and intuitive) shows only the UCs plus the relationships between them, and
also shows the actors involved. A more detailed representation uses a textual template
for each UC (see section 6).

5. Equivalencies between UC and WF Concepts.

As follows from previous sections, many of the concepts of the WF model are

present in the extended UC model (Table 1 summarizes the equivalencies between
both models). Our proposal consists of exploiting the intuitiveness of UCs to use them
as a BP requirements description language.

Given a BP expressed as a UC model, the corresponding WF specification can be
obtained by means of the following transformation rules:

R1. Every elementary UC in the UC model is transformed into an activity having as
actors those specified for the UC.

R2. The event flow of the UC determines the action flow of the activity. Notice that
the action flow is a property of the activity and is not shown in the WF model,
as activities are the lowest level of granularity in WF models.

R3. The input data and the output data of the UC become the input data and output
data of the activity, respectively.
Use Case Concepts Workflow Concepts
Use Case Model Workflow Model
Elementary UC Activity
 UC name Activity name
 Process type Activity type
 Input data
 Output data

 Input data
 Output data

 Precondition Start condition
 Postcondition End condition
 Actors Actors

 Event flow Action flow
Complex UC Subprocess
 Event flow +
 Relationships

 Process patterns

Table 1. Equivalencies between UC and WF concepts
 171

 172

R4. Pre- and post-conditions in the UC are transformed into the activity’s start and
end conditions, respectively.

R5. The process type of the UC determines the type of activity.
In addition, the analysis of the relationships between UCs allows for the automatic
generation of complex activities or subprocesses by means of process patterns, two of
which are described below.

5.1 The extends-relationship pattern

Figure 4 shows a UC uc1 which is related to another UC uc2 by extension; the
event flow of uc1 is ev1 ev2, EP1, ev3, where EP1 is the extension point to uc2. The
process pattern that corresponds to this case includes a conditional split in the control
flow, corresponding to the extension condition of the uc1. The activity ac1 includes
the event flow before the extension point, and, similarly, ac2 includes the event flow
after the extension point. UC2 is considered a subprocess and could induce new
subprocesses or become an activity, depending on its complexity.

5.2 The uses-relationship pattern

Figure 5 shows a UC uc1 which is related by use to uc2; the event flow of uc1 is
ev1, UP1, ev2, with UP1 being the use point to uc2. In this case, the process pattern
consists of including the subprocess associated to uc2 in the control flow between ac1
and ac2. As in the extends-relationship pattern, uc2 complexity could induce new
subprocess or become an activity.

uc1

uc2

extends
uc1
ev1

ev3
EP1

ev2

UC Model

WF Model

uc1

uc2

extends
uc1
ev1

ev3
EP1

ev2

uc1

uc2

extends
uc1
ev1

ev3
EP1

ev2

UC Model

WF Model

Figure 4. Extends-relationship pattern

uc1

uc2

uses
uc1
ev1

ev2
UP1

UC Model

WF Model

uc1

uc2

uses
uc1
ev1

ev2
UP1

uc1

uc2

uses
uc1
ev1

ev2
UP1

uc1
ev1

ev2
UP1

UC Model

WF Model

 Figure 5. Uses-relationship pattern

 173

6. Deriving Workflow Models from Use Case Models

The WF specification corresponding to a given BP described as an extended UC
model is obtained by following a five-step process. To illustrate it, we use the business
process that a finance company uses to approve loans to their customers. The process
begins when a customer requests a loan and the loan officer collects all credit
information. A letter is sent to the customer with the approval or rejection notification
when the process finishes. More details about the process are given as we proceed
with the generation steps.

Step 1. Enterprise Structure Modeling. Having a well-defined organizational
model is required to be able to perform steps 2 and 3. The organizational structure of
the company is modeled in terms of the model introduced in section 3.

In the example, we will assume that the company is headed by an executive
director and has two organizational units: contracts and loans. Each organizational
unit has a number of people playing different roles: the contracts unit has two financial
officers, whereas the loans unit has three loan officers. Figure 6 shows the
organizational structure of the company.

Step 2. Creation of the UCs corresponding to individual tasks in the

organization. Each member of the company has its own view of BP. For instance, a
financial officer can have a different perspective about the loan tasks than the one a
loan officer has. But both views are valuable.

Figure 6. Organizational structure of the financial company

Name
Manager

/Rol)
Name

User Has_users relationship

Has_units relationship

 User1
(FINANCIAL OFFICER)

Contracts

Financial Director

Finance Company

Executive Director

 User2
(FINANCIAL OFFICER)

 User3
(LOAN OFFICER)

 User3
(LOAN OFFICER)

 User3
(LOAN OFFICER)

Loans

Loan Director

Organizational
Unit

 174

The requirements of a BP are captured by means of interviews with the employees
that actually perform the activities. The UC representing a particular activity is
obtained from the knowledge the actual performer of the task has about it and
described in a textual template (see figure 7).

In the example, loan officers perform several tasks. They collect all information
related to the loan request and check the risk of the loan. If the risk is high or the
amount request is more than $10.000, they send the loan request to the financial unit.
Finally, they notify the resolution to the customers sending them an acceptance or
rejection letter. Financial officers evaluate the loan request and decide the approval or
rejection of the loan. If the loan is rejected but the customer is a preferential customer,
the executive director takes the final decision for approval or rejection of the loan.

Step 3. Representation of the relationships among UCs to obtain a UC model.
UCs do not exist in isolation, rather they are usually interrelated. The UC model
obtained in the previous step can be refined, or new UCs can be created from the
previous ones by applying specialization, use and extension relationships. This task
may be performed by organizational unit managers, who can produce a refined view
of the model due to the wider vision of the business process they have. This may

Identification
ID: CU0003 Name: Notify resolution
Purpose: Notify resolution to the customer
Diagram: D1
Relationships:
Specialization: --
Uses: “Send Notification”
Extends: --
Process/Description
Process Type: Complex
Input Data: Credit approval
Output Data: Letter to the customer
Preconditions:
Post conditions:
Actors: Loan officer
Event Flow (Actor-System Communications)
(User Intention) (System Responsibility)

1. The loan officer requests the
final resolution of the loan

 2. The system searches for the customer credit
approval

3. Use “Send Notification”
Extensions.

 If at point 2, the client credit approval is true then “Accept Credit”
 If at point 2, the client credit approval is false then “Reject Credit”

Figure 7. Textual template of Notify resolution use case

 175

produce more concise models by removing redundancies and factoring duplicate
behaviors.

In a complex organization, steps 2 and 3 should be iteratively applied upwards in
the organizational structure until the UC model is completed.

In the example, financial officers have a more global vision of the process that
loan officers; similarly, the executive director knows the global business logic, but
does not need to know each activity in depth. Figure 7 shows the final textual
representation of the UC describing the task Notify Resolution. Figure 8 shows the
graphical UC model of the process obtained when steps 2 and 3 are finished.

Step 4. Automatic generation of a preliminary WF specification from the
UCM. The switch from the UC model to the WF model is accomplished by means of
an automatic transformation. This transformation is driven by the set of rules derived
from the equivalencies between UC and WF concepts plus the set of process patterns
shown in section 5. The output of this step is a WF specification which include
activities, subprocesses, data flow, an organizational model and part of the control
flow between activities and/or subprocesses.
Figure 9 shows the global process and figure 10 shows the notify resolution
subprocess obtained after applying the process patterns.

Step 5. Refinement of the WF specification. The lack of a precedence
relationship between UCs hinders the generation of all the control flow aspects; hence,
some of the WF activities must be manually connected in order to complete the WF
specification. To perform this task, the editing facilities of the WFMS are used. At
the end of the process, a WF specification representing the BP is available. Figure 11
shows the WF model obtained for the loan process.

The WF specification obtained can be animated in a prototyping environment and
validated with the employees of the company [11]. The final WF implementation is

 N o t ify R e so lu t io n
L o an O ffice r

R ejec t C red it

ex te n d s

S e nd N o t ific a t io n
u ses A c ce p t C re d it

ex te n d s

C hec k re so lu t io n
F inanc ia l O ffic e r

F ina l E va lu a t io n

ex te n d s

R eq u es t A p p ro va l
u ses

C o llec t C red it In fo
L o an O ffice r

F ina l A p p ro va l
E xe cu t ive
D ire c to r

A ssess R isk
L o an O ffice r

Figure 8. Loan Process Use Case Model

 176

achieved by defining the execution environment infrastructure: host where
applications will execute, databases, legacy systems and other resources. But all these
details are out of the scope of this paper.

 Figure 9. Global loan process Figure 10. Notify Resolution subprocess

Figure 11. Loan Process WF model

7. Implementation of the Method.

We have developed a tool implementing the strategy described in previous

sections. The shaded area in figure 12 shows the architecture of the tool. A UC editor
is used to define the UC model corresponding to a BP in both graphical and textual
representations. The model is stored in a UC repository. The UC-WF converter reads

it and generates the corresponding WF specification, which is stored in a WF
repository. A WF editor is then used to make further refinements to the WF
specification.

The tool was implemented using the Borland Delphi development environment
[12] and data repositories were implemented in a relational DBMS. The tool was
integrated in a WF development environment in which graphical WF models are
transformed into formal WF specifications in OASIS [13], a formal object-oriented
language based on dynamic logic. OASIS specifications can be prototyped using
KAOS, a deductive and object-oriented database system implementing the OASIS
operational semantics [11]. They can also be transformed automatically into WF
specifications written in the language of efficient process engines. Currently, we are
working on the generation of WF models which are executable in IBM MQSeries WF
[14], SAP R/3 [15] and OPERA [16].

8. Conclusi

In this pap

WFMSs that p
are automatica
obtained in a
structure invol
and workflow
implementatio
process pattern
relationships b

Despite th
organizational

WFMS
runtime

UC-> WF
converter

UC
repository

WF
buildtime

WF
repository

prototype
generator

WF type
generator

UC
editor

KAOS

OASIS
repository

Prototyping
Environment

Figure 12. Tool architecture
177

ons and Future Work

er, we have introduced a requirements engineering layer on top of
ermits the description of business processes as use case models, which
lly transformed into workflow specifications. The use case model is
bottom-up and iterative process which is driven by the organizational
ved in the business process. Later, the equivalencies between use case
 models are used to apply the transformations leading to the

n of the business process in an executable workflow language. A set of
s is used to transform relationships between use cases into control flow
etween activities in a workflow.
e growing interest of the Requirements Engineering community in
 matters, to our knowledge there are not many proposals specifically

 178

oriented to obtain correct and complete WF specifications. Castro et al., for instance,
use the i* framework to model early requirements which can be transformed into
pUML specifications through the application of a set of guidelines [17]. The
transformation is essentially structure-oriented (it produces a context class diagram
plus a set of constraints in OCL) and it is not evident how a process specification
could be derived from the i* models. However, a motivating issue for further
exploration is how dependencies between actors in an i* Strategic Dependence Model
could be used in our approach to drive the BP discovery process.

Process discovery is a essentially cooperative activity [18]. Hence, some
infrastructure supporting cooperation between organization members and BP modelers
would be very helpful. Machado et al. [19] define a infrastructure supporting the
different steps composing a domain engineering process. In particular, CSCW tools
are used for cooperative scenario creation during the knowlegde acquisition stage of
the process. Currently, our tool lacks any support for the cooperative elicitation of BP
requirements, and how to add such capabilities to our prototype is under study.

The closely approach to ours is that of Baresi et al. [20]. In their methodological
proposal to WF development, they introduce an analysis phase in which they describe
the BP operational structure using UC along with sequential diagrams. In contrast to
our proposal, the UC model obtained is not used to obtain a WF model, rather it is
used to determine which processes should be included in the WF model, which should
then be built from scratch. As we have described in this paper, our approach goes
beyond the mere detection of processes, yielding a WF model lacking only the
definition of the control flow between activities and/or subprocesses automatically.

Other authors have detected the lack of control flow between UCs in the UC
model. To overcome it, Leite et al. define in [21] a partial ordering between scenarios
that permits a limited specification of control flow. Their idea could be applied to our
method since the scenarios are described by means of textual templates very similar to
those we use to describe extended UCs. However, WF models include richer control
flow than the offered by the Leite’s proposal. We are currently working on the
improvement of the method in order to automatically obtain a workflow model which
also includes control flow aspects that are not generated in the current version; this
should require the definition of some kind of time-ordering relationships between UC.

Another proposal close to ours is Jacobson’s [22], who uses a UC model for BP
reengineering activities on already existing processes in an organization. However, he
does not use a WF model as the final result of the reengineering process.
We also plan to extend the tool we have implemented in order to use XML [23] to
store the generated workflow models in a format which is compliant with the WfMC
interchange standards [24].

References

[1] Workflow Management Coalition, “Terminology & Glossary”. Technical report WfMC-

TC-1011, WfMC, June, 1996. (http://www.wfmc.org/).
[2] Sheth, A., Georgakopoulos, D., Joosten, S., Rusinkiewicz, M., Scacchi, W., Wileden, J. and

Wolf., A. “NSF Workshop on workflow and Process Automation in Information Systems”,

http://www.aiai.ed.ac.uk/WfMC/)
http://www.wfmc.org/

 179

Technical Report, UGA-CS-TR-96-003, Computer Science Department University of
Georgia, October 1996. (Available at http://lsdis.cs.uga.edu/activities/NSF-workflow/final-
report.ps).

[3] Hollingsworth, D., “The Workflow Reference Model”, Technical Report TC00-1003,
WfMC, December, 1994. (http://www.wfmc.org/)

[4] Canós, J.H., Penadés, M.C., Carsí, J.A. “From Software Processes to Workflow Processes:
the Workflow Lifecycle”, Proc. of the International Software Technology Workshop,
Grenoble, France, 1999.

[5] Booch, G., Rumbaugh, J., Jacobson, I., “The Unified Modeling Language”. Addison-
Wesley, 1999.

[6] Leymann,F., Roller, D., “Production Workflow. Concepts and Techniques”, Prentice Hall,
2000.

[7] Coleman,D., et al, “Object Oriented Development:The Fusion Method”, Prentice Hall
1994.

[8] Awad, M., Kuusela J., Ziegler, J., “Object Oriented Technology for Real-Time Systems: A
practical approach using OMT and Fusion”. Prentice Hall 1996.

[9] Jacobson, I., Booch, G., Rumbaugh, J., “The Unified Software Development Process”.
Addison-Wesley, 1999.

[10] Larman C., “UML and Patterns”. Addison Wesley, 1998.
[11] Canós, J. H., Penadés, M.C., Ramos, I., Pastor, O., “A knowledge-base architecture for

object societies”, Proc. of the DEXA-95 Workshop, OMNIPRESS, 1995.
[12] “Borland Delphi”. http:\\www.inprise.com
[13] Pastor,O., Ramos,I., Canós,J.H. “Oasis v2: A Class Definition Language”; Proc. of

DEXA-95, Lecture Notes in Computer Science (978), pags: 79-91 Springer-Verlag, 1995.
[14] IBM MQSeries Workflow (Available at http://www.redbooks.ibm.com)
[15] SAP AG. http:\\www.sap.com
[16] C.J. Hagen. “A generic kernel for reliable process support”. Ph. D. Thesis, ETH Nr.

13114. ETH Zurich, 1999 (http://www.inf.ethz.ch/department/IS/iks/research/opera.html)
[17] Castro, J., Alencar, F., Filho, G., Mylopoulos, J., “Integrating organizational requirements

and object oriented modeling”, Proceedings of 5th IEEE International Symposium on
Requirements Engineering (RE’01), Toronto (Canada), August 2001.

[18] Borges, M., Mendes, R., Cerqueira, B., “Bridging the gap between organizations and their
software processes – An approach based on patterns and workflow systems”, Technical
Report, Núcleo de Computação Eletrônica, Universidade Federal do Rio de Janeiro, 2001.

[19] Machado, M., Santos, F., Werner, C., Borges, M., “Uma infra-estrutura de Apoio à
Aquisiçao Cooperativa de Conhecimento em Engenharia de Domínio”, Proc. XIII Simposio
Brasileiro de Engenharia de Software (SBES'99), Florianopolis (Brasil), Outubro, 1999.

[20] Baresi, Castano, Ceri et al. “Wide Workflow Development Methodology”. WACC’99, San
Francisco, CA, USA, 1999.

[21] Leite, J.C, Hadad, G., Doorn, J.H., Kaplan, G. “A Scenario Construction Process”.
Requirements Engineering Vol. 5 (2000) pp 38-61. Springer-Verlag, 2000.

[22] Jacobson, I. “The Object Advantage. Business process reengineering with object
technology”. ACM Press, 1995.

[23] D. Box, A. Skonnard, J. Lam. ”Essential XML”. Addison-Wesley, 2000.

http://lsdis.cs.uga.edu/activities/NSF-workflow/final-report.ps
http://lsdis.cs.uga.edu/activities/NSF-workflow/final-report.ps
http://www.ethz.ch/

 180

[24] Workflow Management Coalition, “Workflow Standard-Interoperability. Abstract
Specification”. Technical report WFMC-TC-1012, WfMC, October, 1996.
(http://www.wfmc.org/).

http://www.ethz.ch/
http://www.aiai.ed.ac.uk/WfMC/)
http://www.wfmc.org/
http://lsdis.cs.uga.edu/activities/NSF-workflow/final-report.ps
http://www.aiai.ed.ac.uk/WfMC/)
http://www.wfmc.org/

