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Abstract  

Active systems are emerging in many fields, being particularly interesting those like Active Database 
Management Systems which always provide some kind of reactive capabilities. In this paper, starting 
from the assumption that activity is an important notion not only for database systems, but also for 
capturing semantics in the Requirements Analysis and Specification field, we present a model of active 
behavior that is independent of a concrete database data model, in the sense that the set of events is not 
predefined (imposed by the database system used), rather it varies with each problem being modelled. 
We define both a syntax and semantics to formalize different dimensions of active behavior. This 
approach, first, extends an OO model supporting formal requirements specification and rapid 
prototyping (OASIS) with active capabilities and second, allows implementing information systems in 
different architectures by translating the active concepts of our model to those of particular active 
database systems (relational, object-relational or object-oriented). This is a first step towards a CARE 
tool for the specification and prototyping of active systems.  
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1. Introduction  

The work on active database management systems (ADBMS) is reaching an interesting level of maturity 
with a number of active systems available and, more important, a wide agreement on what the 
functionality of such systems should be; the ADBMS Manifesto [Dit95] defines a basic terminology and 
enumerates a set of required features for a DBMS to be considered as active. Essentially, the (re)active 
behavior is associated to the DBMS itself, which should be "able to react automatically to situations in 
the database and beyond" [Dit95]. This characterization is applied to (object-) relational as well as to 
object-oriented (OO) DBMS. In both cases, a situation is the occurrence of an event; in the relational 
case events are for instance the insertion or deletion of a tuple in the DB, while in OODBMS different 
events may be defined (creation or deletion of objects, invocation of a method in an object, etc.). No 
matter the kind of system, active behavior is usually associated to the DBMS, so that activity is seen as 
an add-on to the data model underlying the system.  

This approach is, in our opinion, too low-level. From a Software Engineering point of view, a 
system+IBk-s active dimensions are just properties of some of its entities, and must be described at the 
Requirements Analysis and Specification phase of the software lifecycle. As a consequence, the set of 
candidate events for representing active behavior must consist of events in the Universe of Discourse 
(UoD), otherwise one would be taking implementation decisions at a very early phase of the lifecycle.  

In this paper we are interested in extending OASIS [Pas92], an OO model supporting formal 
requirements specification and rapid prototyping, with active capabilities in order to make it suitable for 
Requirements Analysis and Specification of active systems. In this model, a set of Past Future (PF) rules 
whose semantics is based on Dynamic Kripke Structures (DKS) is attached to each class in a conceptual 
schema defining the active behavior of its instances. This behavior is not characterized by a predefined 
set of events related to a particular DBMS, but by events that belong to the UoD resulting in a notion of 
activity which is domain-oriented rather than data model-oriented.  

An interesting feature of this approach is that its data model independence allows implementations of 
object-oriented and active schemas either over relational, object-relational or object-oriented ADBMS 
depending on the implementation requirements of the information system being developed. The 
definition of the mappings between the active notions in OASIS and the active capabilities of the 
different systems is currently under research. Apart from this transformational approach, a prototype 
ADBMS that implements the OASIS model has been developed [Can95].  

   

The paper is organized as follows: Section 2 presents an overview of OASIS. Section 3 extends OASIS 
at both the syntactic and semantic levels to deal with activity; first, by introducing Dynamic Logic in 
order to define semantics for active behavior, second by formally defining new concepts like DKS and 
PF rules and, finally, by analyzing OASIS new active dimensions. Section 4 reports several aspects of 
our proposal together with some methodological guidelines for Active Requirements Analysis and 
Specification (ARAS). Finally, we give some concluding remarks and enumerate some future work in 
the field.  

   

2. Introducing OASIS  



Information Systems are seen in OASIS as societies of communicating objects that evolve through state 
changes following certain behavior rules. An object is observed in order to know some of its structural 
properties, which are represented in the model by introducing the notion of attribute. Each object is 
referred to by means of its unique identifier and an object+IBk-s state is given at any moment by the set 
of values of its attributes, i.e., a change in any of the attribute values will lead to a change in the 
object+IBk-s state. The value of an attribute may only change as a consequence of an event occurrence 
in the life of the object and according to a set of constraints that restrict the possible states that an object 
can reach during its lifetime. The cooperation among OASIS objects is established through 
communication by messages and interaction mechanisms. There are two communication mechanisms in 
our model: observations and updates, the former to obtain information about an object+IBk-s state and 
the latter to modify it. The distinction between observations and updates is merely syntactic: both are 
special cases of event sharing, an interaction mechanism resulting in two or more objects synchronizing 
their lives [Har92].  

   

Structural and behavioral aspects are collected in the notion of type. In OASIS an object type is defined 
as a tuple T=(A,X,F,P), where:  

   

* A is a set of attributes, which may be constant, variable and derived from other attributes.  

* X = Xs +8Mg- Xa is a set of events; Xs are the services provided by the instances of the type, and Xa 
are the actions that might be requested to other objects in the system, even to themselves. For every 
action there must be a service with the same name in some type of the system.  

* F= Fv +8Mg- Fd +8Mg- Fp +8Mg- Ft is a set of formulae capturing different aspects of the OASIS 
behavioral model; Fv are the valuation formulae that state how attribute values are changed by events; 
Fd is a set of derivation rules associated to derived attributes; Fp are the event preconditions which 
define the valid states of an object for an event to occur; Ft are the triggering rules, defining a very 
limited type of active behavior in OASIS objects; and Fc are integrity constraints expressed as temporal 
formulae that must hold over any sequence of states of an object.  

* P is a term built over the alphabet Xs +8Mg- O, being O the operators of the Basic Process Algebra 
(BPA) defined in [Wie93]; every actual life of an object must be a subprocess of P.  

   

The interested reader may find a formal and detailed presentation of OASIS in [Can96,Pas92].  

   

3. Extending OASIS with Active Dimensions  

OASIS, in its initial version, was conceived as a model that was very suitable for Requirements Analysis 
of systems of great structural complexity. To cope with this, OASIS provided a great richness of 
structural constructors like aggregation, specialization, and parallel composition, among others. 
However, limited capabilities supporting active expressiveness were available: triggering rules (a special 
case of condition-action rules), and processes (describing valid sequences of events or lives). In depth 



studies of current research in the field of active systems [Cha93,Dit95] reveal the non existence of 
models an languages for ARAS and encourages us to extend OASIS with a complete set of active 
dimensions to make it suitable for this purpose.  

An entity, and in particular an OASIS object, may behave in two general ways: first, by reacting to some 
kind of stimuli: another object+IBk-s service request, an event occurrence, a condition over a state; and 
second, by acting spontaneously following its own initiative. These two general behavioral categories 
will be known respectively as reactive and active behavior. Reactive behavior can be classified, 
according to both the type of stimuli and the originated reaction, into event-state (ES), event-action 
(EA), and condition-action (CA) reactions. ES reactions describe state changes after event occurrences, 
EA reactions cope with causal dependencies between events and actions, and CA reactions describe 
stimuli based on conditions over states. Finally, active behavior is purely spontaneous and is used as a 
way of characterizing patterns of objects+IBk- lives.  

All these possible behavioral aspects have in our model a unified and well-defined syntax and semantics 
which is based, as presented later, on DKSs. Let us introduce some previous definitions that will help us 
to define both the syntactic and semantic components of our behavioral model.  

   

3.1 Syntax  

Processes, seen as combinations of services, actions and conditions over states in terms of sequential 
composition, choice and iteration, are the linguistic foundations for the proposed extension to OASIS.  

Definition 1  

A process is defined inductively as follows:  

* +8Gw- is the empty process;  

* a service e+8M4- Xs is a process;  

* an observation o??a +8M4- Xa is a process;  

* an update o::e +8M4- Xa is a process;  

* check(+8GrwKQ- ,where +8Go- is a first order formula, is a process;  

* if p1, p2 are processes, then p1 & p2 is a process;  

* if p3, p4 are processes, then p3 or p4 is a process;  

* if p is a process, then +8GE- p +8GI- is a process;  

* only are processes those defined by i), ..., viii)  

   

The symbol & represents sequential composition of processes, and or represents choice. We also admit 



iteration by means of recursive processes. The process defined in viii) is called a transaction, and 
includes as additional semantics that of the transactions in the database world [Ram93]: an all-or-
nothing execution policy and the non observability of the states an object reaches during the execution 
of the transaction; the symbols +8GE- and +8GI- have the same meaning as respectively the begin and 
commit operations in databases.  

A process, as defined above, will be used to express either activity that occurred in the past (P-process) 
or activity that must occur in the future (F-process) having, thus, different semantics.  

Definition 2  

A Past-Future rule (PF-rule) has the form [p]<f>; p and f are called respectively P-process and F-
Process.  

   

3.2 Semantics  

3.2.1 Formal framework: Dynamic Logic  

   

Dynamic Logic (DL) is a modal logic proposed by David Harel [Har79] in the late 70+IBk-s as a 
formalism for reasoning about programs that check and modify a given environment. The main goal was 
to describe in a formal way the effect of programs execution as a first step for further formal reasoning 
about them. Although Harel+IBk-s work on DL is very extensive, we are describing next, as an 
introductory summary, those dynamic formulae that are relevant to our purposes.  

A Dynamic formula is expressed as +8GY- +8Fs- p+8F0- +8Hk- where +8GY- and +8Hk- are first 
order formulae, p represents a program (in a wide sense) and +8Fs- _+8F0- is the necessity operator. 
The intuitive meaning of such a formula can be stated as follows: "if +8GY- holds , then after execution 
of the program p, +8Hk- must hold".  

   

Dynamic formulae, as opposed to first order formulae, have a special singularity. The latter are 
interpreted in a single interpretative structure, whereas the former need several ones. This important 
difference can be understood by taking into account that dynamic formulae are used to describe an 
evolving process, i.e., a certain sequence of state changes. Thus, a formal dynamic theory is interpreted 
by using a Kripke structure K=(+8Fc- , +8Hc- 0, +8HI- ) where:  

   

* +8Fc- is a set of possible worlds, each one of them defined as a first order interpretative structure,  

* +8Hc- 0 is the initial world, and  

* +8HI- (p) +8M0- +8Fc- +8LQ- +8Fc- , being p a program, is an accessibility relation among worlds.  

   



The figure shows a simplified graphical representation of such a structure. This type of structure needs 
to be extended to capture the notion of history or trace to make it suitable for interpreting processes. 
This extension will result in a new interpretative structure called Dynamic Kripke Structure.  

Definition 3  

Given a Kripke structure K=(+8FfwLPAg8Hc-+8DA-+8CzwIPBy-), a trace over K is defined 
inductively as follows:  
* +8Gw- is a trace over K (the empty trace)  
* if T is a trace over K, e+8M4- X and +8HfwzvAg8Fc-+8CzwIA-then T+8Po- (e,w) is a trace over K  
* only are traces those defined by i), ii).  

   

Definition 4  

A Dynamic Kripke Structure is a pair Kd = (K,T), where K is a traditional Kripke structure and T is a 
trace over K.  

   

3.2.2 Semantics of P-processes  

P-processes are used, as described earlier, to express activity that occurred in the past of a given object. 
Therefore, their semantics will be directly defined in terms of a DKS since this interpretative structure 
keeps track of the actual life (trace) of every object in a given system.  

   

Definition 5  

A DKS Kd = (K,Tk), where K=(+8FfwLPAg8Hc-+8DA-+8CzwIPBy-), is model of a P-process p if and 
only if:  

* p = +8Gw- , or  

* p = q & pn , and Tk = T+8Nc- (e,+8Hc-) , with +8Hc- +8M4- +8Fc- such that either  

* pn = e, or  

* pn = (e1 or e2 or ... or em) and +8CQ- i+8M4- {1, ..., m}: ei = e,  

and Kd+IBk- = (K,T) is model of q, or  

* p = q & check(+8Go- ), such that either  

* Tk = T+8Nc- (e,+8Hc-) / +8CQ- (+8HfwLPB3-+8DE-) +8M4- +8HI- (e) such that+8CDwdw-1+JV4- 
+8Go- , or  

* Tk = +8Gw- / +8Hc-0+JV4- +8Go-  



and Kd is model of q.  

   

3.2.3 Semantics of F-processes  

As opposed to P-processes, F-processes describe future behavior rather than a history; DL already 
provides a language with a well-defined semantics in order to reason about future evolution, thus we 
make use of it to give a semantics to F-processes that incorporates the notion of obligation. Taking as 
basis the fact that any operator of a process algebra can be defined in terms of those of the BPA [Wie93] 
we just give the formalization for the sequence and choice operators.  

3.2.3.1 Sequential composition of events  

Let us suppose we have an object o whose type has a process term that includes a subterm like the 
shown in the following figure:  

   
   
   

 where ei and ej are events of X. Let v1, ..., v3 denote the states that o reaches after the execution of the 
different events that compose the subprocess +IBQ-as already mentioned, those states will be 
characterized by a set of 1st-order formulae. In terms of them, the above process has the following 
semantics:  
* v1 [ei] v2  
* v2[+8Ng- ei] false  
* v2[ei] v3  

   

By +8Ng- ei we denote in ii) the non occurrence of ei; there has been some controversy in the literature 
about the action negation operator; some proposals [Geh92] have a complement operator, and other 
[Cha93] explicitly omit a not operator from the event definition language. We use the notation +8Ng-a 
as a syntactic facility to express the occurrence of any action different from a.  

   

3.2.3.2 Choice among events  

In this case the situation is slightly different, though the treatment is similar to the previous one; for the 
subprocess  

   

we distinguish between v2 and v3 because the execution of each action in the choice may lead the object 
to a different state; let us suppose that v2, v3 represent the states reached by the object after the 
execution of the events ei, ej respectively; thus the semantics in terms of dynamic formulae is given by:  

   



* v1[+8Ng- ei]v3  
* v1[ei] v2  
* v1[+8Ng- ej] v2  
* v1[ej]v3  

   

3.2.3.3 Semantics of the check process  

   

The check process as a component of a F-process forces the validation of a certain first order formula 
+8GY- in the current state of an object. The semantics for this process can be also expressed in terms of 
dynamic formulae:  

+8Ng- +8GY- [check(+8GY- )] false  

   

3.2.4 Dimensions of behavior in terms of PF-rules  

   

So far, we have defined a general formal framework to be used in the characterization of OASIS 
behavioral components; next we show them together with their formalization through PF-rules.  

   

3.2.4.1Reactive behavior  

3.2.4.1.1 ES reactions  

When an event e occurs in the life of an object, the object behaves following a predefined pattern:  

* Evaluation of the event precondition +8GY- in the object+IBk-s state  

* Change of the object+IBk-s state according to the valuation formula +8Hk- [e]+8GQ- .  

* Integrity constraints checking: integrity constraints +8Go- are checked in the new state reached by the 
object.  

If either the precondition is not true or the final state of the object does not satisfy the constraints, the 
event is rejected and there is no change of state.  

The following PF-rule defines this type of behavior:  

[check(+8GbwKfAg8CbwIA-check+8CjwefAg-)& e ] <check(+8GQ- ) & check(+8Go- )>  

   



3.2.4.1.2 EA reactions  

   

EA reactions are introduced in OASIS to cope with what other authors call causal dependency between 
events, that is, the occurrence of an action a in the life of an object after the previous occurrence of 
another event e, regardless the state of the object. This behavior can be expressed in terms of PF-rules as

[e]<a>  

   

3.2.4.1.3 CA reactions  

CA reactions are CA rules where the condition is a P-process, and the action that must be fired if the 
condition holds (in other words, if the trigger is activated) is a F-process. Each time a change of state 
occurs on the life of an object, the state-driven triggers are checked and the associated actions are 
executed for those whose conditions hold. A CA trigger with condition +8GY- and action a can be 
written in terms of PF-rules as:  

[check(+8GY- )]<a>  

   

In all previous cases we talk about reactivity rather than activity because this behavior is not truly 
spontaneous, yet it is dependent of the occurrence of an event.  

Triggers extend ES reactions in the following way: after integrity checking, a trigger monitoring is done 
in order to check which rules are activated in the new state. A policy to resolve conflicts when more than 
one rule is activated must be defined.  

   

3.2.4.2 Active behavior  

   

Active behavior is introduced in our model as a way of characterizing patterns of objects+IBk- lives. 
Thus, it is not a behavior that is triggered by a particular change of state at any point of an object+IBk-s 
life but by the fact that it has been created. An object in this case performs a certain active behavior by 
its own and not as a reaction to external stimuli. A pattern of life p for a given object can be expressed as 
a PF-rule as follows:  

[birth]<p>  

where birth denotes the creation of the object and p is the F-process that corresponds to the component P 
of the OASIS type as described in section 2.  

   



4. Conclusions and future work  

In this paper we have presented a model of activity to be used in the requirements engineering phase of 
the software lifecycle supporting the claim that (re)active behavior is just another property of real 
entities and should not be modeled taking as primitives events in a particular DBMS. This independence 
allows implementations of information systems over different target ADBMS.  

The behavioral OASIS model distinguishes between reactive and active behavior of objects. We have 
shown that all of them, though different in essence, can be syntactically expressed by using Past Future 
rules in a unified way. Complex processes consisting of events and conditions over states can be 
described in order to represent activity in, both, the future and the past life of objects. We have also 
defined a common declarative semantics in terms of Dynamic Kripke structures and Dynamic Logic 
formulae, setting the basis for further research on operational semantics to reach implementations of 
ADBMS consisting of sets of PF rules.  

The concepts an ideas presented deal with a very specific area of interest in Software Engineering: a 
syntactically and semantically unified model that extends the capabilities of an existing model (OASIS) 
to enhance its active capabilities. However, there is an essential question that must not be avoided: is 
this an exhaustive solution to the problem of Requirements Analysis and Specification of Active 
Systems? The answer to this question is, in our opinion, no. A complete solution must deal, on the one 
hand, with the model-oriented problems and challenges presented in this paper and, in the other hand, 
with the methodological aspects that support cognitive processes of identification, analysis, and 
specification of active dimensions in Information Systems. These clearly needed methodological 
guidelines are currently under research and an exhaustive overview of the existing philosophic and logic 
fertile literature about the problem of actions, which is out of the scope of this paper, has been 
performed [Jae98]. As a result of this preliminary study we find particularly interesting the work of 
Rescher [Res66] in which a thorough catalogue of key generic descriptive elements of actions is 
provided. His categorization has several strong features that make it suitable for developing a 
methodology for Requirements Analysis: it is simple, in-depth, and abstract (i.e., no references to 
database oriented concepts are present). We are currently developing a methodology based on 
Rescher+IBk-s categories which will complement our model-oriented concepts in order to obtain a 
complete environment for Requirements Analysis and Specification of Active Systems. Some additional 
work must be done as well in order to check the suitability of a transformational approach to 
implementations over different data models. Finally, though a prototype implementing the OASIS 
model exists, a deeper study of the appropriate architecture for an OASIS-based ADBMS is in project.  
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