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Abstract. . Using formal languages to specify system requirements guarantees 
the correctness of systems specifications. However, having correct 
specifications does not guarantee such specification matching user 
requirements. To guarantee such matching, users are required to validate formal 
specifications. This is a difficult task because, usually, users are unaware of 
notations. This work focus on this problem, in particular the validation of 
formal specifications of complex coordinated systems. To make the user’s 
validation easier, a new graphic technique to represent the dependencies in a 
coordinated environment is proposed. This graphic (and visual) technique 
increases users’ understanding whilst lack of precisions is avoided. In fact, the 
proposed graphics correspond with visual representations of formal Maude 
specifications. Besides, taking advantage of the features of Maude, the system 
simulation is supported by the execution of Maude specifications. Thus, users 
are allowed to check whether the system produces the expected results.  

1. Introduction 

One of the first steps to be taken when developing software systems is to represent the 
system’s requirements. Using formal languages in these steps allows the syntactic and 
semantic correctness of the system specification to be checked, and at the same time, 
ambiguities and lack of precision are avoided [1]. However, formal languages 
themselves do not guarantee that produced specifications are valid [2]. Consequently, 
one can have a correct specification that does not match the user requirements. So, in 
addition to a system specification process, a specification validation step is required. 

The validation process confronts informal requirements stated by users with 
specifications representing the system’s conceptual model. Some validation methods 
[3] include the simulation of the system by executing the formal specifications. Using 
that technique, users can observe the system’s dynamic behavior in different 
situations, checking whether the specifications produce the expected results. 
However, validation presents some difficulties: The validation process requires the 
users’ collaboration, requiring them to understand formal specifications to detect 
errors and misinterpretations. Nevertheless, formal techniques are not especially 
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comprehensible by users unaware of notation [2]. This problem grows when the 
system being built is a complex one, in which different components interact following 
some negotiation rules. In such cases, the formal specification of components 
becomes obscured on the formal specification of negotiation rules, making harder the 
validation task. 

This paper focuses the above topics proposing a technique to make the 
specification and validation process easier for both software engineers and users. This 
proposal is based on the joint use of the formal language Maude [4] and a new kind of 
diagrams called Interelement Requirement Diagrams (IRD). Maude is used to specify 
components behavior. IRDs are used to specify the negotiation rules (coordinated 
interactions) between components in a graphical way. The use of IRDs makes the 
system specifications more comprehensible but does not introduce lack of strictness. 
In fact, the artifacts from IRDs have a well-defined semantic in Maude (and finally, 
IRDs are translated to Maude specifications). Thus, the main advantages of the 
technique presented are: 
1. Using IRDs designers specify the coordinated interactions between components 

independently from components specifications. Thus, IRDs make the formal 
specification of complex systems by focusing on how components interact and 
abstracting from specifications of components’ internal behavior. 

2. IRDs are a graphical and visual specification tool more suitable for system users 
than formal specification languages. By using IRDs, users can easily understand 
the specification of the negotiation rules that govern the interaction between 
components. 

3. The use of IRDs does not introduce lack of precision. IRDs are graphic 
representations with a Maude specification, and this graphical interface makes the 
Maude specification understandable. 

4. The final specification obtained in Maude can be executed allowing the system 
simulation. Thus, users are allowed to check whether the specified system 
produces the expected result. Moreover, IRDs are integrated in a specification tool 
that supports the progressive refinement of the system specification. 
The paper structure is as follows: In section 2 related works are commented. 

Section 3 describes the formal context used to specify de Diagrams explained in 
section 4. In Section 5 the formal specification of diagrams are described. Section 6 
explains future works and works in progress. Finally, section 7 presents conclusions 
and next, the references.  

2. Related works 

In last years new specification languages (or extensions of existing languages) have 
been appeared, combining formal techniques with OO paradigm, like, Lotos [5], Z++ 
[6], VDM++[7], ALBERT[8], TROLL[9], OASIS[10]; getting the advantages of 
both, but the difficulty in understanding too. 

With the aim of making the software development easier a wide range of graphical 
tools combining both graphical and formal techniques, have been developed in recent 
years. For example Rhapsody [11] and Statemate [12] are commercial tools based on 
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the use of statecharts [13], appropriate to specify intra object behavior.  The OO-
Method [14] combines OASIS and UML [15], and the TROLL Workbench [16] and 
TROLL Tbench [17] tools combine TROLL and OTROLL (based on OMT). These 
tools can express in a detailed way the static and dynamic aspects of the system, but 
making use of different charts to express each one. 

Our proposal intends to express inter object behavior abstracting from the internal 
behavior of the system’s components, in a unique diagram describing the important 
static and dynamic features. This unique diagram provides a global view very 
appropriate for users and designers to understand the system description. 

In addition, in order to provide the validation process, several techniques have been 
proposed rendering the conceptual model more comprehensible for users. Most of 
these techniques consist of introducing graphic symbols or user’s concept defined 
[18], paraphrasing parts of the conceptual model in natural language [19] or 
generating explanations from the specification [20], but simulation by means of the 
model execution is the technique that better permits the observation and testing of the 
dynamic properties of the system. Often the formal specifications execution is named 
animation. Most of the animation techniques need the translation of the specification 
to a programming language to be executed [16,17,21]. That can provoke lack of 
precision and fidelity between both representations due to the different abstraction 
levels of the languages [22]. The use of a formal language like Maude allowing the 
execution of formal specification avoids that problem. 

3. Context 

In this section, first, an overview describing the main steps of our proposal is 
presented. Next, the Maude formal language and the motivations of its use in this 
context are briefly outlined. Finally the objectives of IRDs are described to introduce 
the next section. 

The aim of this work is to integrate a set of techniques and tools to make the 
description, the development and the validation of software systems with important 
coordination constraints easier. All this focuses on the separation of the coordination 
aspect promoting the reutilization of software components. 

Figure 1 shows the main steps of the environment: 1) the main system components, 
their external interface and the negotiation rules of the system are expressed using 
IRDs. 2) The IRD has a Maude representation allowing to check for the agreement of 
a detailed Maude specification with regard to the original requirements expressed in 
the IRD. This representation is the entry to 3) the system specification in Maude. 4) 
The behavior simulation of the system can be tested and validated in each refinement 
iteration of the specifications as well as being in accordance with the formal 
representation of IRD by means of 5) the checker.  

Maude is an executable algebraic language based on rewriting logic. The language 
allows both functional and object- oriented specifications in a concurrent and non-
deterministic environment. Maude specifications can be executed by means of its 
rewrite engine, which facilitates its use for prototyping and for checking the 
specifications behavior [23].  
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Maude is divided into two levels: Core Maude and Full Maude. Core Maude contains 
the basic syntax of the language allowing the definition of functional and system 
modules. Operations and equations can be defined in both kinds of modules. In 
system modules, rewriting rules can also be defined. Full Maude is developed on 
Core Maude, and extends Maude with the necessary syntax to define object-oriented 
modules. In these modules the rewrite rules are interpreted as state transition rules of 
the object classes defined in them. Full Maude also provides the use of parameterized 
modules by means of views and theories. 
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Figure 1. Main steps of the proposal 

The clarity of the language, its wide range of application, its executability and its 
reflection facilitates by modules provided in the environment, have been decisive to 
select Maude as formal language in our context. 

Finally, IRDs can be used to represent the negotiation rules in a separate way, by 
means of interrelations between objects in a system, independently of the 
coordination model adopted in the design phase. In this work, the first aim was to 
translate the restrictions imposed by the coordination models to early phases in 
software life cycle. Exogenous coordination models promoting the separation of 
functional and coordination aspects were considered. In particular, attention was 
focused on Coordinated Roles (CR)[24] because of its special adaptation. That model, 
based on IWIM [25], makes use of Event Notification Protocols to coordinate the 
different components of a system in a transparent way. In fact, the considered events 
in this model (reception of a message, beginning of the processing of a message, end 
of the processing of a message and state researched) have inspired the considered 
events in the relation constraints of IRDs. 

4. Interelement Requirement Diagram 

In the early phases of the software development process, the scope, objectives and 
constraints of the future system have to be described. It is interesting to represent the 
system elements and their dependencies using an initial graphic schema, independent 
of later design decisions. Users must help to make that representation, collaborating in 
the discovery and the comprehension of the relationships between the different 
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components in the system. A diagram construction, in this way, would be the previous 
step to define a formal model of the system and it could be very useful to identify the 
candidate elements to be reused. With the aim of achieving an easy graphic 
representation to express initial system requirements we propose a new kind of 
diagrams named Interelement Requirement Diagrams (IRD).  
The aim under IRDs is to represent the system’s main features in the requirements 
definition when the system’s specific objects and their classes have not yet been 
determined. This representation consists of a unique graphic where the following 
topics are expressed: main system elements, their global behavior, how they are 
related and how they answer to specific stimulus, and how different features in their 
context are expressed. The same representation contains the system’s static (the 
element’s observable structure and external interface) and dynamic (relations 
describing the system behavior) aspects. Static aspects are expressed by means of 
nodes named elements, their observable external actions (operations the element can 
perform) and the values needed to perform these actions. Dynamic aspects are 
expressed by means of relations between components, represented by single arrows, 
where some conditions can decide if the action invocations are attended to.  

Next, an example is introduced, in order to clarify the characteristics and 
components of an IRD. 

4.1. Museum example 

The example presents a fire control system for a museum showroom. The showroom 
has a smoke detector connected to several elements: an alarm, a shower and an access 
door to the room.  When sensors detect smoke, send messages to the elements, 
invoking the actions to switch on the alarm, to open the shower and to close the door. 
However, all these actions must be coordinated to avoid people may be trapped in the 
showroom or the shower opens before the showroom has been evacuated.  

The system alarm can perform the actions Alarm_On and Alarm_Off. The smoke 
detector will invoke these actions when the smoke is detected and stops being 
detected respectively. The shower can do the actions Open_Shower and 
Close_Shower. These actions will be also invoked when there is smoke or not, 
respectively. The door behavior is a little more complex. The door detects when 
people come in or out in the showroom by means of sensors. The sensors send 
messages invoking the action In or Out that increases or decreases respectively the 
number of persons in the room. The door can also do the actions Close and Open that 
are invoked when there is or not smoke. The Close action can be executed if there are 
no people in the showroom and the door is opened. Otherwise the Close action will 
not have effect. Close or Open actions modify the door state if they can be performed. 

When the smoke sensor activates the alarm, and there are no people in the 
showroom, the door will be closed. Then the shower will be switched on. Just when 
the smoke stops being detected, the shower and the alarm will be switched off and 
after the two actions occur, the door will be open automatically.  

Figure2 shows the example IRD. Each element is represented as a node in the 
graph. Thus, the museum IRD has three elements: (A) the alarm, (D) the showroom 
door and (S) the shower. An element belongs to a specific class of elements (i.e. the D 
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element belongs to the Door class of element). For each class of elements its 
observable structure is described when the first element of the class is specified. In 
this definition the following features can be expressed: a state, a list of values and a 
list of actions. In this way, when a new elements belonging to a specified class are 
defined, it is only necessary to express which is their class. 
  

Element  D is  ::Door. 
State  closed :  Bool 
Value  inside
Actions  In { inside  ++} 

Out   {  inside  --} 
Close {if  closed  == false and inside= = 0 then closed  = true}
Open {if  closed  == true then closed  = false}

Element  A is  :: Alarm 
Actions   Alarm_On 
               Alarm_Off 

Element  S is :: Shower
Actions Open_Shower
              Close_Shower

Relation  Door_Ok 
Constraint End  Alarm_Off  and End  Close_Shower  then Open mode  synchronous 

Relation  Shower_Ok 
Constraint State   closed == false and End  Alarm_On then  Open_Shower  mode  synchronous 

A
Alarm_On Alarm_Off

Shower_Ok

Open_Shower 

Close_Shower 

In

Close

Open

Out

Door_Ok

DS

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2. IRD of the Museum example. 

The state is defined if the system behavior description refers to it. In the example, 
only the Door element specifies a state that is referred to in the Shower_Ok relation. 
Values represent variables or attributes of the elements that can be operated or 
changed by actions in the element; and they cannot be referred out of the element 
definition. The list of actions represents the operations that the element can perform 
and can be externally invoked (represented as a double arrow to the element). If the 
actions modify the state or the values specified as part of its internal behavior, that 
feature must be specified making use of sentences. The sentences change the state 
and/or values defined in an element and can be performed if a condition is satisfied. 
The condition can ask about the content of the state and values. So, in the example all 
the actions in the Door description define sentences modifying its value and its state. 
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The dependencies between elements are expressed by means of relations. In the 
example there are two dependency relations: Shower_Ok defining the sequences of 
actions to perform when there is smoke, and Door_Ok, defining the system behavior 
when the smoke stops is no longer detected. Both relations need the conditions 
imposed by their two origins to be  satisfied. In the case of the Shower_Ok relation, 
the Open_Shower action will be allowed if the Alarm_On action has ended and the 
door state is closed. In the Door_Ok relation the Open action is allowed if the 
Open_Shower and the Alarm_Off actions have been performed. So, in a relation the 
following can be expressed: the conditions that must be satisfied in the origin and/or 
final element(s), the events triggered, the actions to perform in the final element(s) 
and the mode (synchronous or asynchronous) in which each action is invoked. Events 
constrain the actions to be performed in the destination elements of a relation and can 
be triggered from different elements (origins of the dependency relation). In the 
Shower_Ok relation, the events state changes in the Door element, and the end of 
processing of the Alarm_On action in the Alarm element constrains the execution of 
the Open-Shower action in the Shower element. Thus, in this relation there are two 
origins D and A, and one destination element S.  

5. Formal representation of IRD 

An IRD represents system requirements in a semiformal way providing a visual 
representation of the system and a description of the constraints over the relations 
between the system elements. That representation is easier to understand by users and 
designers but it may be inaccurate, incomplete or inconsistent with the design 
specification In order to take the advantages of this representation and avoid the 
disadvantages, the semantic of each element in the IRD has been defined using the 
Maude formal language. To facilitate that representation, several object modules have 
been defined to be included. Some of then are shown below. 

(omod DefELEMENT is 

 protecting MACHINE-INT . 

 protecting QID . 

 sorts DefState ListVal Val NameState Atrib . 

 subsorts Val < ListVal . 

 subsorts Qid < Oid NameState . 

 subsorts MachineInt Bool < Val Atrib . 

 class Elmt | State : DefState . 

 op null : -> DefState . 
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 op Ste : NameState ListVal -> DefState . 

 op <_;_> : ListVal Val -> ListVal . 

 op <_:_> : MachineInt MachineInt -> ListVal . 

 ops <_:> <:_> : MachineInt -> ListVal . 

endom)  

The DefELEMENT module defines the Elmt class, and all elements in an IRD  are 
instances of this class. The attribute State can be null when an element has no state 
declared. Otherwise it will have a name and a value or list of possible values. A sort 
named Attrib is a generic type that can be use to define any attribute in a specific 
element if has no a predefined sort. In this module, two predefined Maude modules 
are imported, MACHINE-INT and QID, to use the definitions and operations of 
integer numbers and quoted identifiers respectively. 

(omod DefRELATION is  

 protecting DefSET . 

 protecting DefELEMENT . 

 sorts DefCons ListCons ListAct NotEvent Mode . 

 class Relation | From : DefSet, To : DefSet,  

     Constraint : DefCons . 

 op __ : ListCons ListAct -> DefCons . 

 ops RM BoP EoP : -> NotEvent . 

 op Event : NotEvent Msg -> ListCons . 

 op Event_._ : Oid NameState -> ListCons . 

 op Event_._==_ : Oid NameState Val -> ListCons . 

 op Event_._=/=_ : Oid NameState Val -> ListCons . 

 op Eventnot_._: Oid NameState -> ListCons . 

 op Eventnot_._==_ : Oid NameState Val -> ListCons . 

 op Eventnot_._=/=_ : Oid NameState Val -> ListCons . 

 op <_or_> <_and_> : ListCons ListCons -> ListCons . 
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 ops sync async: -> Mode . 

 op Action : Msg Mode -> ListAct . 

ops <_and_> <_or_>  : ListAct ListAct -> ListAct . 

ops <_orthen_> <_;_>: ListAct ListAct -> ListAct . 

ops <_else_> <_xor_>: ListAct ListAct -> ListAct . 

endom) 

DefRELATION module is used to define constraint relations in an IRD. It imports 
the above DefSET module and declares the Relation class. All constrains relations of 
an IRD are instances of this class . The attributes From and To indicate the origin and 
the end element or set of elements of the relation, and the Constraint attribute 
indicates the conditions imposed by the relation. The operations show how to express 
the different event notification modes and the priority and/or  the messages necessary 
to perform the actions imposed by the relation. 

Next, in DefIRD, the class IRD is used to define an IRD. It has two attributes 
representing the set of elements and the set of relations in the IRD. 

(omod DefIRD is 

protecting DefSET . 

class IRD | ElmtSet : DefSet , RelSet : DefSet . 

endom) 

5.1. Formal representation of the Museum example 

Performing to the Museum example, the different modules composing the formal 
specification of the system are defined.. The module ELMT_Alarm represents the 
Alarm class of element.  

(omod ELMT_Alarm is 

 protecting DefELEMENT . 

 class Alarm . 

 subclass Alarm < Elmt . 

 msgs Alarm_On Alarm_Off : Oid -> Msg . 

endom) 
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Each element in an IRD is represented by means of an object module in Maude, 
where a class is defined as a subclass of Elmt (defined in DefELEMENT) with its 
own attributes and the actions defined as messages.  Alarm is an Elmt subclass. The 
two actions Alarm_On and Alarm_Off are represented as messages. No attributes and 
State are defined in this element. 

In the same way, the ELMT_Shower module is defined. with the Open_Shower 
and the Close_Shower messages representing the corresponding actions. 

(omod ELMT_Shower is 

 protecting DefELEMENT . 

 class Shower . 

 subclass Shower < Elmt . 

 msgs Open_Shower Close_Shower : Oid -> Msg .  

 

endom) 

The Door element definition in the IRD has four actions, the closed state typed 
Bool and a value named inside. The actions are formally represented as messages, but 
in this case the actions define sentences. When sentences are defined in an action, 
those are represented in Maude as rewriting rules. Consequently, there is a rewriting 
rule for each action. The left side in the rule represents the action invoked and the 
configuration of the elements to apply the rule. The right side in the rule represents 
the changes of the element after applying it. Conditional sentences are represented by 
conditional rules.  

(omod ELMT_Door is  

 protecting DefELEMENT . 

 class Door | inside : Atrib . 

 subclass Door < Elmt . 

 msgs In Out : Oid -> Msg . 

 msgs Open Close : Oid -> Msg . 

 var D : Oid . 

 var A : Atrib . 

 rl[in] : In(D) < D : Door | inside : A > 

 => < D : Door | inside : (A + 1) > . 
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 rl[out] : Out(D) < D : Door | inside : A > 

 => < D : Door | inside : (A - 1) > . 

 rl[close] : Close(D) < D : Door |  

  State : Ste (•closed , false) , inside : 0 >  

 => < D : Door | State : Ste (•closed , true) > . 

 rl[open] : Out(D)  

 < D : Door | State : Ste (•closed , true) > 

 => < D : Door | State : Ste (•closed , false ) > . 

endom)  

So, the in labeled rule is applied when an In message is invoked; in this case the 
inside value is incremented by one. In the same way, the out labeled rule acts on the 
contrary, when an Out message is invoked. Close and open rules are applied only if 
the corresponding actions are invoked and the conditions imposed by the state and 
value of the Door are satisfied. To apply the close rule  it is necessary the inside value 
is 0 and the closed state is false. Only in this case the state is switched to true (the 
door will be closed). On the other hand, the open rule will be applied when the action 
is invoked, and if the closed state of the door is true, changing the state value to false. 

Another object module represents the complete IRD in Maude, representing the 
instances of the IRD class where the set elements and the set of relations are defined. 
In the example, the IRD_Museum module represents the concrete instances of the 
elements above defined and their relations.  

(omod IRD_Museum is 

 protecting DefIRD . 

 protecting DefRELATION . 

 protecting CONFIGURATION . 

 protecting ELMT_Shower . 

 protecting ELMT_Door . 

 protecting ELMT_Alarm . 

 subsort Qid < Oid . 

 op init : -> Configuration . 

 eq  init  =  < 'S : Shower | State : null >  
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 < 'A : Alarm | State : null >  

 < 'D : Door | State : Ste ('closed , false)  

     , inside : 0 > 

 < 'Shower_Ok :  Relation | From : 'A 'D , To : 'S ,  

  Constraint: < Event 'D. 'closed and Event  

  (EoP , Alarm_On('A)) >  

  Action (Open_Shower ('S) , sync ) > 

 < 'Door_Ok : Relation | From : 'A ' S , To : 'D ,  

  Constraint: < Event (EoP , Alarm_Off('A) and  

  Event ( EoP , Close_Shower('S)) >  

  Action (Open ('D) , sync ) > 

 < 'Museum : DRI | ElmtSet : 'A 'D 'S ,  

  RelSet : 'Door_Ok 'Shower_Ok > . 

endom)  

It is necessary to import all the above element definitions and the auxiliary DefIRD 
and DefRELATION modules. CONFIGURATION is a predefined Maude module to 
represent a specific object configuration. The Init operation results in a system 
configuration, the associated equation creates instances of each element in the 
Museum IRD. The ‘A alarm and the ‘S shower elements  have null state attribute 
because they have no state declared. The ‘D door element has a typical initial 
configuration when the Museum is opened with the closed state set false and the 
inside value set 0 (there are nobody in the showroom). The two constraint relations in 
IRD are declared now. The ‘Shower_Ok relation indicates the origin of the relation in 
the From attribute. In this case there are two origins: the ‘A and the ‘D elements. The 
‘S final element of the relation is indicated by the To attribute. The Constraint 
attribute expresses the necessary conditions to perform the Open_Shower action. Two 
conditions must be satisfied to execute that action; the closed state of the ‘D door 
element must be true and the end of the processing event over Alarm_On message to 
‘A alarm element  must have happened. The processing mode has to be synchronous: 
the door and the alarm will be locked until the Open_Shower action can be processed. 
The ‘Door_Ok relation acts in the same way; it has two origin elements and a final 
element represented in the attributes. Its constraint also has two events that must 
occur to allow the execution of the Open action in the shower element in synchronous 
mode. These events are the end of processing the Alarm_Off  action in the alarm 
element and the end of the processing of the Close_Shower in the shower element. 
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Finally the ‘Museum object of IRD class is defined with the set of the door, shower 
and alarm elements and the set of both relations. 

In this way, the coordination constraints imposed by the relations between 
elements are specified separately of the elements. So, this provides several 
advantages. On the one hand, it is making the reusability of the IRDs easier, changing 
the constraints imposed by the dependency relations without modifying the element 
specifications. On the other hand, this representation allows one to focus on the 
negotiation rules of the system abstracting of the component specifications. 

6. Future works 

Currently, we are developing the tool supporting the creation of IRDs and a checker 
that determines whether the system’s refined specifications in Maude reflect only all 
the elements and their relations expressed in the original IRD. The checker has to 
guarantee that all features in the specification correspond to features in the IRD, and 
all features in the IRD are presented in the specification through the successive 
refinements and changes in the development process. 

The relations between the system specification and the corresponding IRD have 
been defined considering that in the detailed specification internal operations and 
values that are not represented in the IRD can appear. In such case, the new features 
only must reflect internal behavior and must not affect interelement relations or their 
constraints. 

The checker is being developed using Maude. The META-LEVEL predefined 
module in Maude, facilitates the use of the reflective properties of the language, 
simplifying the work with terms and modules in the same language. 

The next objective is the generation of executable specifications from the system’s 
IRD with the aim to validate the system’s behavior. In order to generate specifications 
reflecting the intrinsic characteristics of cooperation environments, which are easier to 
understand by designers, we consider more appropriate the generation of 
specifications making use of CoordMaude (a set of primitives Maude that we are 
developed allowing to use the syntax of Coordinated Roles[20] to generate Maude 
specifications in a simple, clear and short way). 

7. Conclusions 

This work explains a technique to represent both visually and formally, the 
dependency requirements between different elements in a system. Interelement 
Requirements Diagrams facilitate the descriptions and representations of relations 
between elements in a transparent manner with regards to the internal behavior of 
each element. The advantages of this representation are: 1) simplicity in the 
construction of systems by means of components composing, because the 
coordination dependencies are specified separately from the components 2) the 
changes in dependency policies can be easily expressed 3) usefulness in the 
representation of open and distributed systems where the elements configuration, the 
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system and their relations are variable and 4) a unique and single representation of the 
system, expressing static and dynamic aspects. 

The correspondence between an IRD and their representation using an executable 
algebraic language provides a means to formally specify the IRD artifacts. So, it can 
be used to validate the global system behavior executing those formal specifications  
from a particular system configuration and simulating a set of event occurrences. 
Moreover, that representation can be used to verify whether later specification 
refinements are in accordance with the initial requirements represented by the IRD. 
And a representation better oriented to designers can be generated, making use of the 
coordination model based on the separation of the functional and coordination 
aspects.  
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