
A Requirements Elicitation Approach Based in
Templates and Patterns�

A. Durán Toro, B. Bernárdez Jiménez, A. Ruiz Cortés, and M. Toro Bonilla

Departamento de Lenguajes y Sistemas Informáticos, Facultad de Informática y Estadística,
Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, España

{amador,beat,aruiz,mtoro}@lsi.us.es

Abstract One of the main problems of requirements elicitation is expressing
customer requirements in a form that can be understood not only by require-
ments engineers but also by noncomputer professional customers and users. The
usual choice for expressing elicited requirements is natural language, since it is
frequently the only common language to all participants. Problems of natural
language are well–known, but using more formal notations too early is a risky
choice that can make requirements impossible to understand for customers and
users. Moreover, requirements engineers do not usually have good writing skills,
and sometimessemantically correctrequirements, expressed in natural language,
are not understood because of the way they are written. In this paper, we present
requirements templates that can improve requirements elicitation and expression,
and two kinds of patterns:linguistic patterns, which are very used sentences in
natural language requirements descriptions that can be parameterized and inte-
grated into templates, andrequirements patterns, which are generic requirements
templates that are found very often during the requirements elicitation process
and that can be reused with some adaptation.

Keywords: requirements engineering, requirements elicitation

1 Introduction

Following [15], requirements elicitation can be defined as the process through which
customers and users of a software system discover, reveal, articulate, and understand
their requirements. According to [3], problems of requirements elicitation can be classi-
fied into three main groups: problems ofscope, i.e. deciding the boundary of the system
and avoiding unnecessary information, problems ofunderstandingbetween the commu-
nities involved in the process, and problems ofvolatility since requirements evolve over
time.

One of the main problems of understanding is expressing and recording the require-
ments in a form that can be understood not only by requirements engineers but also
by noncomputer professional customers and users [5, Principle 56]. Current elicitation
techniques such as Joint Application Development (JAD), brainstorming or interviews

� This work is funded by the CICYT project "MENHIR". TIC 97-0593-C05-01, Ministry of
Education and Science (Spain)

[15] do not address requirements expression. For example, in JAD and brainstorming
sessions, elicited requirements are supposed to remain visible to the participants, but the
way those requirements are expressed is not described by these elicitation techniques.

The usual choice for expressing elicited requirements is natural language, since it
is frequently the only common language to customers, users and requirements engi-
neers. Problems of natural language are well–known, but using more formal notations
too early is a risky choice that can make requirements impossible to understand for
customers and users [5, Principles 54, 55 and 56]. Since requirements engineers do not
usually have good writing skills, sometimes requirements expressed in natural language
are not understood because of the way they are written [5, Principle 51].

In this paper, we present requirements templates and patterns that can help require-
ments engineers and users to elicit, express and record information systems require-
ments using natural language. We have developed requirements templates and identified
two kinds of patterns:linguistic patterns(L–patterns), which are very used sentences
in natural language requirements descriptions that can be parameterized and integrated
into templates, andrequirements patterns(R–patterns), which are generic requirements
templates that are found very often during the requirements elicitation process and that
can be reused with some adaptation.

The structure of this paper is as follows. In section 2 we present the requirements
engineering model that will be followed in the rest of the paper. In section 3 we present
templates and patterns for the three kinds of information systems requirement we have
identified. In section 4, a prototype of a CASE tool supporting requirements templates
and an object–oriented model of requirements are briefly presented. Finally, in section
5 some related works are compared, and in section 6 some conclusions are given and
some future work is pointed out.

2 Requirements Engineering Model

In this paper, we will follow the requirements engineering model, and its associated
terminology, shown in Fig. 1. This model is partially based in the one proposed in [15].
The meaning of each process is the following:

– Requirements Elicitation: requirements are elicited from customers and users us-
ing elicitation techniques such as interviews, JAD or brainstorming [3] and other
auxiliary techniques such asin situ research, document analysis, forms or the tem-
plates and patterns proposed in this paper. The results of this process are the sys-
tem requirements also known as user requirements orCustomer–Oriented Require-
ments, shortly,C–requirements[1].

– Requirements Analysis: C–requirements are analyzed in order to detect inconsis-
tencies and identify missing requirements, usually by building an object–oriented
o structured model. In this process, in which customers and users can participate
provided they have been trained in modeling techniques, C–requirements are trans-
formed into software requirements, also known asDeveloper–Oriented Require-
mentsor, shortly,D–requirements[1]. Other usual product of this process is a pro-
totype of the system to be built, which, in case executable formal specification were
used to express D-requirements, might be automatically generated.

Requirements
Elicitation

Requirements
Validation

Requirements
Analysis

D-Requirements

Prototype

Customers
& Users

C-Requirements

Figure1. Requirements Engineering Model

– Requirements Validation: customers and users must validate the requirements
and evaluate the prototype, usually leading to elicitation of new requirements. The
whole process iterates until all requirements are validated and no more require-
ments are elicited.

3 Requirements Templates and Patterns

Requirements templates help requirements to be expressed. Requirements information
is structured in a fixed form, so requirements engineers know what missing information
must be searched, requirements can easily be treated by a software tool (see Fig. 9 in
section 4) and reuse is promoted. In addition, filling blanks in pre–written sentences,
i.e. L–patterns, is easier and faster than writing a whole paragraph saying what the
system is expected to do. Moreover, whole requirements templates, i.e. R–patterns, can
be reused many times, provided they have been identified, with some adaptation to
specific developments.

In next sections, requirements templates and patterns for information systems are
described. The used notation is the following: words between� and�must be properly
replaced, words between { and } and separated by commas represents options; only one
option must be chosen.

3.1 Information Storage Requirements

Information Storage Requirements Template and L–patternsThe most important
thing in information systems is information. The template for information storage re-
quirements, see Fig. 2, helps users to answer the question "what information, relevant
for your business goals, must be stored by the system?". The meaning of the template
fields is the following:

– Identifier and descriptive name: every requirement must be uniquely identified
by a number and a descriptive name [5, Principle 52]. In order to help rapid identi-
fication, information storage requirements identifiers start withRI.

RI–�id� �descriptive name�
Version �current version number� (�current version date�)
Author �current version author� (�author’s organization�)
Source �current version source� (�source’s organization�)
Purpose �purpose of requirement�
Description The system shall store the information corresponding to�relevant

concept�. More precisely:
Specific data ��specific data about the relevant concept�

� . . .
Time interval { past and present, only present }
Importance �importance of requirement�
Urgency �urgency of requirement�
Comments �additional comments about the requirement�

Figure2. Template and L–patterns for Information Storage Requirements

– Version: following IEEE recommendations [12], different versions of requirements
must be managed. This field contains the current version number and date of the
requirement.

– Author, Source: these fields must contain the name and organization of the au-
thor, i.e. the requirements engineer, and the source, i.e. the user or customer, of the
current version of the requirement.

– Purpose: this field must state why the requirement is necessary to achieve business
goals. [5, Principle 43].

– Description: for information storage requirements, this field uses an L–pattern that
must be completed with therelevant conceptabout information must be stored.

– Specific data: this field must hold a list of specific data associated with the relevant
concept.

– Time interval: this field indicates how long information about the concept is rel-
evant for the system. It can takes two values:past and present, if information is
always relevant, andpresent onlyif information has a valid period of time. For
example, if the concept isemployees, a past and presenttime interval means that
ex–employees are relevant for the system; apresent onlytime interval means that
ex–employees are not under consideration.

– Importance, Urgency: these fields indicate how important and urgent the require-
ment is for customers and users [5, Principle 50]. They can be assigned a numeric
value or some enumerated expressions such asvital, importantor would be nice
for importance, or such asimmediately, under pressureor can waitfor urgency, as
proposed in [14].

– Comments: other information about the requirement that cannot be fitted in previ-
ous fields can be recorded here.

An example of use of this template, supposing a video tape renting system, is shown
in Fig. 3.

RI–01 Information about movies
Version 1.0 (Feb, 17, 1999)
Author A. Durán (University of Seville)
Source R. Corchuelo (Super Video Shop)
Purpose To know availability of movies at any moment and to be able to help

customers to select a movie using different criteria
Description The system shall store the information corresponding to movies in the

video store. More precisely:
Specific data �Title of the movie

�Number of tapes of the movie rented at any moment
�Number of tapes of the movie ready to rent at any moment
�Type of the movie: children, action, science–fiction or adults
�Time of the movie, in hours and minutes
�Main actors of the movie
�Director of the movie
�Producer of the movie
�Year of production of the movie

Time interval past and present
Importance vital
Urgency immediately
Comments none

Figure3. Example of Information Storage Requirement

Information Storage Requirements R–patterns After using the templates and pat-
terns described in this paper in more than 40 academic practices in the field of informa-
tion systems, we have realized that there are very similar requirements that are present
in most developments. For information storage requirements, we have identified some
R–patterns such as those referring to information about customers (see Fig. 4), products,
orders, invoices, etc. These R–patterns can be classified according to different criteria
and stored in a repository for further reuse.

RI–x Information about customers
.
Description The system shall store the information corresponding tocustomers. More

precisely:
Specific data �Legal identification number ofcustomer

�Name ofcustomer
�Address ofcustomer
�Telephone numbers ofcustomer
�E–mail address ofcustomer

.

Figure4. Example of Information Storage R–pattern

RF–�id� �descriptive name�
Version �current version number� (�current version date�)
Author �current version author� (�author’s organization�)
Source �current version source� (�source’s organization�)
Purpose �purpose of requirement�
Description The system shall behave as described in the following sequence of inter-

actions when�triggering event�
Precondition �precondition of use case�
Ordinary Step Action
sequence

n {The {�actor�, system}�action performed by actor/system�,
Steps described in�use case (RF–x)� are performed}
n.1 If �condition�, {the {�actor�, system}�action performed

by actor/system�, steps described in�use case (RF–x)� are
performed}

.
.

Postcondition �postcondition of use case�
Exceptions Step Action

p If �exception condition�, {the {�actor�, system}�action per-
formed by actor/system�, steps described in�use case (RF–x)�
are performed}, then the sequence is {resumed, aborted}

.
Performance Step Maximum time

q mseconds
.

Frequency This use case is expected to be performed�number of times�
times/�time unit�

Importance �importance of requirement�
Urgency �urgency of requirement�
Comments �additional comments about the requirement�

Figure5. Template and L–patterns for Functional Requirements (Use Cases)

3.2 Functional Requirements

Functional Requirements Template and L–patterns Information systems not only
store information, they must also provide services using the information they store.
The functional requirements template, see Fig. 5, describes use cases [13], and help
users and customers to answer the question "what do you want the system to do with
the stored information in order to achieve your business goals?". The meaning of the
template fields is the following:

– Identifier and descriptive name: the same as in information requirements tem-
plate, except that functional requirements identifiers start withRF.

– Version, Author, Source, Purpose: the same as in information storage require-
ments.

– Description: for functional requirements, this field contains an L–pattern that must
be filled with thetriggering eventthat starts the use case.

– Precondition: necessary conditions that must hold in order to perform the use case
are expressed here.

– Ordinary sequence: this field holds the ordinary sequence of interactions of the
use case. In every step, one actor or the system can perform an action, or other
use case can be performed, i.e.used, following the semantics ofusesandextends
relationships given in [17]. A step can have conditional substeps, assuming that
only one substep is performed. Other use cases can be performed in conditional
substeps, i.e. the use case can beextended.

– Postcondition: conditions that must hold after normal termination of the use case
are expressed here.

– Exceptions: after performing a step of the use case, some exceptional conditions
may arise. This field of the template specifies the behavior of the systems in such
circumstances. After the action or the use case associated with the exception (i.e.
theextenderuse case) is performed, the system can resume the ordinary sequence
or aborts the use case.

– Performance: for any step or substep in which an action is performed by the sys-
tem, a maximum time can be specified in this field.

– Frequency: although frequency is not actually a requirement, it is an important
information for developers and can be recorded here.

– Importance, Urgency and Comments: the same as for information requirements
template.

An example of use of this template, supposing the same previous video tape renting
system, is shown in Fig. 6.

Functional Requirements R–patterns For functional requirements, we have identi-
fied four R–patterns which are always present in every information system development
and that we have namedCRUDR–patterns (Create,Read,Update,Delete). These R–
patterns must always be present in correct information systems: information stored in
the system must becreated(see Fig. 7) andupdatedin order to be synchronized with
its environment; obsolete information must bedeletedif we do not want to run out of
storage space; and finally, some people must be able toread the stored information and
use it.

3.3 Non–Functional Requirements

Non–functional Requirements Template and L–patterns Other capabilities of the
system, such as privacy, reliability, etc. can be expressed using the non–functional re-
quirements template. An example can be seen in Fig. 8. This template does not have
any specific field, since it is a generic template. The only identified L–pattern, for
the moment, is used in the description field and its form is:The system shall�system
capability�.

RF–07 Customer returns video tape(s)
Version 2.1 (Feb, 10, 1999)
Author B. Bernárdez (University of Seville)
Source A. Ruiz (Super Video Shop)
Purpose To control tape returns and customers payments
Description The system shall behave as described in the following sequence of inter-

actions when a customer wants to return one or more video tapes
Precondition all video tapes are Super Video Shop tapes
Ordinary Step Action
sequence 1 The clerk requests the system to start the return procedure

2 The system requests for tape(s) identification(s)
3 The clerk provides all identifications needed
4 The system calculates the amount and prints the invoice

4.1 If any tape is lately returned, the system charges an extra of 10%
for every late return

5 The customer pays the invoice
6 The clerk puts the tape(s) on the shelves

Postcondition stored information is updated, tapes are ready to rent again
Exceptions Step Action

3 If some tape is not registered as rented, the system reports the situ-
ation to the clerk and does not include the tape in the invoice, then
the sequence is resumed

Performance Step Maximum time
4 5 seconds

Frequency This use case is expected to be performed 50 times/day
Importance vital
Urgency immediately
Comments none

Figure6. Example of Functional Requirement (Use Case)

RF–x {Create, Register}�new information�
.
Precondition �new information� is not stored yet
Ordinary Step Action
sequence 1 The�some actor� requests the system to start the�create new

information� procedure
2 The system requests for�new information�
3 The�some actor� provides�new information�

Postcondition �new information� is stored
.

Figure7. Example of Functional Requirement R–pattern (Create

RN–3 Operating System
Version 1.0 (Jan, 15, 1999)
Author A. Durán (University of Seville)
Source M. Toro (Super Video Shop)
Description The system shall operate under the Linux Operating System
Importance vital
Urgency immediately
Comments Check different Linux versions compatibility

Figure8. Example of Non–Functional Requirement

Non–functional Requirements R–patterns Having integrated performance require-
ments into the template described in section 3.2, not many R–patterns for non–functional
requirements have been identified. The example of Fig. 8 can be used as a R–pattern for
specifying the operating system under the system must be able to operate if its descrip-
tion field is changed into:The system shall operate under�operating system�.

4 CASE Tool Support

Currently, a CASE tool based on the object–oriented model of user requirements pre-
sented in [10] and shown in Figs. 10, 11 and 12 is under development. The CASE tool
prototype is a document—based application, considering a requirements project as a
document composed by a Customer Requirements Document and a Developer Require-
ments Document. The tool presents different views of the requirements project, as can
be seen in Fig. 9. The user can add objects in every view and see the final documenta-
tion in a WYSIWYG–like fashion using HTML (the documentation window is actually
a web browser). Generating documentation using HTML make possible to publish elec-
tronically in the web, so geographically distant participants can always have up–to–date
information. Requirements project objects are stored in a relational database, using the
techniques described in [7], so it is possible to access them from other applications.

5 Related Work

The idea of using templates for expressing requirements is based in the use case tem-
plates by Rumbaugh [17] and, mainly, by Cockburn [4] and his use case template. We
have extended Cockburn’s ideas to other types of requirement, not only functional re-
quirements, have integrated some L–patterns into the templates and have identified sev-
eral R–patterns. Inspired by [11], requirements patterns have been anatural productof
our experience in requirements engineering.

Other similar works are theVolere Requirements Specification Template[16], that
defines many types of non–functional requirements, and theUser Requirements Doc-
ument Templatefor the European Space Agency (ESA) PSS–05 standard developed at
CERN [2].

Figure9. Customer Requirements Document View of the CASE Tool Prototype

Ideas presented here have been integrated into an requirements elicitation method-
ology presented in [9] and have been adapted for the Spanish Government’s structured
methodology MÉTRICA [6]. These ideas have also been recently presented in [8].

6 Conclusions and Future Work

In this paper, we have presented requirements templates and patterns for information
systems that can help to elicit and express requirements while keeping the benefits from

CustomerRequirementsDocument DevelopmentRequirementsDocument

RequirementsDocument

majorVersionNumber : Integer
minorVersionNumber : Integer
versionDate : Date

CloseVersion ()

<<abstract>>
*

*clientOrganization

developerOrganization

Organization

name : String
address : String

*

preparedFor

*

preparedBy

Participant

name : String
role : String

<<abstract>>

**

User Customer Developer

<<non-disjoint>>

RequirementsProject

name : String

Figure10.Requirements Engineering Project Model

Requirement

name : String
majorVersionNumber : Integer
minorVersionNumber : Integer
versionDate : Date
description : String
comments : String

<<abstract>>Developer

*

author

*

Participant

source

*

source target

* *

Trace

status : enum{ suspicious, checked }

CustomerRequirement

purpose : String

<<abstract>>

*

CustomerRequirementsDocument

*

DevelopmentRequirements
<<abstract>>

**

tracesTo

DevelopmentRequirementsDocument

PrioritizedCustomerRequirement

importance : enum{ vital, important, wouldBeNice }
urgency : enum{ immediately, underPressure, canWait }

<<abstract>>

Actor

SpecificData

description : String

InformationStorageRequirement

relevantConcept : String
timeInterval : {pastAndPresent, presentOnly}

**

UseCase
<<abstract>> NonFunctionalRequirement

UseCase = FunctionalRequirement

Class Association Scenario

Figure11.C–Requirements Model

UsesStep

ExtendsStep

ExtendsException

Actor

AbstractUseCase ConcreteUseCase

UseCase

triggeringEvent : String
preCondition : String
postConditon : String
frecuency : Integer
timeUnit : enum{ second, minute, hour, day, month, year }

<<abstract>>

Exception

exceptionCondition : String
termination : enum{ resumes, aborts }

<<abstract>>

Step
<<abstract>

ConditionalStep

condition : String

<<abstract>>

ConditionalActionStep

Action

ActionStepAction

ActionException

Action

description : String

<<abstract>>

SystemAction
performance : Time

ActorActorAction

step

1..*

extendedStep

*

extendedException

*

*

primaryActor*

useCase 11

1..*

usedIn

used *

useCase1

*

1

extendsIn

useCase

11

*

extendsIn

extender*

*

*

*

/performed

initiatedUseCase

*

*

* initiatedBy

user

1..*

*

1..*

/uses

extended

*

*

*
/extendedBy

0..*

* {ordered}*

0..*

substep **

1

action

0..* 10..*

performedBy

{subset}

{ordered}

Figure12.Use Cases (Functional Requirements) Model

using natural language and avoiding early formalization of requirements. As a result,
customers and usersdounderstand requirements.

These templates and patterns have been successfully applied in more than 40 aca-
demic practices and are currently being successfully used in two real developments of
Sadiel S.A., a top software company of Andalucía (Spain), where their use have dra-
matically improved communication with customers and users, changing the focus to
requirements semantics, instead of how semantics are expressed. Sadiel uses the Span-
ish Government’s structured methodology MÉTRICA, very similar to SSADM, and
the templates and patterns presented here have been successfully integrated into this
methodology, following our proposal in [6].

Some possible lines for future work can include adapting templates when more
feedback from real developments is available, discovering more patterns, specially for
non–functional requirements, creating a requirements repository for promoting reuse,
finishing the CASE tool and generating documentation in XML format.

References

[1] J. W. Brackett. Software Requirements. Curriculum Module SEI–CM–19–1.2, Software
Engineering Institute, Carnegie Mellon University, 1990.

[2] CERN. PSS–05 User Requirements Document Template. Technical report, CERN, 1998.
[3] M. G. Christel and K. C. Kang. Issues in Requirements Elicitation. Technical Report

CMU/SEI–92–TR–12, Software Engineering Institute, Carnegie Mellon University, 1996.
[4] Alistair Cockburn. Goals and Use Cases.Journal of Object–Oriented Programming, Sep–

Oct 1997.
[5] A. M. Davis. 201 Principles of Software Development. McGraw–Hill, 1995.
[6] A. Durán, B. Bernárdez, M. Toro, and R. Corchuelo. A Proposal for the Requirements

Catalog in MÉTRICA V2.1 (in Spanish).Novática, Accepted for publication 1999.
[7] A. Durán, A. Amaya, and M. Toro. Design of an Automatic Generator of Object–Relational

Persistency Mechanisms. InActas de las II Jornadas de Ingeniería del Software, San
Sebastian, 1997.

[8] A. Durán, B. Bernárdez, M. Toro, R. Corchuelo, A. Ruiz, and J. Pérez. Expressing Cus-
tomer Requirements Using Natural Language Requirements Templates and Patterns. In
IMACS/IEEE CSCC’99 Proceedings, Athens, 1999. IMACS/IEEE.

[9] A. Durán, B. Bernárdez, M. Toro, and A. Ruiz. Una Propuesta Metodológica para la Elic-
itación de Requisitos de un Sistema Software. InActas de las III Jornadas de Trabajo
Menhir, Murcia, 1998. Universidad de Murcia.

[10] A. Durán, B. Bernárdez, M. Toro, and A. Ruiz. An Object–Oriented Model and a CASE
Tool for Software Requirements Management and Documentation. InActas de las IV
Jornadas de Trabajo Menhir, Sedano (Burgos), 1999. Universidad de Valladolid.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995.

[12] IEEE. IEEE Guide for Developing System Requirements Specifications. IEEE/ANSI Stan-
dard 1233–1996, Institute of Electrical and Electronics Engineers, 1996.

[13] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard.Object–Oriented Software En-
gineering: A Use Case Driven Approach. Addison–Wesley, fourth edition, 1993.

[14] IBM OOTC. Developing Object–Oriented Software: An Experience–Based Approach.
Prentice–Hall, 1996.

[15] S. Raghavan, G. Zelesnik, and G. Ford. Lecture Notes on Requirements Elicitation. Edu-
cational Materials CMU/SEI–94–EM–10, Software Engineering Institute, Carnegie Mellon
University, 1994.

[16] James Robertson and Suzanne Robertson. Volere Requirements Specification Template
Edition 6.0. Technical report, Atlantic Systems Guild, 1998.

[17] James Rumbaugh. Getting started: Using use cases to capture requirements.Journal of
Object–Oriented Programming, September 1994.

Acknowledgments

We wish to thank Mr. César Pérez–Chirinos, from TransTools S.A., for hisCRUD
acronym and all his time spent discussing about patterns.

