
Using Quality Models for Assessing COTS Selection¥

Pere Botella, Xavier Burgués, Juan P. Carvallo‡, Xavier Franch, Carme Quer

Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)

{botella, diafebus, carvallo, franch, cquer}@lsi.upc.es

Abstract. We present in this paper a framework embracing different aspects
involved in COTS component selection that influence the success of this
activity. Playing a crucial role in this framework appears the concept of quality
model, aimed at structuring the description of the quality of COTS components.
We propose a methodology for building quality models based on the ISO/IEC
9126-1 standard which allows to create hierarchies of models appropriate for
categories and domains of COTS components, and also for particular contexts
of COTS selection activities. Such quality models facilitate the expression and
refinement of quality requirements during COTS selection. We present also a
formal notation for expressing these quality models, the quality requirements
and the product descriptions themselves; the notation supports model analysis
and makes feasible tool support during COTS selection. Last, we enumerate at
the conclusions some issues matter of current and future research.

1. Introduction

The growing importance of commercial-off-the-shelf software components (hereafter
COTS components or simply COTS) requires adapting some software engineering
practices, such as requirements elicitation to this emergent framework. Also some
specific activities arise, among which COTS selection [1] plays a prominent role.

COTS selection poses some questions to be addressed such as:
• How COTS components can be arranged in categories and domains for knowing

which is the current state of the COTS market?
• How COTS components from a given domain are described, to make feasible their

comparison when selection is required?
• How features of COTS components may be reconciled with requirements on them?
• Is it possible and realistic to describe COTS components and requirements in a

structured and even formal way?

This paper addresses mainly these questions, being aware that many others are hidden
behind the curtain. More precisely: we put together some results we have obtained in
previous work; we present new advances in some of these results; we identify some

¥ This work is partially supported by the Spanish research program CICYT under

contract TIC2001-2165.
‡ Juan P. Carvallo’s work has been supported by an AECI grant.

key factors in the various activities taking place in our framework; and we outline
some future research. The main ideas in this paper may be summarised as follows:
• We recognise the need of building a description of the COTS market to be able to

address a particular selection activity to the right market segment. We organise this
description as a taxonomy enclosing different types of concepts.

• We propose quality models [2, 3] as the central notion to articulate COTS
components selection, more precisely ISO/IEC-9126-1-based quality models.
Quality models provide a means for defining quality characteristics of components
and metrics1. We have linked quality models with the taxonomy above.

• We show the use of quality models for the description of COTS components and
the formulation and refinement of quality requirements.

• We aim at expressing quality models in a formal way, using a structured notation
named NoFun. This notation allows to express models, descriptions of COTS
components with respect to these models, and requirements over them. NoFun
catches the overall structure of ISO/IEC-based quality models ameliorating then
the cost of the formalisation process.

2. Building a taxonomy for COTS domains

The market of COTS components is huge and highly dynamic. On the one hand, new
types of COTS components, i.e. COTS domains, appear day by day (e.g., the domain
of XML technologies). On the other hand, new COTS components embrace often
capabilities from more than one type, especially when they evolve through the years,
making more difficult their analysis; this is the case of e-mail client packages, which
often offer also functionalities for chatting or scheduling meetings, for instance.

For these reasons, we advocate than improving the effectiveness and confidence of
COTS selection requires:
• Having a taxonomy for arranging COTS domains. The existence of such taxonomy

provides a framework for the whole selection process and structures knowledge on
the field. The intermediate nodes of the taxonomy stand for general COTS
categories: they are just a classification means, not real COTS domains. Fig. 1
presents an excerpt of how this taxonomy may look like. It shows that as many
levels as needed may be introduced to catch similarities in the right point.

• Identifying the features that characterise each of these COTS categories and
domains. These features capture the similarities of all COTS components
belonging to the same COTS domain and also those of all COTS domains
belonging to the same COTS category. Features are inherited down the hierarchy.

• Making explicit the relationships among COTS domains. We propose using a i*
SD-model [4] to visualise these relationships; if enough knowledge exists, parts of
the SD-model may be refined into SR-ones. Fig. 2 shows an i* SD-model for
making explicit a few relationships among the mail server and mail client COTS
domains, and also the meeting scheduler one. Domains are modelled using the i*

1 We do not consider criteria other than quality in COTS selection, being aware that some of

them that can be at least as important as quality, namely cost, confidence on the supplier, etc.

264 WER 2002

notion of intentional agent, while relationships take the form of dependencies. It
becomes clear that scheduling meetings requires the ability of sending messages
(goal dependency) and access to address books (resource dependency); also the
mail client relies on the mail server on sending those messages. The i* SD-model
shows that a COTS meeting scheduler not providing mailing facilities, requires a
mail client COTS product to exist or to be also acquired. This kind of multiple
selection has been addressed in [5].

• Classifying COTS components as belonging to one or more of these domains. This
classification is the first step in determining which is the quality model bound to
the COTS components, as we will do in the next sections.

COTS
Market

Component
Libraries

Comunication
Tools

Categories

 Data Manipulation
Component
Libraries

Mathematical
Component
Libraries

Domains Mail
Servers

Video-
conference

Groupware
Components

Algorithmic
Libraries

 GUIs
Libraries

GUIs

Fig. 1. An excerpt of the ongoing taxonomy for COTS market.

Key success factors in defining this taxonomy are:
• Define the right COTS categories and their proper decomposition. An appropriate

number of categories and levels of the hierarchy is needed for presenting a good
trade-off between knowledge structure and taxonomy management. Also, future
evolution of the hierarchy must not be compromised by too early decisions.

• Define the right COTS domains. The granularity must be fine-grained enough to
avoid failure of COTS components classification and wide-grained enough to
avoid proliferation of artificial domains.

• Focus on functional dependencies among COTS domains, not on non-functional
ones. If a functional dependency exists from one COTS component to another, for
sure other non-functional ones exist, but we feel it is not necessary to reflect them
at this stage. For instance, if the meeting scheduler needs a mail client to send
messages, this implies that the reliability of the scheduler depends partly on the
reliability of the mail client. This decision avoids proliferation of dependencies in
the i* SD-model that are not useful in this context.

Using Quality Models for Assessing COTS Selection 265

Mail
Server

Mail
Client

Meeting
Scheduler

send
mail

send
mail

address
books

Fig. 2. An excerpt of the i* SD-model involving the meeting scheduler COTS domain

• Identify the appropriate set of features for each COTS category and domain. This
set should be kept minimal to avoid having useless or meaningless features at any
place of the hierarchy.

COTS component classification is currently a focus of interest in many contexts, both
purely academic and commercial. Concerning academic proposals, [6] identifies some
relevant criteria for building a COTS market classification. This approach is more
general than ours with respect to criteria, because they are not restricted to quality; but
on the other hand, classification is a goal by itself, while in our proposal is a starting
point for quality model definition. In the commercial side, many COTS markets in the
web make intensive use of classification, although criteria is not always clear.

3. Using quality models for describing COTS domains

One of the key success factors for building the COTS taxonomy has been mentioned
to be identification of the right features. Features have to be with different kind of
factors, such as managerial, political and of course quality characteristics. In the rest
of the paper, we are going to focus on this specific kind of features.

There are a lot of approaches for specifying quality features. We propose the use of
quality models as the framework for arranging these quality features and for defining
their metrics. There are also some proposals for defining quality models [7, 8]. From
our point of view, the main requirements over these proposals are:
• They should just fix some high-level quality concepts. This is a crucial point,

because quality models may dramatically differ from one domain to another.
• They should allow creating taxonomies of quality features, which is essential in

order to build structured quality models and which also facilitates the integration of
quality models with the COTS taxonomy.

• These hierarchies should allow overlapping, since quality features may contribute
to others in different ways.

• They should be widespread. This discards ad-hoc proposals that may look
appealing and promising but that are not currently used by the software
engineering community.

266 WER 2002

One of the obvious candidates fulfilling these requirements is the ISO/IEC 9126-1
quality standard [3]. As an additional point supporting this choice, just to mention that
this standard is integrated with others of interest, namely the whole 9126 family
(currently not yet delivered, although draft versions can be obtained), the 14598 for
software product quality and evaluation, 12207 for software life cycle, 15504 for
process assessment and of course ISO 9001 for quality assurance processes.

An ISO/IEC 9126-1 quality model is defined by means of general characteristics
of software, which are further refined into subcharacteristics, which in turn are
decomposed into attributes, yielding to a multilevel hierarchy; intermediate
hierarchies of subcharacteristics and attributes may arise. At the bottom of the
hierarchy appear the measurable software attributes, whose values are computed by
using some metric.

4. Types of quality models

Being effectiveness one of our aims, it could be argued that building quality models is
a time-consuming activity. Therefore, improvements in this direction are welcome.

Reusability of quality models among different COTS domains can be helpful for
this objective. We have observed throughout our experiences that some quality
entities appear over and over. This observation has lead us to the definition of five
different types of quality models, which roughly correspond to the levels in the
taxonomy presented in section 2. The recognition of COTS domains and categories
improves reusability: once a new COTS domain has been identified, its quality model
can be constructed by inheriting the features of the quality models for those COTS
categories in the hierarchy which it belongs to. Since then, any quality model for a
particular selection process may reuse the quality model of the corresponding COTS
domain. The types of quality models are presented next.

4.1 Context-free quality model

The ISO/IEC 9126-1 quality standard is intentionally vague, for the sake of
generality. In the framework of COTS components, some of the proposed
subcharacteristics may be further decomposed, identifying other subcharacteristics
and even attributes, resulting then in a new context-free quality model that will be
used as starting point of any other specific quality model.

A typical example appears in the Suitability subcharacteristic. Successful COTS
components tend to bind applications that were not originally related to them. This is
particularly true if one considers that product suppliers try to include some features to
make their products different from the others. These added applications are not
usually shipped within the original COTS components; they are offered separately, as
extensions of the original one. But in many cases, they are referenced as a constitutive
part of the functions provided by the component. As a result, we may split the
Suitability characteristic into two, Basic Suitability and Added Suitability, keeping
track of both of them inside the model but in a clearly separated way.

Using Quality Models for Assessing COTS Selection 267

4.2 Category quality model

These models characterise all the domains in one category. There are two possible
starting points to obtain a category quality model:
• Departing from the context-free quality model, through modifications, usually

additions. One example is the Encryption Algorithm attribute, which would be
added to the Security subcharacteristic in the Communication Tools (see fig. 1)
quality model. Elimination of subcharacteristics also occurs sometimes. For
instance, the subcharacteristic Attractiveness defined in the standard (use of colour,
graphical appearance, etc.) appears in the context-free quality model, but it does
not apply in domains that are purely pieces of software to be integrated in a system.

• Consolidating the quality models of the more general categories in the taxonomy,
and then modifying the result by adding particularities of the specific category.
This way to obtain category quality models becomes useful when new categories
appear in the COTS market that can be classified as subcategories of more general
ones. This could be the case of a New Language Compiler category that would be
subcategory of the Compiler and Development Tools categories.

4.3 Domain quality model

These models characterise types of COTS components. This is the type of quality
model we are mostly interested in, since they give an exhaustive and structured
description of COTS components in a domain to be used widespread and to serve as a
framework in which particular components may be evaluated and compared to user
requirements during a selection process. Domain quality models will be specially
appealing in the selection of components in a COTS domain that satisfy two
conditions: they are needed by a huge number of companies and there are lots of
COTS available in the market. Context-free and category quality models are mainly
means to obtain domain quality models. As stated above, category quality models will
facilitate the construction of new domain quality models, since they will avoid to
construct these models from the scratch [9]. Examples of COTS domains are Mail
Servers, Videoconference Tools, Mathematical Component Libraries, etc. (see fig 1).

4.4 Organisation-type quality model

Domain quality models can still be specialised depending on the organisation-type for
which the selection process will be done. For instance, in mail servers, it would be
possible to distinguish among quality models for ISP providers, small organisations
and large organisations. Some modifications will be necessary in order to adequate
the domain quality models to the type of organisation. For instance, the metrics for a
certain attribute may be different depending on this type. In the selection of mail
servers, a small organisation can be just interested in the existence of an encryption
algorithm, whilst a larger one will be interested in which algorithms are provided.

268 WER 2002

4.5 Final quality model

These models will be constructed as a previous step of a particular selection process,
starting from the corresponding organisation-type quality model and taking into
account the particularities of the organisation context. Some attributes in a quality
model cannot be defined without taking into account one specific organisation. One
example could be a Quality of Interface attribute, since its definition and its metrics
can vary depending on the concrete organisation for which the procurement is done.

5. A methodology for building domain quality models

Next we outline a methodology for building ISO/IEC 9126-1 quality models. We
focus on domain quality models, which are more generic than the other four ones.
Details may be read in [9, 10], although some differences exist, remarkably the
distinction between different types of models presented in the last section.

Step 0. Analysing the domain
The domain of interest has to be carefully examined and described. With respect to
the first point, experts in the domain must join the quality team. Concerning the
second point, formal models can be build to keep track of all the relevant concepts.

A first model for the domain is the i* model we have suggested to build in section
2 for making explicit dependencies among domains. The agents appearing there may
be further decomposed (into hidden agents) for making explicit the most relevant
functionalities of the component (e.g., the mail server may be decomposed into folder
manager, message manager and account agents, among others). Together with this i*
model, a conceptual model (e.g., a UML class diagram) helps on making more
explicit the structure of the resources involved in the domain.

Step 1. Classifying the domain and building the initial quality model
The domain has to be integrated into the COTS taxonomy, which means identifying
the category or categories which it belongs to. As a result, an initial quality model is
obtained by putting together the quality entities and metrics contained in the inherited
models. Of course, inconsistencies must be detected.

Step 2. Determining the first-level quality subcharacteristics
The decomposition of characteristics into subcharacteristics appearing in the
departing model is quite reasonable and should be used unless very good reasons for
not doing so come out during domain analysis. In these cases, the quality team may
add new subcharacteristics specific to the domain, refine the definition of some
existing ones, or even eliminate some. For instance, in the domain of data structure
libraries, the Time Behaviour subcharacteristic may be refined as "execution time of
the methods provided by the classes inside the library".

Using Quality Models for Assessing COTS Selection 269

Step 3. Defining a hierarchy of subcharacteristics
Many subcharacteristics may be further decomposed with respect to some factors,
yielding to a hierarchy. For instance, in some domains as the one for e-learning tools,
the attributes categorised under the Operability subcharacteristic of Usability may be
seen from two different points of view: the general user and the administrator. So, it
makes sense to decompose this subcharacteristic into two, one for each type of user.

Step 4. Decomposing subcharacteristics into attributes
Quality subcharacteristics provide a comprehensible abstract view of the quality
model. But next it is necessary to go into the details, by decomposing these abstract
concepts into more concrete ones, the quality attributes. An attribute keeps track of a
particular observable feature of the packages in the domain. For example, attributes in
the Learnability subcharacteristic may include Quality of Graphical Interface of the
product, Number of Languages Supported and Quality of Available Documentation.

Step 5. Decomposing derived attributes into basic ones
Some of the attributes emerging in step 4 may be directly measurable given a
particular product (e.g., Number of Languages Supported) but others may be still
abstract enough to require further decomposition. This is the case of the Quality of
Graphical Interface attribute mentioned above; quality may depend in various factors,
as user-friendness, depth of the longest path in a browsing process, types of interface
supported, etc. Thus, we distinguish between derived and basic attributes. Derived
attributes should be decomposed until they are expressed in terms of basic ones.

Derived attributes may be completely defined in terms of their components or not.
In some situations, giving a concrete definition of the quality interface attribute could
be considered harmful, because it would force to use always the same definition
without considering the requirements of a particular context [8]. Sometimes
requirements may give more importance to the user-friendness factor (e.g., for non-
skilled users), sometimes to its type (for interoperability purposes) and so on. In this
case, the definition of the derived attribute is postponed. We call the first case of
derived attributes context-free, while the second ones are context-dependent.

Step 6. Stating relationships between quality entities
To obtain a real complete quality model, relationships between quality entities must
also be explicitly stated. The model becomes more exhaustive and as an additional
benefit, implications of quality user requirements may become clearer.

We may identify various types of relationships among quality entities:
collaboration, damage and neutral dependency. Elaborate types and also intensities of
these relationships may be built, as done in [11, 12].

Step 7. Determining metrics for attributes
Not only the attributes must be identified, but also metrics for all the basic attributes
must be selected, as well as metrics for those derived context-free attributes. The
standard ISO/IEC 9126-2 can be used for this purpose as well as metrics theory [13].

270 WER 2002

Metrics for basic attributes are quantitative. Derived context-free attributes may be
either quantitative or qualitative, with explicit formula computing their value from
their component attributes.

Some attributes require an elaborated representation, yielding to structured
metrics. Examples are sets (e.g., set of labels for the languages supported by the
interface) and functions. Functions are especially useful for attributes that depend on
the underlying platform. For instance, many attributes related to the time behaviour
subcharacteristic may fall into this category.

Step 8. Identifying requirement patterns for quality entities
Once the model is complete, we may go a step further by trying to facilitate its use
during COTS component selection. A particular way for bridging the gap among
definition and use of the quality model is to identify some typical requirements on the
quality entities of the model. During the selection process, this catalogue of
requirements may help the elicitation phase. Usual types of requirements are:
maximising/minimising values of attributes (e.g., the mean time between failures
should be kept minimum as possible), satisfying a certain value (e.g., messages must
be presented in Spanish), etc.

Step 9. Formalising the quality model
The last step identified in the methodology for building quality models requires
formalisation of the entities and metrics that appear therein. The goal of formalisation
is twofold: on the one hand, some ambiguities, inconsistencies and incompleteness
will surely arise, as it is the usual case in any formalisation process; on the other hand,
formal descriptions of quality models are a requirement for providing some tool
support to the COTS selection problem. See section 7 for details.

Some key factors for obtaining quality models for COTS domains
• Experts of the field must participate in the quality team. Be abstract! Keep in mind

that the goal is to define a general framework for many applications of the same
brand, not one for a particular product.

• Skilled software engineers are necessary to properly manage conceptual and agent-
oriented models.

• Use a vocabulary. One of the most endangering points is the lack of standard
terminology in the components of the domain. The same concepts are named
different by different vendors or even worse, the same name may denote different
concepts in different packages.

6. Package and requirement descriptions

One could wonder whether or not the construction of a quality model is a too complex
and time-consuming activity, in spite of the use of hierarchies for supporting
reusability. The answer is the overhead required for building quality models is
compensated by their use in more than one single selection process:

Using Quality Models for Assessing COTS Selection 271

• Quality models provide a general framework to get uniform descriptions of the
COTS in the domain (see fig. 3). Analysis of these COTS is favoured, improving
the reliability of the selection process.

• Quality requirements can be formulated in a structured manner in terms of the
quality concepts appearing in the model (see fig. 3). This process may help to
discover some ambiguities and incompleteness and, once solved, the resulting
requirements can be more easily compared with the COTS descriptions.

software
domain

quality
model

product product
description

descriptionproduct

quality
requirement

formalized
requirement

negotiation during
COTS product
selection

Fig. 3. Using quality models in the COTS selection process

Concerning the definition of quality requirements, we show in fig. 4 some
requirements in the domain of mail servers components [10]. They illustrate some
situations that are common when requirements are analysed using quality models.

Req. Requirement Description
1 Spanish language support
2 Support for the most commonly used certification standard
3 Support for accessing the server from other applications
4 Mail delivery notifications, possibility of configuring parameters such as

maximum number of delivery retries, and time between them
5 Transmission time less than 1 minute for messages without attachments. For

those with attachments it should not exceed 5 minutes per megabyte

Fig. 4. Some sample requirements on the mail servers COTS domain

• Requirement 1. Directly mapped in terms of an attribute of the model.
• Requirement 2. The involved attribute is clear, but it requires mapping the

expression "most commonly used certification standard" to the value "X.509".
• Requirement 3. A too general requirement: what does it mean “other applications”?

Further interaction and perhaps negotiation to get a more detailed specification
must be carried out to better classify it.

• Requirement 4. Requires or implies a mixture of functionalities, which may be
supported by selecting several attributes. Further feedback may be required in
order to better classify this kind of requirements.

• Requirement 5. Example of ill-formulated requirement. It is not accurate since the
one-minute limit for messages without attachment could be unfeasible when large
data is included inline (e.g., annual company reports). So we must reformulate it
using the attributes Average Response Time and Throughput.

272 WER 2002

Among the key success factors in using the quality model in COTS selection we find:
• Don’t trust anyone or anything unless you are really confident on the source of

information. An evaluation of a product may not be done without installing it and
performing some kind of hands-on experimentation.

• Select appropriate metrics for basic attributes, mostly quantitative. Rely on metrics
theory [13] and keep a good balance among overspecification (time-consuming and
strongly-theoretical metrics difficult to apply) and oversimplification
(compromising confidence).

• When putting requirements in terms of the quality model, keep track of the original
requirements. Traceability is the basis for understandability and evolution.

• Keep requirements as minimal as possible. One of the reported reasons for selec-
tion failure is over-constraining the space solution [14]. A helpful tactic here is the
definition of requirements priorities, by assigning some score or qualitative label.

7. Formalising quality models and the requirements on them

The NoFun language [15, 16] is the notation we use for formalising quality models,
component descriptions and quality requirements. NoFun basically encapsulates in
modules the following kind of capabilities:
• Definition of quality models by declaring their characteristics, subcharacteristics

and attributes, together with metrics for their context-free attributes (see 7.1).
There are some structuring mechanisms that support hierarchies as defined in
previous sections. This corresponds to the icon labelled “quality model” in fig. 3.

• Assignment of values to basic attributes for particular COTS components. This part
of the language describes product quality in a formal way. This corresponds to the
icon labelled “product description” in fig. 3.

• Statement of quality requirements and assessment criteria (see 7.2). Quality
requirements are stated using operators over the quality entities, and they may be
categorised depending on their importance. This corresponds to the icon labelled
“formalized requirements” in fig. 3.

7.1 Quality models in NoFun

The next three figures introduce some elements to define a particular subcharacteristic
for the ERP systems domain. Fig. 5 defines the subcharacteristic Accuracy for ERP
systems, declared in terms of other subcharacteristics and attributes; modules defining
them are imported. The subcharacteristic is considered to be context-dependent, so no
definition is provided. Fig. 6 introduces some data domains that will be useful when
building the quality model: the first one, COMPANY_AREAS, is particular of this
domain while the other, UPPER_ADEQUACY_SCALE, is a general-purpose
qualitative assessment metric. Last, fig. 7 shows one particular module defining a
couple of attributes that were imported in fig. 5; the second attribute is derived and
context-free, so its definition is given. Note the use of functions and sets.

Using Quality Models for Assessing COTS Selection 273

subcharacteristic module ACCURACY for ERP_SYSTEM
imports ORIENTATION, ... // other modules required
subcharacteristic Accuracy derived

explanation Accuracy ISO/IEC subchar. bound to ERP domain
in terms of AreaCoverage, ... derived

end ACCURACY for ERP_SYSTEM

Fig. 5. Definition of the accuracy subcharacteristic for ERP systems

domain module COMPANY_AREAS for ERP_SYSTEM
explanation Areas or functions of a company
domain CompanyAreas defined as Commercial, Logistics, Manufacturing,

HumanResources, Accounting, Finances,
Quality, Technical, Management Support

end COMPANY_AREAS for ERP_SYSTEM

domain module UPPER_ADEQUACY_SCALE
explanation 5-value scale which penalises excessive coverage
domain ordered UpperAdequacyScale
defined as NonExistent, Low, Excessive, Medium, High

end UPPER_ADEQUACY_SCALE

Fig. 6. Definition of the some auxiliary domains used in specifying ERP systems

attribute module ORIENTATION for ERP_SYSTEM
imports COMPANY_AREAS, UPPER_ADEQUACY_SCALE
attribute AreaCoverage

explanation Degree of coverage of company areas
declared as function from CompanyAreas to UpperAdequacyScale

default NonExistent
attribute MainTarget derived

explanation Company areas well-covered by an ERP product
declared as set of CompanyAreas
defined as set of a in CompanyAreas such that

AreaCoverage(a) = High
end ORIENTATION for ERP_SYSTEM

Fig. 7. Definition of quality attributes for dealing with ERP systems orientation

7.2 Formalising quality requirements in NoFun

Quality requirements appear in two different contexts: as universal properties of
quality entities, or as the criteria that rule COTS component selection. Fig. 8 shows an
example of the first case: it is explicitly required that any ERP system must give
support at least to one company area. Note that this kind of requirement is very
restrictive and so its adequacy must be carefully analysed.

Fig. 9 outlines a possible scenario arising in a selection process for ERP systems
performed in the context of the ACME organisation. The example is not self-
contained; see [16] for a complete description. There are four requirements with
different names and also priorities. The fourth requirement is decomposed into two.

274 WER 2002

We remark the use of some powerful constructs, such as: quantifiers in the first
requirement; function and set operators in the first two requirements; expressions for
maximising values in the repository of available COTS components, in the fourth
requirement. Note than once the requirement module has been declared for a
particular COTS domain (for ERP_SYSTEM), references to quality entities such as
adaptability or openness are implicitly referencing this domain.

requirement module ORIENTATION_PROPS on ORIENTATION for ERP_SYSTEM

explanation Universal properties of ERP-orientation attributes
definition

notUseless: essential
explanation ERP products must address at least one company area
defined as exists a in CompanyAreas

such that AreaCoverage(a) > NonExistent
end ORIENTATION_PROPS on ORIENTATION for ERP_SYSTEM

Fig. 8. Definition of a universal requirement for ERP systems orientation

requirement module ACME on FUNCTIONALITY for ERP_SYSTEM
explanation ... // informal presentation
definition

miminalCoverage: essential
explanation Selected ERP should cover all company areas
concerns ORIENTATION
defined as for all a in CompanyAreas it holds that

AreaCoverage(a) > NonExistent
importantAreas: important

explanation Selected ERP should emphasize commercial,
logistic and management areas

concerns ORIENTATION
defined as {Commercial,Logistic,Management} in MainTarget

adaptability: marginal
explanation The company could adapt its structure to

the new software if necessary
concerns ADAPTABILITY
defined as Adaptability.CompanyAdaptability >= None

openness: advisable
explanation The selected ERP should be open both to add
functionality and to interconnect with other software
concerns OPENNESS
decomposed as

minimalOpenness: advisable
defined as Openness.bespoke >= Strong and

Openness.COTS >= Strong
maximalOpenness: marginal

defined as
max(Openness.bespoke) and max(Openness.COTS)

end ACME on FUNCTIONALITY for ERP_SYSTEM

Fig. 9. An example of quality requirements for ERP system

Using Quality Models for Assessing COTS Selection 275

8. Conclusions

In this paper we have presented a methodology aimed at building quality models
based on the ISO/IEC 9126-1 quality standard. We have applied our methodology to
some domains including mail servers, ERP systems, e-learning tools, data structure
libraries, and others. Together with this central idea, we have remarked the need for
creating a taxonomy of COTS categories and domains; we have presented a
formalisation language for structuring the quality models; and we have pointed out
the connection between the quality model and the statement of quality requirements.

Quality models are especially appealing in COTS domains that satisfy two
conditions: they are needed by a huge number of companies and there are lots of
COTS available in the market. In these domains, a quality model can lower the cost of
the very selection process. Just consider the amount of repeated work that is done in
the selection processes of different organisations.

For lack of space, we have not been able to include other lines of current and future
research:
• Selection of COTS components has been usually studied isolated. However, there

are two cases that do not fit in this situation. On the one hand, an organisation may
need at the same time different components for covering different needs,
components that will have to be selected more or less simultaneously and that
should be integrated. We have proposed a methodology for carry out this kind of
selection [17]. On the other hand, even when there is just one component of
interest, it may depend on others' existence, which should have to be selected in
their turn, in case they do not exist. We have modelled these dependencies among
COTS products using the i* model [5].

• We have already commented that COTS components boundaries are sometimes not
clear. In particular, one COTS component may embrace different domains, either
totally or partially. For a given COTS-based system architecture, described in
terms of COTS domains, there are different way to integrate COTS products
depending on their coverage of these involved domains. Different combinations of
COTS products may lead to different architectural properties regarding reliability,
efficiency and so on. We also have explored this issue in [5].

• UML, as a standard notation to represent models of systems, can be used basically
to model functional requirements, but there is a lack for the non-functional ones.
We have explored in [18] the possibility of porting NoFun to UML by extending
class diagrams using the stereotype mechanism and OCL. In [19] we show how the
added non-functional features could be applied at different modelling levels: to the
whole system, to a subsystem or to a particular module or class. We are now
initiating an experiment, based on a real application, in order to explore the
possibility of complement the method proposed in [20] (a process-oriented
approach) with our NoFun-based extension of UML (product-oriented), using the
idea from [11] that both approaches can be complementary.

276 WER 2002

9. References

[1] A. Finkelstein, G. Spanoudakis, M. Ryan. "Software Package Requirements and
Procurement". Proceedings of the 8th IEEE International Workshop on Software
Specification and Design (IWSSD), 1996.

[2] B. Kitchenham, S.L. Pfleeger. “Software Quality: the Elusive Target”. IEEE Software, vol.
20, January 1996.

[3] ISO/IEC Standard 9126-1 Software Engineering – Product Quality – Part 1: Quality Model,
June 2001.

[4] E. Yu. “Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering”. Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering (ISRE), 1997.

[5] X. Franch, N. Maiden. "Modeling Component Dependencies to Inform their Selection".
Proceedings of the 2nd International Conference on COTS-Based Software Systems
(ICCBSS), 2003.

[6] L. Jaccheri, M. Torchiano. "Classifying COTS products". Proceedings European
Conference on Software Quality, 2002.

[7] R.G. Dromey. “Cornering the Chimera”. IEEE Software, vol. 20, January 1996.
[8] J. Bøegh, S. Depanfilis, B. Kitchenham, A. Pasquini. “A Method for Software Quality

Planning, Control, and Evaluation”. IEEE Software, vol. 23, March 1999.
[9] X. Franch, J.P. Carvallo. "A Quality-Model-Based Approach for Describing and Evaluating

Software Packages". Proceedings of the 10th Joint International Conference on Requirements
Engineering (RE), 2002.

[10] J.P. Carvallo, X. Franch, C. Quer. "Defining a Quality Model for Mail Servers".
Proceedings of the 2nd International Conference on COTS-Based Software Systems
(ICCBSS), 2003.

[11] L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[12] H. Kaiya, H. Horai, M. Saeki. "AGORA: Attributed Goal-Oriented Requirements Analysis
Method". Proceedings of the 10th IEEE Joint International Conference on Requirements
Engineering (RE), 2002.

[13] N.E. Fenton, S.L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS,
1998.

[14] N. Maiden, C. Ncube. "Acquiring Requirements for COTS Selection", IEEE Software
15(2), 1998.

[15] X. Franch. “Systematic Formulation of Non-Functional Characteristics of Software”.
Procs. Proceedings of the 3rd IEEE International Conference on Requirements Engineering
(ICRE), 1998.

[16] P. Botella, X. Burgués, X. Franch, M. Huerta, G. Salazar. "Modelling Non-Functional
Requirements". Proceedings of Jornadas Ingeniería de Requisitos Aplicados (JIRA), 2001.

[17] X. Burgués, C. Estay, X. Franch, J. Pastor, C. Quer. "Combined Selection of COTS
Components". Proceedings of the 1st International Conference on COTS-Based Software
Systems (ICCBSS), LNCS 2255, 2002.

[18] G. Salazar-Zárate, P. Botella. "Use of UML for Non-Functional Aspects". Proceedings of
13th International Conference Software & Systems Engineering and their Applications
(ICSSEA), 2000.

[19] G. Salazar-Zárate, P. Botella, A. Dahanajake. "Introducing Non-Functional Requirements
in UML". In the book “UML and the Unified Process”, Favre L. (editor), IRM Press,
Hershey, PA, USA, to be published in the Spring of 2003.

[20] L.M. Cysneiros, J.C. Leite "Using UML to Reflect Non-Functional Requirements".
Tutorial in the 10th IEEE Joint International Conference on Requirements Engineering (RE),
2002.

Using Quality Models for Assessing COTS Selection 277

