
2.1. INFORMATION STORAGE 37

Operation Result

˜
˜
&
|
ˆ

One useful application of bit vectors is to represent finite sets. For example, we can denote any subset
as a bit vector , where if and only if . For example,

(recalling that we write on the left and on the right), we have representing the
set , and representing the set . Under this interpretation,
Boolean operations | and & correspond to set union and intersection, respectively, and ˜ corresponds to set
complement. For example, the operation & yields bit vector , while .
In fact, for any set , the structure forms a Boolean algebra, where denotes the
set of all subsets of , and denotes the set complement operator. That is, for any set , its complement is
the set . The ability to represent and manipulate finite sets using bit vector operations
is a practical outcome of a deep mathematical principle.

2.1.8 Bit-Level Operations in C

One useful feature of C is that it supports bit-wise Boolean operations. In fact, the symbols we have used for
the Boolean operations are exactly those used by C: | for OR, & for AND, ˜ for NOT, and ˆ for EXCLUSIVE-
OR. These can be applied to any “integral” data type, that is, one declared as type char or int, with or
without qualifiers such as short, long, or unsigned. Here are some example expression evaluations:

C Expression Binary Expression Binary Result C Result
˜0x41 ˜ 0xBE
˜0x00 ˜ 0xFF
0x69 & 0x55 & 0x41
0x69 | 0x55 | 0x7D

As our examples show, the best way to determine the effect of a bit-level expression is to expand the
hexadecimal arguments to their binary representations, perform the operations in binary, and then convert
back to hexadecimal.

Practice Problem 2.6:
To show how the ring properties of ˆ can be useful, consider the following program:

1 void inplace_swap(int *x, int *y)
2 {
3 *x = *x ˆ *y; /* Step 1 */

38 CHAPTER 2. REPRESENTINGAND MANIPULATING INFORMATION

4 *y = *x ˆ *y; /* Step 2 */
5 *x = *x ˆ *y; /* Step 3 */
6 }

As the name implies, we claim that the effect of this procedure is to swap the values stored at the
locations denoted by pointer variables x and y. Note that unlike the usual technique for swapping two
values, we do not need a third location to temporarily store one value while we are moving the other.
There is no performance advantage to this way of swapping. It is merely an intellectual amusement.
Starting with values and in the locations pointed to by x and y, respectively, fill in the following table
giving the values stored at the two locations after each step of the procedure. Use the ring properties to
show that the desired effect is achieved. Recall that every element is its own additive inverse, that is,
ˆ .

Step *x *y
Initially
Step 1
Step 2
Step 3

One common use of bit-level operations is to implement masking operations, where a mask is a bit pattern
that indicates a selected set of bits within a word. As an example, the mask 0xFF (having 1s for the least
significant eight bits) indicates the low-order byte of a word. The bit-level operation x & 0xFF yields a
value consisting of the least significant byte of x, but with all other bytes set to 0. For example, with x
0x89ABCDEF, the expression would yield 0x000000EF. The expression ˜0 will yield a mask of all 1s,
regardless of the word size of the machine. Although the same mask can be written 0xFFFFFFFF for a
32-bit machine, such code is not as portable.

Practice Problem 2.7:
Write C expressions for the following values, with the results for x 0x98FDECBA and a 32-bit word
size shown in square brackets:

A. The least significant byte of x, with all other bits set to 1 [0xFFFFFFBA].
B. The complement of the least significant byte of x, with all other bytes left unchanged [0x98FDEC45].
C. All but the least significant byte of x, with the least significant byte set to 0 [0x98FDEC00].

Although our examples assume a 32-bit word size, your code should work for any word size .

Practice Problem 2.8:
The Digital Equipment VAX computer was a very popular machine from the late 1970s until the late
1980s. Rather than instructions for Boolean operations AND and OR, it had instructions bis (bit set)
and bic (bit clear). Both instructions take a data word x and a mask word m. They generate a result
z consisting of the bits of x modified according to the bits of m. With bis, the modification involves
setting z to 1 at each bit position where m is 1. With bic, the modification involves setting z to 0 at
each bit position where m is 1.
We would like to write C functions bis and bic to compute the effect of these two instructions. Fill in
the missing expressions in the code below using the bit-level operations of C.

2.1. INFORMATION STORAGE 39

/* Bit Set */
int bis(int x, int m)
{

/* Write an expression in C that computes the effect of bit set */
int result = ___________;
return result;

}

/* Bit Clear */
int bic(int x, int m)
{

/* Write an expression in C that computes the effect of bit set */
int result = ___________;
return result;

}

2.1.9 Logical Operations in C

C also provides a set of logical operators ||, &&, and !, which correspond to the OR, AND, and NOT
operations of propositional logic. These can easily be confused with the bit-level operations, but their
function is quite different. The logical operations treat any nonzero argument as representing TRUE and
argument 0 as representing FALSE. They return either 1 or 0 indicating a result of either TRUE or FALSE,
respectively. Here are some example expression evaluations:

Expression Result
!0x41 0x00
!0x00 0x01
!!0x41 0x01
0x69 && 0x55 0x01
0x69 || 0x55 0x01

Observe that a bit-wise operation will have behavior matching that of its logical counterpart only in the
special case where the arguments are restricted to be either 0 or 1.
A second important distinction between the logical operators && and ||, versus their bit-level counterparts
& and | is that the logical operators do not evaluate their second argument if the result of the expression
can be determined by evaluating the first argument. Thus, for example, the expression a && 5/a will
never cause a division by zero, and the expression p && *p++will never cause the dereferencing of a null
pointer.

Practice Problem 2.9:
Suppose that x and y have byte values 0x66 and 0x93, respectively. Fill in the following table indicat-
ing the byte values of the different C expressions

40 CHAPTER 2. REPRESENTINGAND MANIPULATING INFORMATION

Expression Value Expression Value
x & y x && y
x | y x || y

˜x | ˜y !x || !y
x & !y x && ˜y

Practice Problem 2.10:
Using only bit-level and logical operations, write a C expression that is equivalent to x == y. That is,
it will return 1 when x and y are equal and 0 otherwise.

2.1.10 Shift Operations in C

C also provides a set of shift operations for shifting bit patterns to the left and to the right. For an operand
x having bit representation , the C expression x << k yields a value with bit repre-
sentation . That is, x is shifted bits to the left, dropping off the most
significant bits and filling the left end with 0s. The shift amount should be a value between and .
Shift operations group from left to right, so x << j << k is equivalent to (x << j) << k. Be careful
about operator precedence: 1<<5 - 1 is evaluated as 1 << (5-1), not as (1<<5) - 1.
There is a corresponding right shift operation x >> k, but it has a slightly subtle behavior. Generally,
machines support two forms of right shift: logical and arithmetic. A logical right shift fills the left end
with 0s, giving a result . An arithmetic right shift fills the left end with
repetitions of the most significant bit, giving a result . This convention
might seem peculiar, but as we will see it is useful for operating on signed integer data.
The C standard does not precisely define which type of right shift should be used. For unsigned data (i.e.,
integral objects declared with the qualifier unsigned), right shifts must be logical. For signed data (the
default), either arithmetic or logical shifts may be used. This unfortunately means that any code assuming
one form or the other will potentially encounter portability problems. In practice, however, almost all
compiler/machine combinations use arithmetic right shifts for signed data, and many programmers assume
this to be the case.

Practice Problem 2.11:
Fill in the table below showing the effects of the different shift operations on single-byte quantities.
Write each answer as two hexadecimal digits.

x x << 3 x >> 2 x >> 2
(Logical) (Arithmetic)

0xF0
0x0F
0xCC
0x55

2.2. INTEGER REPRESENTATIONS 41

C Declaration Guaranteed Typical 32-bit
Minimum Maximum Minimum Maximum

char 127 127 128 127
unsigned char 0 255 0 255
short [int] 32,767 32,767 32,768 32,767
unsigned short [int] 0 63,535 0 63,535
int 32,767 32,767 2,147,483,648 2,147,483,647
unsigned [int] 0 65,535 0 4,294,967,295
long [int] 2,147,483,647 2,147,483,647 2,147,483,648
unsigned long [int] 0 4,294,967,295 0 4,294,967,295

Figure 2.8: C Integral Data types. Text in square brackets is optional.

2.2 Integer Representations

In this section we describe two different ways bits can be used to encode integers—one that can only rep-
resent nonnegative numbers, and one that can represent negative, zero, and positive numbers. We will see
later that they are strongly related both in their mathematical properties and their machine-level implemen-
tations. We also investigate the effect of expanding or shrinking an encoded integer to fit a representation
with a different length.

2.2.1 Integral Data Types

C supports a variety of integral data types—ones that represent a finite range of integers. These are shown
in Figure 2.8. Each type has a size designator: char, short, int, and long, as well as an indication of
whether the represented number is nonnegative (declared as unsigned), or possibly negative (the default).
The typical allocations for these different sizes were given in Figure 2.2. As indicated in Figure 2.8, these
different sizes allow different ranges of values to be represented. The C standard defines a minimum range of
values each data type must be able to represent. As shown in the figure, a typical 32-bit machine uses a 32-bit
representation for data types int and unsigned, even though the C standard allows 16-bit representations.
As described in Figure 2.2, the Compaq Alpha uses a 64-bit word to represent long integers, giving an
upper limit of over for unsigned values, and a range of over for signed values.

New to C?
Both C and C++ support signed (the default) and unsigned numbers. Java supports only signed numbers. End

2.2.2 Unsigned and Two’s Complement Encodings

Assume we have an integer data type of bits. We write a bit vector as either , to denote the entire vector,
or as to denote the individual bits within the vector. Treating as a number written
in binary notation, we obtain the unsigned interpretation of . We express this interpretation as a function

