
Mastering LPeg
by Roberto Ierusalimschy

(Version 1.0)

LPeg is a pattern-matching library for Lua, based on Parsing Expression Gram-
mars. LPeg performs all tasks of a typical regex system, but it goes well beyond
that. Among other tasks, we can write entire parsers with LPeg, with scanners
included.

For us, pattern matching is a system for finding and extracting pieces of infor-
mation from a text. For instance, we may want to find a line starting with
“From:” in an email message and extract the rest of the line; we may have an
XML document and want to extract all emphasized text, that is, text written
between and ; we may have a list of license plates and want to find
all plates that are palindromes or that start with a given prefix. We may want
to determine whether a sequence of characters is a valid identifier in C, that is,
a letter or underscore followed by zero or more letters or underscores or digits;
moreover, the sequence cannot be equal to a reserved word.

Most pattern-matching systems are based on regexes, also called regular expres-
sions. (Most regex systems are extensions of the original regular-expression
definition that break the nice properties of the original. For that reason, I prefer
to save the name “regular expression” for the original definition and use the
term “regex” for those extensions.) A regex is a string that specifies a pattern
and occasionally what to extract from a match—an occurrence of that pattern
in a text. As a simple example, consider the following Lua code:

subject = "birth date: 12/03/1980"
pattern = "(%d%d)/(%d%d)/(%d%d%d%d)"
d, m, y = string.match(subject, pattern)
print(d, m, y) --> 12 03 1980

(Remember that, in Lua, a function can return multiple values.) In the pattern,
"%d" represents any digit, "/" represents itself, and the parentheses delimit
the captures, which is what to extract from the match. So, in this example,
pattern means any two digits followed by a slash followed by two digits followed
by another slash followed by four digits, capturing the three groups of digits.
The function string.match searches for that pattern in the subject; if if finds
a match, it returns the captured values, that is, the parts of the subject that
matched the parenthesized parts of the pattern.

Unlike most other pattern-matching systems, LPeg is not based on regexes.
Following the Snobol tradition, LPeg defines patterns as first-class objects. This
means that patterns are handled like regular Lua values. The LPeg library offers
several functions to create and compose patterns; with the use of metamethods,
several of these functions are provided as infix or prefix operators. On the
one hand, the result is usually much more verbose than the typical encoding
of patterns using regexes. On the other hand, first-class patterns allow us to
create patterns piecemeal; it is easy to test each piece independently, to properly
document them with good names and comments, to reuse those pieces, and to
compose them to create more complex patterns. In other words, we can create

1

patterns using the same conceptual tools we use for regular programming.

From a formal perspective, LPeg is not based on regular expressions plus a bunch
of ad hoc extensions. Instead, LPeg is firmly grounded on Parsing Expression
Grammars (PEGs), an established formalism with a well-defined semantics that
are strictly more powerful than LL(k) parsers.

The Basics
Let us start with a very simple but complete Lua program that builds and uses
a pattern:

local lpeg = require "lpeg"

-- creates a pattern
local p = lpeg.P("hello")

-- matches a subject against it
print(lpeg.match(p, "hello world")) --> 6
print(lpeg.match(p, "hi world")) --> nil

The function lpeg.P is the main function for creating patterns. When given
a string, it returns a pattern that matches that string literally. After creating
the pattern p, the code calls the function lpeg.match to match a given subject
against the pattern. If the match succeeds, the call returns the position after
the last character that matched. Otherwise, the call returns nil.

We can also call match as a method of the pattern:

print(p:match("hello world")) --> 6

(Remember that Lua uses a colon to call methods.) The resulting position in a
successful match is not particularly useful; usually what is relevant is whether
the match succeeded or not. Later we will see several ways to extract more
relevant information from a match.

Unlike what is common in traditional regex libraries, the method match does not
search for a pattern. It tries to match only at the first position of the subject,
doing the equivalent of what is called an anchored match in regex libraries.
(That implies that, in case of a successful match, the returned value is always
the number of matched characters plus one.) Later we will see how to search for
a pattern in a subject.

The function lpeg.P does not handle any magic characters; all characters repre-
sent themselves in a string. For instance, the pattern created bylpeg.P("%d")
matches a percent sign followed by the letter d. LPeg provides other functions
to create character classes, repetitions, and the like.

From now on, our examples will assume that the library lpeg is already loaded
in a variable lpeg. To test the examples, you can call the stand-alone Lua
interpreter with the option -llpeg to pre-require the library into a global
variable.

The function lpeg.S (S for set) receives a string and returns a pattern that
matches a single occurrence of any character in that string. For instance,

2

lpeg.S"aeiou" creates the set of vowels:

print(lpeg.S"aeiou":match("hello")) --> nil
print(lpeg.S"aeiou":match("all")) --> 2

(Remember that, in Lua, we can omit the parentheses when calling a function
with a single literal string as its argument.) The function lpeg.R (R for range)
receives a two-character string and returns a pattern that matches a single
occurrence of any character between those two characters:

print(lpeg.R"09":match("hello")) --> nil
print(lpeg.R"09":match("42")) --> 2

More generally, lpeg.R can be called with several intervals, each represented by
a two-character string. For instance, lpeg.R("az","AZ") matches any Latin
letter, both lowercase and uppercase, and lpeg.R("af","AF","09") matches
any hexadecimal digit.

In these last examples, the code creates the pattern and immediately applies
match to it. This style is quite appropriate for presenting small examples, but
you should seldom see it in real programs. Building a pattern in LPeg is much
more expensive than using it, so usually a program first creates the patterns it
will need and then uses them repeatedly in the rest of the code.

Similarly, in well-written programs those patterns probably should be kept in
local variables, visible only in the file that defines and uses them. However, to
help those that want to run these small examples directly in an interactive Lua
session, I will use mostly global variables so that the code can be copied as is,
directly to the interpreter prompt.

The function lpeg.locale creates a set of patterns according to the current
locale, and returns them all in a table:

-- example using lpeg.locale
loc = lpeg.locale()
print(loc.space:match(" ")) --> 2

In the example, loc is the table containing those patterns, and loc.space is the
pattern that matches white-space characters: regular space, newline, tabs, and
form-feed. Besides spaces, the table includes also alnum, alpha, cntrl, digit,
graph, lower, print, punct, upper, and xdigit.

From now on, several examples will assume the presence of a variable loc
initialized as above.

When called with a positive integer, lpeg.P returns a pattern that matches that
many characters, whatever they are. In the next example, the pattern matches
the first three characters of the subject:

print(lpeg.P(3):match("hello world")) --> 4

In this one, the match fails, because the subject does not have any characters:

print(lpeg.P(1):match("")) --> nil

LPeg also allows us to combine patterns to create new patterns. It uses over-
loading to provide several of its constructors as operators. As a first example of

3

this use, the star operator (*) represents concatenation. For instance, consider
the following pattern:

p = lpeg.P(3) * lpeg.P("hi")

It matches strings that has the substring "hi" starting at the fourth character:

print(p:match("my hi")) --> 6
print(p:match("his hi")) --> nil

Whenever one of the operands for a binary operator is a pattern, Lua calls the
respective metamethod. If the other operand is not a pattern, the metamethod
tries to convert it by applying lpeg.P. So, we could write that previous pattern
in one of these slightly simpler forms:

p = lpeg.P(3) * "hi"
p = 3 * lpeg.P"hi"

The basic constructor lpeg.P also accepts booleans. The call lpeg.P(true)
produces a pattern that always succeeds without consuming any input, while
lpeg.P(false) produces a pattern that always fails. In particular, the patterns
lpeg.P(true), lpeg.P(""), and lpeg.P(0) are all equivalent, as are equivalent
the patterns lpeg.P(false), lpeg.S(""), and lpeg.R("za").

A note about Unicode

Throughout this text, when we talk about “character” we actually mean “byte”.
We need to keep that in mind when handling a Unicode text.

Because Lua uses UTF-8 for Unicode encoding, most parts of LPeg work for
free with Unicode text. In particular, literals, concatenations, repetitions, and
predicates work correctly. However, sets and ranges are restricted to ASCII
characters. Similarly, a construction like lpeg.P(1) matches one byte, not one
Unicode character.

There are ways to work around this limitation, and LPeg version 1.1 introduced
a pattern to match Unicode ranges, but we will not cover that matter in this
text.

Repetitions and Choices
A pattern raised to a positive integer N results in a new pattern that behaves
like the original pattern repeated N or more times. For instance, loc.space^0 is
a pattern that matches zero or more white-space characters, and loc.alpha^1
matches one or more letters:

p = loc.space^0 * loc.alpha^1
print(p:match(" hello")) --> 8
print(p:match("hello")) --> 6
print(p:match(" ")) --> nil

In the first example, the repeated spaces matched two spaces and the repeated
letters matched the word. In the second example, the repeated spaces matched
zero spaces and the repeated letters matched the word. In the third example,

4

the repeated spaces matched two spaces, but there were no letters to match the
second half of the pattern, which required at least one letter; so the match failed.

Repetitions in LPeg are always possessive. That means that they match as
many characters as possible, regardless of what comes next. A pattern like
lpeg.P(1)^0*lpeg.P("a") always fails, because the initial repetition will match
the whole string, leaving nothing to match the trailing "a". Possessive repetition
can be contrasted to greedy repetitions, the standard in conventional regex
systems like those provided by Perl or Python. Greedy repetitions also match as
many characters as possible—but provided that the whole match succeeds.

Often, greedy and possessive repetitions give the same results. Often, we must
restrict what is being repeated so that greedy and possessive repetitions give
the same results. As an example, consider the problem of matching a subject
that has at least two semicolons. In conventional regex systems, with greedy
repetition, a pattern like ".*;.*;" would do the task. In words, that pattern
means “match zero or more arbitrary characters, then match a semicolon, then
match zero or more arbitrary characters, then match another semicolon”. With
possessive repetition, however, the initial repetition would consume the entire
subject—semicolons and all—so the match would always fail. Nevertheless, it
is easy to correct this problem by restricting the repetition patterns to mean
“match zero or more characters except semicolons”:

-- 'noSC' matches any character except a semicolon
noSC = lpeg.P(1) - ";"
p = noSC^0 * ";" * noSC^0 * ";"
print(p:match("one;two")) --> nil
print(p:match("one;two;")) --> 9

(In the definition of noSC, the subtraction removes the semicolon from the set of
all characters created by lpeg.P(1). We will discuss the subtraction operation
in detail later, when we discuss predicates.)

Even in systems with greedy repetition, it is a good idea to use more restricted
patterns when possible, as they are more robust and often more efficient.

A pattern raised to a negative integer results in a new pattern that matches
the original one at most that many times. In particular, a pattern raised to -1
means an optional element:

-- 'num' is an optional minus sign followed by
-- one or more digits
num = lpeg.P"-"^-1 * lpeg.R"09"^1
print(num:match("-134")) --> 5
print(num:match("351")) --> 4

The plus operator creates choices. For instance, the pattern lpeg.P("one")+lpeg.P("two")
(or simply lpeg.P("one")+"two") matches either “one” or “two”. Like repe-
titions, choices in LPeg are always possessive; if the first alternative matches,
Lpeg will not consider the second one, independently of what comes next. (In
the original PEG formalism, the construction is called an ordered choice.) As a
concrete example, consider the following code:

p = (lpeg.P"a" + "ab") * "c"

5

print(p:match("abc")) --> nil

In a system based on regular expressions, the similar pattern "(a|ab)c" would
match "abc". In LPeg, however, once the alternative lpeg.P("a") succeeds,
the second one is not considered. In particular, choices like the previous one,
where the first alternative is a prefix of the second, are pointless in LPeg: If
the subject starts with an a, the first option matches and the second is not
considered; otherwise, both options fail.

Note that the order of the alternatives in LPeg is relevant, often essential. As we
just saw, the pattern lpeg.P"a"+"ab" is equivalent to the simpler lpeg.P"a",
but the pattern lpeg.P"ab"+"a" has a different meaning:

p = (lpeg.P"ab" + "a") * "c"
print(p:match("abc")) --> 4
print(p:match("ac")) --> 3

The first match uses the first alternative "ab". In the second match, however,
"ab" fails, so LPeg tries the second one ("a"), which succeeds.

A good mental model for understanding Parsing Expression Grammars in general,
and LPeg in particular, is to think of a machine trying to match each pattern
in turn. (That is how Lpeg actually works, bar optimizations.) For each sub-
pattern, either there is match and the machine advances zero or more characters
in the subject, or the match fails.

For simple characters or character classes, either the current character in the
subject matches and the machine advances to the next character, or the current
character is not in the class and the match fails.

In a sequence p*q, the machine first tries p and, if that succeeds, it proceeds to
match q. If either of them fails, the sequence fails. In a choice p+q, the machine
also first matches p; if that succeeds, the match of the choice is complete.
Otherwise, the machine tries q. In a repetition e^0, the machine keeps trying to
match e until that fails.

A drawback of this semantics happens when the expression inside a repetition
can succeed without consuming any character. In that case, the machine could
enter an infinite loop. To prevent that behavior, LPeg forbids the creation of
loops where the body can match an empty string:

-- an optional dot
opt = lpeg.P"."^-1

-- zero or more optional dots (invalid!)
loop = opt^0
--> stdin:1: loop body may accept empty string

Suppose we try to match the subject "a" against loop. It would try to match "a"
against opt; because opt accepts an optional dot, it would match "a" without
consuming any input character. In turn, since its body succeeded, loop would
continue trying to match, and everything would repeat indefinitely.

Of course, when the loop accepts zero repetitions (a zero exponent), there is
no need for its body to accept the empty string. For instance, the previous

6

example is trivially fixed by making loop a repetition of regular (non-optional)
dots. When the loop demands at least one occurrence, it is enough to change it
to accept zero occurrences and again change the body so that it does not accept
the empty string.

Simple Captures
Captures are patterns that produce values. The simplest capture in LPeg is
the simple capture, created with the function lpeg.C. It receives a pattern and
returns a capture that produces the string that matched the pattern:

-- capture the first word in a subject
p = loc.space^0 * lpeg.C(loc.alpha^1)
print(p:match(" hello world")) --> hello

Whenever a pattern produces values, match returns those values instead of its
default result. In the last example, the pattern captured the string that matched
the repetition of alphabetic characters, and that is the value that match returned.

As is usual in LPeg, if its parameter is not a pattern, lpeg.C tries to convert it
by applying lpeg.P:

-- matches three characters in the subject,
-- capturing the third one
p = lpeg.P(2) * lpeg.C(1)
print(p:match("hello")) --> l

A pattern may have multiple captures, which can produce multiple values:

-- captures two characters and then one more
p = lpeg.C(2) * lpeg.C(1)
print(p:match("hello")) --> he l

As the next example shows, captures can be nested. In that case, the results
from the outer captures come first:

p = lpeg.C(lpeg.C(2) * 1 * lpeg.C(2))
print(p:match("hello")) --> hello he lo

Each time a capture matches, it produces its values. Therefore, the number of
values produced by a pattern may depend on the subject. For instance, consider
the two similar patterns lpeg.C(lpeg.P("a")^0) and lpeg.C(lpeg.P("a"))^0.
In the first one, there is a single capture enclosing a repetition, so a match always
produces one single result with a (possibly empty) sequence of "a"s:

print(lpeg.C(lpeg.P"a"^0):match("aaa")) --> aaa
print(lpeg.C(lpeg.P"a"^0):match("")) --> (empty string)

In the second pattern, the capture itself is being repeated, and each time it
matches, it produces a new value:

print((lpeg.C(lpeg.P"a")^0):match("aaa")) --> a a a
print((lpeg.C(lpeg.P"a")^0):match("")) --> 1 (no captures)

Similarly, the pattern lpeg.C(lpeg.P"a"^-1) always produces one single value,
that may be "a" or the empty string. The pattern lpeg.C(lpeg.P"a"^)-1, on

7

the other hand, may produce one single "a" or no values at all, because the
capture itself is optional.

The function lpeg.Cp creates a position capture, a pattern that captures the
current position in the subject where the match occurred:

p = loc.space^0 * lpeg.Cp()
print(p:match(" hello")) --> 3

p1 = p * loc.alpha^1 * lpeg.Cp()
print(p1:match("hello world")) --> 1 6

The next example produces the positions of all words in the subject:

space = loc.space^0
word = loc.alpha^1
p = (space * lpeg.Cp() * word)^0
print(p:match("hello my world")) --> 1 7 10

The pattern inside the repetition in p matches zero or more spaces followed by
one or more letters, capturing the current position before the letters.

The default result from lpeg.match, when the pattern has no captures, is
equivalent to what we would have if the pattern had a position capture at its
end.

Predicates
A key property of PEGs is that its matching algorithm is deterministic. Following
the mental model that we introduced, for a given pattern and a given subject the
machine has always only one possibility of how to proceed. This determinism
allows an easy concept of negation for matching: the negation of a pattern
matches a subject if and only if the pattern itself fails for that subject.

In LPeg, we negate a pattern with the unary minus operator. That operation is
called a not predicate. For instance, the pattern -lpeg.P"a" matches any string
that does not match lpeg.P"a", that is, any string that does not start with "a":

p = -lpeg.P"a"
print(p:match("hello")) --> 1
print(p:match("")) --> 1
print(p:match("abc")) --> nil

A not predicate never consumes any input, because either the predicate fails or
its enclosed pattern fails. For the same reason, a not predicate never produces
any capture.

An interesting use of a not predicate is in the pattern -lpeg.P(1). The pattern
lpeg.P(1) succeeds when there is any character in the subject, so -lpeg.P(1)
will succeed only when there is no character, that is, at the end of the subject.
This pattern is particularly useful to ensure that a successful match consumed
the entire subject:

-- matches only strings of digits
p = loc.digit^0 * -lpeg.P(1)

8

print(p:match("123")) --> 4
print(p:match("123 ")) --> nil

When we call the function lpeg.P with a negative integer -n, it generates the
pattern -lpeg.P(n). Remembering that LPeg operations automatically apply
lpeg.P to non-pattern operands, we can write the previous pattern like this:

-- matches only strings of digits
p = loc.digit^0 * -1

PEGs offer another predicate called an and predicate, denoted by the length
operator (#) in LPeg. For any pattern p, #p is equivalent to -(-p): The pattern
#p succeeds if and only if p succeeds, but #p never consumes any input.

Another syntax for the not predicate in LPeg is p-q, which is translated to -q*p.
We can read it as “matches p provided that q doesn’t match”. For character
sets, this operation corresponds to set difference. As an example, the pattern
lpeg.R("az")-lpeg.S("aeiou") matches any Latin lowercase consonant, and
the pattern 1-loc.space matches any character that is not a space.

Searching

The not predicate is the basis of a very simple way to search for a pattern in a
string. Assume a generic pattern p, and consider the following pattern:

searchP = (1 - p)^0 * lpeg.Cp() * p

The loop body (1 - p) checks that p does not match at the current position
in the subject and then matches one character, advancing to the next position.
The loop will repeat those steps as much as possible, that is, until either the end
of the subject (where the 1 will fail) or a position where p matches. After the
loop and the position capture, the final p succeeds only if the search has found
its goal.

p = lpeg.P("needle")
searchP = (1 - p)^0 * lpeg.Cp() * p

s = "looking for a needle in a haystack"
print(searchP:match(s)) --> 15

s = "looking for a prickle in a haystack"
print(searchP:match(s)) --> nil

Example: Identifiers in the real world

In most programming languages, an identifier is described along the lines of “one
alphabetic character followed by zero or more alphanumeric character”. However,
that is only half of the story. The other half is that a valid identifier cannot be a
reserved word. For instance, while is not a valid identifier in Lua, even though
it is a sequence of alphabetic characters.

It is easy to translate the first half of the story to LPeg:

id = loc.alpha * loc.alnum^0
print(id:match("count1")) --> 7 -- Ok

9

print(id:match("while")) --> 6 -- oops

The second half is more subtle. A first attempt is to use the not predicate to
exclude the reserved words from the results:

reserved = lpeg.P("while") + "if" + "then" -- ...
id = id - reserved
print(id:match("count1")) --> 7 -- Ok
print(id:match("while")) --> nil -- Ok
print(id:match("if")) --> nil -- Ok
print(id:match("iffy")) --> nil -- oops

Once we see the problem, it is not difficult to understand its cause. Clearly,
"iffy" matches the pattern "if". The problem is that the pattern reserved is
too lax, accepting anything that starts with those words. We need to make sure
that it only accepts those words as entire words. The not predicate helps here
again. With it, we can make sure that reserved matches only complete words:

reserved = (lpeg.P("while") + "if" + "then") * -loc.alnum

This new definition only matches a reserved word if it is not followed by an
alphanumeric character:

print(reserved:match("if")) --> 3
print(reserved:match("if()")) --> 3
print(reserved:match("iffy")) --> nil

Now we can complete our pattern for identifiers:

id = (loc.alpha * loc.alnum^0) - reserved
print(id:match("count1")) --> 7 -- Ok
print(id:match("while")) --> nil -- Ok
print(id:match("if")) --> nil -- Ok
print(id:match("iffy")) --> 5 -- Ok

As a final touch, we can construct the pattern reserved programmatically.
Instead of writing all reserved words into the pattern, we can have them in a list:

rw = {"if", "then", "else", "while", "do", }

Using this list, the following loop builds reserved:

reserved = lpeg.P(false)
for _, w in ipairs(rw) do
reserved = reserved + w

end
reserved = reserved * -loc.alnum

Note the initialization with lpeg.P(false), which is the neutral element for
choices in PEGs.

Example: List of assignments

Now let us consider how to parse a list of assignments of the form name=name
separated by commas; there can be spaces anywhere around each element. We
start defining our basic elements:

10

S = loc.space^0 -- spaces
name = lpeg.C(loc.alpha^1) * S
comma = "," * S
eq = "=" * S

Note that each basic element takes care of the spaces following it. The spaces
preceding the element are parsed by the previous element. (Note too that name
avoids adding the spaces to its capture.) This simple schema takes care of all
spaces, except those in the very beginning of the subject. For those, we will add
an extra S to the beginning of the final pattern.

The next step is to define the assignments:

assg = name * eq * name

The handle of the commas is a little tricky. If we add a comma to the end of
assg, any list will need a comma after the last assignment. If we make that
comma optional, we would allow two assignments without a comma between
them. The following definition avoids these corners:

list = assg * (comma * assg)^0

If we want to allow empty lists, we make the whole list optional:

list = (assg * (comma * assg)^0)^-1

Finally, we should not forget to allow spaces at the beginning:

list = S * (assg * (comma * assg)^0)^-1

s = " a = b , aaa=count, bb = list "
print(list:match(s))
--> a b aaa count bb list

Aggregating Captures
When a match produces multiple captures, more often than not we will want
to aggregate those results. For instance, consider the following pattern, which
captures all words in a sentence:

p = (loc.space^0 * lpeg.C(loc.alpha^1))^0
print(p:match("hello my world"))
--> hello my world

We cannot further process those words unless we aggregate them, for example
collecting them in a list.

For simple cases, we can build the aggregation directly in Lua, like here:

all = {p:match("hello my world")}
for _, w in ipairs(all) do print(w) end
--> hello
--> my
--> world

However, when the pattern has more structure, returning a flat list of all its
captures loses that structure. The example from the previous section, about

11

lists of assignments, illustrates this point. In that case, it is still possible to
reconstruct the structure, as each assignment generates exactly two values.
However, consider the following small change to that example, where the value
being assigned can be optional:

assg = name * (eq * name)^-1
list = assg * (comma * assg)^0

In this case, each item in the list can generate one or two captures. It is literally
impossible to reconstruct the structure of the original list looking only to the
list of captures:

print(list:match("a=x, b=c")) --> a x b c
print(list:match("a=x, b, c")) --> a x b c

To preserve the original structure, we should aggregate the data as we parse the
subject. LPeg offers several constructors to that end. The most general is the
function capture, denoted by a division operator. When matching an expression
p/f, LPeg first matches p; then it calls f passing as arguments all captures
produced by p; finally, the values returned by f become the final captures of the
whole expression. If p produces no captures, its whole match is passed to f.

The next code fragment illustrates a function capture:

function upperQuote (w)
return '"' .. string.upper(w) .. '"'

end

p = loc.space^0 * (loc.alpha^1 / upperQuote)
print(p:match(" hi")) --> "HI"

In this case, as loc.alpha^1 generates no captures, its entire match goes to the
function.

The next example uses two function captures:

num = loc.digit^1 / tonumber
p = (num * "+" * num) / function (a,b) return a + b end
print(p:match("32+64")) --> 96

The pattern num uses a function capture with the predefined Lua function
tonumber to convert its capture result from string to number; then the pattern
p uses a function capture with an anonymous function to produce the sum of
the two numbers captured by its subpatterns.

LPeg gives no guarantees about when, or even if, the function in a function
capture will be called. Therefore, these functions should not produce side effects,
such as assignments to global variables.

Example: Simple arithmetic expressions
Now let us see a somewhat more complex example, which will allow us to discuss
more techniques and also to motivate and introduce other LPeg constructs. Our
problem is to parse and evaluate simple arithmetic expressions. We will start
with something simpler, supporting only additions and subtractions, so that we

12

do not have to worry about precedence. Later we will introduce multiplicative
operators.

As is usual in many larger uses of LPeg, first we define some lexical elements.
Again we use the technique of handling spaces in these basic elements, so that
we do not need to worry about spaces later.

S = loc.space^0 -- spaces
num = (loc.digit^1 / tonumber) * S
opA = lpeg.C("+") * S -- add operator
opS = lpeg.C("-") * S -- sub operator

As we do not have precedence yet, for now an expression can be seen as a list of
numbers separated by operators. Ignoring for a moment how to evaluate the
expression, the following pattern would match expressions:

exp = S * num * ((opA + opS) * num)^0

In words: An expression is a number followed by zero or more sequences of an
operator, which can be a plus or a minus, followed by a number.

We still have to add semantics to the expression. One simple way to do that is
to collect everything into a list. We use a function capture to build a list with
all captures:

exp = exp / function (...) return {...} end

(Remember that the ... is the syntax in Lua for a variadic function. The
expression {...} builds a list with all parameters received by the function.)

With this definition, we have the following result:

t = exp:match("34 + 89 - 23")
for _, w in ipairs(t) do print(w) end
--> 34
--> +
--> 89
--> -
--> 23

The need to collect all captures from a match into a list is so common that LPeg
offers a special capture to that end: the table capture, denoted by the function
lpeg.Ct. With that function, we can define exp like here:

exp = lpeg.Ct(S * num * ((opA + opS) * num)^0)

Now, let us see how to process that list, which is a list of numbers separated by
strings denoting operators. A simple way to fold this list is like this:

function foldBin (lst)
local acc = lst[1]
for i = 2, #lst, 2 do
if lst[i] == "+" then

acc = acc + lst[i + 1]
else -- must be "-"

acc = acc - lst[i + 1]
end

13

end
return acc

end

print(foldBin(t)) --> 100

The pattern ensures that the list has at least one initial number. The accumulator
acc starts with that number. Then the for loop traverses the rest of the list in
steps of two, and for each pair operation–number, it updates the accumulator
accordingly.

With this function defined, we can redefine exp to call it after creating the list:

exp = lpeg.Ct(S * num * ((opA + opS) * num)^0) / foldBin
print(exp:match("9 + 10 -12")) --> 7

With a touch of functional programming, we can make things more reusable.
Instead of representing each arithmetic operator in the list with a string, we can
represent the operator with a function that performs the operation. So, instead
of representing an addition with the string "+", we can represent it with the
following function:

function add (a, b) return a + b end

Similarly, subtraction can be represented by this function:

function sub (a, b) return a - b end

In our example, instead of {34,"+",89,"-",23}, the resulting list would be
{34,add,89,sub,23}. Once we have such a list, the definition of foldBin can
be both simpler and more generic:

function foldBin (lst)
local acc = lst[1]
for i = 2, #lst, 2 do
local op = lst[i] -- get operation
acc = op(acc, lst[i + 1]) -- apply operation

end
return acc

end

The missing step is to change the pattern to create that kind of list as the result
of a match. To this end, we will use a constant capture. A constant capture,
built with the function lpeg.Cc, creates a capture that produces a constant
value without consuming any input. With its help, we can redefine the patterns
that match the operators:

opA = lpeg.P("+") * lpeg.Cc(add) * S
opS = lpeg.P("-") * lpeg.Cc(sub) * S

The pattern opA, upon matching a plus operator, produces the function add;
similarly, opS produces sub.

Like table captures, constant captures are not inherently necessary. We could
achieve the same effect with a function capture, using a function that returns a
constant value:

14

opA = (lpeg.P("+") / function () return add end) * S

Again like table captures, constant captures offers an easier and more efficient
way to code a somewhat common task.

Multiplicative operators

Our next step is to add multiplicative operators to our expressions. Again, we
start with the basics:

local function mul (a, b) return a * b end
local function div (a, b) return a / b end

local opM = lpeg.P("*") * lpeg.Cc(mul) * S
local opD = lpeg.P("/") * lpeg.Cc(div) * S

The pattern opM matches a multiplicative operator and produces the correspond-
ing function mul, and opD does the same for division.

For the syntax, we could simply join the new operators to the old ones, like here:

exp = S * num * ((opA + opS + opM + opD) * num)^0

Without further changes, that implementation would not give us the correct
precedence, because all operators are handled together. For instance, "3+5*7"
would evaluate to 56, instead of 38. We could correct that in the function that
folds the list, but it is easier to handle that kind of syntactic problem as a
syntactic problem, that is, in the pattern itself.

To reflect the operators hierarchy, we will define two kinds of expressions. The
first kind, term, represents expressions without additive operators. So, inside a
term, we can have only multiplicative operators. The second kind of expression,
exp, represents sums of terms. With these definitions, the expression 3+5*7
cannot be parsed as (3+5)*7, because we can only multiply numbers. However,
it can be parsed as 3+(5*7), because both 3 and 5*7 form terms and we can
add terms.

We express this idea in LPeg with the following definitions:

local term = lpeg.Ct(num * ((opM + opD) * num)^0) / foldBin
local exp = lpeg.Ct(term * ((opA + opS) * term)^0) / foldBin

To better understand how they work, consider the subject "23*3-14/2". We
start matching exp, which invokes term, which invokes num, which matches "23".
Then the loop inside term matches "*" followed by "3", but it cannot match the
"-", so it stops there. Then, term calls foldBin and produces the number 69 as
its capture. Back to exp, its loop matches "-" and calls term again. This time,
term matches "14/2" and produces 7. When the loop in exp ends, its table
capture has produced the list {69,sub,7}. Finally, exp calls foldBin, which
will produce 62 as the final result of the match.

The following listing puts together all that we have discussed through this
example, in the proper order.

local lpeg = require "lpeg"
local loc = lpeg.locale()

15

local function add (a, b) return a + b end
local function sub (a, b) return a - b end
local function mul (a, b) return a * b end
local function div (a, b) return a / b end

local S = loc.space^0 -- spaces
local num = (loc.digit^1 / tonumber) * S
local opA = lpeg.P("+") * lpeg.Cc(add) * S
local opS = lpeg.P("-") * lpeg.Cc(sub) * S
local opM = lpeg.P("*") * lpeg.Cc(mul) * S
local opD = lpeg.P("/") * lpeg.Cc(div) * S

local function foldBin (lst)
local acc = lst[1]
for i = 2, #lst, 2 do
local op = lst[i] -- get operation
acc = op(acc, lst[i + 1]) -- apply operation

end
return acc

end

local term = lpeg.Ct(num * ((opM + opD) * num)^0) / foldBin
local exp = lpeg.Ct(term * ((opA + opS) * term)^0) / foldBin

exp = S * exp -- allow spaces at the beginning

print(exp:match("34 + 89 * 23")) --> 2081

A glaring omission in our syntax are parenthesized expressions. That construction
demands recursion, because once we open a parentheses inside a term we are
back to exp, which in turn may open another parenthesis, and so on. Up to now,
however, we do not know how to write recursive patterns in LPeg. To that end,
we will have to learn about grammars.

Grammars
Until now, we have covered only the “parsing expression” part of our underlying
formalism, Parsing Expression Grammars. In this section we will cover the
“grammar” part.

Our working example will be S-expressions, or sexp for short. S-expressions
are the underlying syntax for Lisp, and it is a useful language on its own for
describing nested lists and trees.

An sexp is either a name or a list of sexps enclosed in parentheses, like the next
examples:

add
(add one two)
((name) (add one (two)) ab ())

16

Note that the description of this language is recursive. We cannot write a pattern
for that language with what we have seen so far. To write such a pattern, we
need recursion.

PEGs support recursion through grammars. Informally, a grammar is a set of
named patterns where each pattern can refer to other patterns (or to itself)
through their names. Using the standard PEG notation, we could write the
following grammar for sexps:

sexp <- name / '(' list ')'
list <- (sexp spaces)*

(The / operator denotes ordered choice in standard PEG, corresponding to the
+ operator in LPeg.) The grammar follows quite closely our original description,
spelling out the meaning of “list”. In words, an sexp is either a name or a list
enclosed in parentheses. A list, in turn, is zero or more sexps separated by spaces.
(To keep the example simple, it does not include all spaces that it should.)

LPeg uses Lua tables to support grammars. For each pair key–value in the
table, the key is the name of a pattern and the value is the corresponding LPeg
pattern. To refer to a pattern, we use a nonterminal (or variable) pattern. The
function lpeg.V receives the name of a pattern and returns the corresponding
nonterminal pattern. This resulting nonterminal pattern matches exactly like
the pattern it refers to. Because entries in a table have no intrinsic order, we
need also a way to signal which pattern is the initial one. (In our example, we
need to say that we want to match sexp, not list.) In LPeg, we do this by
assigning either the initial pattern itself or its name to the index 1 of the table.

Following these instructions, the resulting grammar would look like this in LPeg:

name = loc.alpha^1
spaces = loc.space^0
g = {
[1] = "sexp",
sexp = name + "(" * lpeg.V"list" * ")",
list = (lpeg.V"sexp" * spaces)^0

}

Once we have everything defined in the table, a call to the function lpeg.P
closes the table and returns the final pattern:

p = lpeg.P(g)
print(p:match("(() (a (b c)))")) --> 15

To “close” the table means to internally connect all nonterminals to their respec-
tive patterns, raising an error if there is any undefined nonterminal.

Remember that, in Lua, a table constructor assigns expressions without explicit
keys to consecutive integers starting with 1. Remember also that, when calling
a function with a sole table constructor as its argument, we can omit the
parentheses. We can use these features to make the code slightly simpler and
more idiomatic:

p = lpeg.P{"sexp",
sexp = name + "(" * lpeg.V"list" * ")",

17

list = (lpeg.V"sexp" * spaces)^0
}

The initial "sexp", as it has no key, goes to the index 1 of the table, as intended.

Let us try that grammar in some examples:

print(p:match("(a (b) (c d))")) --> 14
print(p:match("(a (b) (c d)")) --> nil
print(p:match("a (b) (c d))")) --> 2

The last example requires an explanation. LPeg matches prefixes. The whole
string is not properly parenthesized, but its initial "a" is a name, which is a
valid sexp; that prefix is what LPeg is matching.

It is easy to correct that glitch. A nice (and unusual) property of grammars in
LPeg is that, once we close the table, the result is a pattern just like any other.
In particular, we can use it as a building block in other patterns. To correct the
glitch, all we have to do is to add a check for end-of-subject at the end of the
pattern:

p = p * -1
print(p:match("(a (b) (c d))")) --> 14
print(p:match("(a (b) (c d)")) --> nil
print(p:match("a (b) (c d))")) --> nil

As a final touch, we can add captures to our pattern. We add a simple capture
for names and a table capture for lists:

p = lpeg.P{"sexp",
sexp = lpeg.C(name) + "(" * lpeg.V"list" * ")",
list = lpeg.Ct((lpeg.V"sexp" * spaces)^0)

}

After this change, a successful match will return a Lua structure that corresponds
exactly to the subject’s structure. For instance, the match p:match("(a (b)
(c d))") will return the table {"a",{"b"},{"c","d"}}.

Searching with grammars

Grammars allow another quite simple way to search for a pattern inside a
subject. Suppose we want to search for any pattern p. Now consider the
following grammar:

searchP = lpeg.P{ p + 1 * lpeg.V(1) }

When a grammar has a single rule, it is convenient to leave the rule at index
1: It automatically becomes the initial rule and we do not need to write its
index. With that in mind, the rule reads like this: “Try to match p; if that fails,
advance one character and repeat.” The next code fragment shows a concrete
example:

p = lpeg.Cp() * "000"
searchP = lpeg.P{ p + 1 * lpeg.V(1) }
print(searchP:match("1230300300034")) --> 9

18

Due to internal details of LPeg, this kind of search usually is faster than the
search with the not predicate that we learned earlier.

Left Recursion

Like repetitions, recursive grammars also risk infinite loops. As an example,
consider the following trivial grammar:

warning: invalid LPeg code
p = lpeg.P{ lpeg.V(1) * "a" }

The grammar has only one rule, that first matches itself and then matches "a".
Applying our mental model to this pattern, it is easy to understand its problem:
To match the rule, the machine first has to match the rule!

We say that a rule is left recursive whenever we can go from its start back to
itself without advancing in the subject. To avoid infinite loops, LPeg forbids the
creation of left-recursive rules:

p = lpeg.P{ lpeg.V(1) * "a" }
--> stdin:1: rule '1' may be left recursive

Some cases of left recursion are obvious, such as when a rule starts invoking
itself, but some cases can be subtler:

p = lpeg.P{ lpeg.P("a")^0 * lpeg.V(1) }
--> stdin:1: rule '1' may be left recursive

Example: Parenthesized expressions

With grammars in our tool belt, we are ready to return to parenthesized ex-
pressions. In a parenthesized expression, each basic block—which were simple
numerals until now—can be replaced by a full expression inside parentheses.

More concretely, the core of our pattern for expressions were like this:

term = lpeg.Ct(num * ((opM + opD) * num)^0) / foldBin
exp = lpeg.Ct(term * ((opA + opS) * term)^0) / foldBin

Now, term will be built from a new kind of expression, which is either a numeral
or an expression enclosed in parentheses. We call that kind of expression a
primary expression.

OP = "(" * S
CP = ")" * S
primary = num + OP * lpeg.V("exp") * CP
term = lpeg.Ct(primary * ((opM + opD) * primary)^0) / foldBin

Moreover, exp must be defined inside a grammar, to allow it to use itself
recursively:

E = lpeg.P{"exp",
exp = lpeg.Ct(term * ((opA + opS) * term)^0) / foldBin

}

You may be wondering why we do not need to put primary and term inside the
grammar, too. The answer is that, in LPeg, a use of one pattern inside another

19

works like a macro. The uses of term inside exp have exactly the same meaning
as if we replaced them by the definition of term. A similar thing happens with
the uses of primary inside term. Once we expand all of them, we end up with
a rather complex definition of exp with instances of lpeg.V("exp") inside it.
Those are the ones that will be closed when we call lpeg.P.

Although we do not need to put primary and term inside the grammar, it is
customary to do so. Among other benefits, we group together the definitions of
related things (different kinds of expressions) and reduce the internal size of the
pattern. Following this custom, our grammar could be written like this:

local primary = lpeg.V("primary")
local term = lpeg.V("term")
local exp = lpeg.V("exp")
local E = lpeg.P({"exp",

exp = lpeg.Ct(term * ((opA + opS) * term)^0) / foldBin,
primary = num + OP * exp * CP,
term = lpeg.Ct(primary * ((opM + opD) * primary)^0) / foldBin

})

The local variables primary, term, and exp are defined only for convenience,
to avoid repeating the calls to lpeg.V. Any use of the variable primary can
be replaced by its definition (lpeg.V("primary")), without any change in the
resulting pattern.

Debugging and Error Reporting
In most systems, debugging a pattern can be a frustrating experience. When
there is a match, all is well. But when a match fails, all we know is that it failed.
As a failed match creates no captures, we have no idea what happened during
the match.

In LPeg, we can ameliorate this problem with a match-time capture. Like a
function capture, a match-time capture calls a supplied function to produce
its values. Unlike a function capture, however, a match-time capture executes
during the match—as implied by its name. Every time the machine matches that
pattern, its function is immediately called. This behavior gives us a powerful
tool for inspecting the machine’s behavior during a match.

The function lpeg.Cmt creates match-time captures. It receives a pattern patt
and a function func. In a first approximation, the resulting pattern is somewhat
similar to the result of the function capture patt/func: The resulting pattern
tries to match patt and, if it succeeds, it calls func. However, there are several
important differences between a match-time capture and a function capture:

• As we already discussed, the function in a match-time capture is called at
match time, whenever its corresponding pattern matches, independently
of what happens later with the whole match.

• Before the captures produced by patt, func receives two extra arguments:
The whole subject of the match and the current position.

• The function in a match-time capture has a say about whether the match
succeeds: If the function returns true as its first result, the match succeeds;

20

if it returns false, the match fails.

Often we use match-time captures over an empty pattern, with the sole goal of
calling the function whenever the match reaches that capture. For these cases,
we can create the pattern by calling lpeg.P with a function as the sole argument.

Let us see an example, just to make things a little more concrete. Suppose we
have the following failure, and we are trying to understand what is going wrong:

print(("ab" * lpeg.R("cC")):match("abc")) --> nil

(The example is rather naive, but it illustrates the relevant points.) To follow
what is happening during the match, we first create a match-time capture:

I = lpeg.P(function (s,i)
print(i)
return true

end)

As the function always returns true, this pattern always succeeds, while also
printing the current position in the match.

Now, we intercalate it with our original pattern:

p = I * "a" * I * "b" * I * lpeg.R("cC") * I

Finally, we match our subject against this new pattern and check the output:

print(p:match("abc"))
--> 1
--> 2
--> 3
--> nil

The first I printed 1, the current position before the match started; the second
I printed 2, the current position after matching "a"; the third I printed 3, the
current position after matching "b". But there was no output from the fourth I,
meaning that the match did not arrive there. (The nil was the final result of
the match.) So, we can be confident that the match failed between the third and
the fourth I, that is, in the pattern lpeg.R("cC"). Because "c" comes later
than "C" in ASCII, that range is empty. Probably we meant lpeg.S("cC"),
which matches "C" regardless of case.

When patterns become more complex, it may be difficult to sort out which output
came from where. In those cases, it may be helpful to print some identifier
together with the current position, or even only the identifier, when reaching a
checkpoint. To this end, I often define I as a factory function that, when called
with a tag, creates a match-time capture that prints that tag:

I = function (tag)
return lpeg.P(function ()

print(tag)
return true

end)
end

With this new definition, our previous example could be rewritten like this:

21

p = I'A' * "a" * I'B' * "b" * I'C' * lpeg.R("cC") * I'D'

print(p:match("abc"))
--> A
--> B
--> C
--> nil

Error Reporting

Match-time captures can also help in error reporting for the user of a pattern.
Recall our grammar for arithmetic expressions. The way we left it, a match
against E reads the input as far as it can, without any hints about errors. As an
example,

print(E:match"34 + (25 * 3)) - 4") --> 109

The erroneous suffix ") - 4" is simply ignored, without any warning or error.
The way to fix that problem is to force the match to go all the way to the end
of the subject:

E = E * -1

Now, at least the match reports the error, but with zero extra information:

print(E:match"34 + (25 * 3)) - 4") --> nil

In this small example, it is easy to spot the extra closing parenthesis, but imagine
finding the error in a program with dozens of lines.

A simple and effective heuristic to locate errors in PEG matches is to report how
far in the input the match went before failing. To track this information, we add
to some rules an appropriate match-time capture that updates a variable with
the position where it has been called. In our example of arithmetic expressions,
it is enough to add this capture to the rule S for spaces, as that rule is ubiquitous
in the grammar. We can define S as follows:

MaxOffset = 0 -- keep the maximum offset so far
local S = loc.space^0 * lpeg.P(

function (_, p)
MaxOffset = math.max(MaxOffset, p)
return true

end)

Using that definition through the entire grammar, any match will leave at the
variable MaxOffset the last position where LPeg tried to match spaces, which is
basically how far it went in the input:

subject = "34 + (25 * 3)) - 4"
print(E:match(subject)) --> nil
print(MaxOffset) --> 14
print(string.sub(subject, 1, MaxOffset))
--> 34 + (25 * 3))

22

Folding
In our examples with arithmetic expressions, we repeatedly used a technique
of capturing a list of values and then folding the list. Fold, also called reduce
or accumulate, is the process of traversing a list to produce a single final value.
In imperative languages, we typically implement it as our foldBin function:
The function first initializes an accumulator with the first element of the list;
then, for each new element in the list, it combines the accumulator with the
new element and updates the accumulator with the result. This process is quite
common, and LPeg provides a special capture for it, properly called fold capture.

Before we go on, note that our definition of fold demands a list with at least one
element. A more common definition initializes the accumulator with some given
initial value, so that the fold works for empty lists too. In LPeg, we can always
add a constant capture in the beginning of a pattern to provide any arbitrary
value as the first one in the list of captures, so our particular definition becomes
equivalent to the more general one.

A fold capture is created by the function lpeg.Cf. It receives a pattern patt
and a combining function f. It assumes that patt should produce at least one
capture with at least one value, which becomes the initial value of an internal
accumulator. For each subsequent capture, LPeg calls f giving the accumulator
as the first argument and all values produced by the capture as extra arguments;
the result from this call becomes the new value for the accumulator. When the
match ends, the value of the accumulator becomes the captured value.

As an initial example, consider the problem of matching a list of integer numerals
separated by commas and producing its summation. First, we define a pattern
to match the list of numerals, capturing their values:

number = loc.digit^1 / tonumber
numbers = number * ("," * number)^0

(To keep the example simpler, we will not handle spaces here.) Next, we use a
fold capture to fold these numbers, using an add function:

function add (a,b) return a + b end
p = lpeg.Cf(numbers, add)
print(p:match("23,34,45")) --> 102
print(p:match("23")) --> 23

Note that we use the idea of a list of captures to explain the concept of folding,
but LPeg never actually creates that list. The list is entirely abstracted by the
fold capture.

Consider now that we want to handle empty lists, too. First, we make the whole
pattern optional:

numbers = (number * ("," * number)^0)^-1

Then, we provide a constant capture to provide a zero as the first capture inside
the fold:

p = lpeg.Cf(lpeg.Cc(0) * numbers, add)
print(p:match("23,34,45")) --> 102

23

print(p:match("200")) --> 200
print(p:match("")) --> 0

Group captures

There is still one detail missing. Let us go back to the example of arithmetic
expressions with addition and subtraction:

number = loc.digit^1 / tonumber
op = lpeg.C(lpeg.S"+-")
exp = number * (op * number)^0

We also generalize our combining function, so that it works for both operators:

function doOp (a, op, b)
if op == "+" then
return a + b

else
return a - b

end
end

However, if we try to use a fold capture here, we get an error:

p = lpeg.Cf(exp, doOp)
print(p:match("3+40-2"))
--> stdin:3: attempt to perform arithmetic on a nil value

The problem is that the combining function is called for each new capture. So,
it is being called for the capture of the operator ("+"), before the capture of the
operand (40).

To solve that problem, we can use a group capture (lpeg.Cg). A group capture
joins together several captures into a single one, which produces at once all
values produced by its internal captures. So, if we group together the operator
and the operand, the combining function will be called once for each pair of two
values:

exp = number * lpeg.Cg(op * number)^0
p = lpeg.Cf(exp, doOp)
print(p:match("3+40-2")) --> 41

Substitution Captures
Besides searching, most pattern-matching systems offer some substitution opera-
tion, that replaces all occurrences of a pattern inside the subject by something
else. LPeg does not offer a function for this functionality; instead, LPeg performs
substitutions through a substitution capture.

The function lpeg.Cs receives a pattern and creates a substitution capture.
When the inner pattern has no captures on its own, the substitution capture
behaves like a simple capture:

p = lpeg.Cs(loc.alpha^1)
print(p:match("hello")) --> hello

24

A substitution capture gets interesting when there are other captures in its
inner pattern. In this case, whenever a capture matches inside the substitution,
the string that matched the pattern is replaced by the value produced by the
capture.

For an example, suppose we have to capitalize several words in a text. Instead of
capitalizing them one by one, we can mark each word to be capitalized—e.g., by
enclosing it in braces—and write a script to do the job for us. For that script, we
start by writing a pattern that captures a word enclosed in braces and produces
its capitalization:

word = ("{" * lpeg.C(loc.alpha^1) * "}") / string.upper
word:match("{hello}") --> HELLO

(The function string.upper is predefined in Lua.) Then, we use it in the
following pattern:

p = lpeg.Cs((word + 1)^0)
print(p:match("a {big}, {big} step"))
--> a BIG, BIG step

The pattern inside the substitution capture repeatedly matches either a word
enclosed in braces or any character. As each word enclosed in braces and the
braces themselves match inside a capture, they get replaced by the result of the
capture, which is the word capitalized. The single characters are not inside any
capture, so they are left unchanged.

LPeg offers two other captures that are particularly useful inside a substitution
capture: string captures and query captures. Like a function capture, both
string captures and query captures are denoted by the division operator. LPeg
distinguishes the three by the type of the denominator.

A division by a string creates a string capture. Usually, a string capture produces
the string itself. However, if the string contains a percent sign followed by a
digit, then that escape sequence is replaced by the corresponding capture in the
numerator pattern. To illustrate, consider the problem of reversing a list of pairs
name:value; for each pair, we want to rewrite it as value:name. First, we need
to match the pairs, capturing each component:

id = lpeg.C(loc.alpha^1)
pair = id * ":" * id

Then, to switch the components, we can use a capture string:

pair = pair / "%2:%1"
print(pair:match("key:value")) --> value:key

In words, the result of the capture is the string "%2:%1" with "%2" replaced by
the second capture of pair and "%1" replaced by the first capture.

With that part ready, we now define a list of pairs and enclose it in a substitution
capture:

list = lpeg.Cs((pair * loc.space^0)^0)
subject = "a:alpha b:bravo c:Charlie"
print(list:match(subject))

25

--> alpha:a bravo:b Charlie:c

As a special case, the escape "%0" gets replaced by the entire string that matched
the pattern:

p = lpeg.Cs((lpeg.P(1) / "%0.")^0)
print(p:match("hello world")) --> h.e.l.l.o. .w.o.r.l.d.

Now let us see the query capture. It is built with the syntax patt/table. It
behaves similarly to a function capture but, instead of calling a function, it
queries a table to compute the final value of the capture. See the next example:

t = {["+"] = "plus", ["-"] = "minus"}
p = lpeg.Cs((lpeg.P(1) / t)^0)
print(p:match("4 + 3 - 2"))
--> 4 plus 3 minus 2

Note that all characters except "+" and "-" are left unchanged in the subject:
When a capture is not present in the table, the query capture produces no values,
and therefore the substitution capture ignores that capture.

If the pattern inside a query capture produces multiple captures, the first one
is the index. As in a function capture, if the pattern produces no captures, its
whole match is the index.

Example: Literal strings

As an advanced example using the substitution capture, let us consider the
problem of reading a literal string from an hypothetical programming language
and translating its escape sequences. To avoid confusion with the escape from
Lua itself, our example will use a percent sign for its escape character.

The literal string must be written enclosed in single quotes. Inside it, a single
quote closes the literal, an escape forms an escape sequence with its following
character, and any other character represents itself. The valid escape sequences
are "%n" (newline), "%t" (tab), "%'" (single quote), and "%%" (escape character).
The final pattern should behave like this:

-- not implemented yet!
print(str:match("'hi%'%%%thi'")) --> hi'% hi

Now let us see how to implement that pattern. First, we define the escape and
the quote characters:

ESC = "%"
Quote = "'"

Next, we define a table t that translates the second character of an escape
sequence to its translation. We also define a set, named escapes, with these
characters.

-- escape translations
t = {n = "\n", t = "\t", [Quote] = Quote, [ESC] = ESC}
-- Set of keys in 't'
escapes = lpeg.S"nt" + ESC + Quote

26

We then define two more sets: One with “magic” characters comprising escapes
and quotes, and one with common (non magic) characters:

-- "magic" characters (escapes and quotes)
magic = lpeg.P(ESC) + Quote
-- common characters (anything but escapes and quotes)
CC = 1 - magic

The most relevant part comes now, the content of a string:

content = (CC + ESC * lpeg.C(escapes) / t)^0

It is a repetition of zero or more common characters or escape sequences. An
escape sequence, as previously described, is composed by an escape followed by
any character from the set escapes; this character is captured and the whole
escape sequence produces the translation of the sequence, by querying the table
t.

Our final pattern is composed by content inside a substitution capture and
surrounded by quotes:

str = Quote * lpeg.Cs(content) * Quote
-- an example
print(str:match("'hi%'%%%thi'")) --> hi'% hi

The substitution capture replaces the escape sequences by their translations, as
produced by the query captures; the common characters are left unchanged.

A nice property of the substitution capture is that it can have multiple nested
captures. As an example, we can easily expand our literal-string processor
to handle hexadecimal escaces. Hexadecimal escaces allow us to specify any
character inside a string literal by giving its numeric code in hexadecimal.
For instance, %x27 denotes a single quote and %x22 denotes a double quote.
The following pattern matches those escapes and produces the corresponding
character:

function hex2chr (h)
return string.char(tonumber(h, 16))

end
hexesc = (ESC * lpeg.P"x" *

lpeg.C(loc.xdigit * loc.xdigit) / hex2chr)

-- examples:
print(hexesc:match("%x27")) --> '
print(hexesc:match("%x61")) --> a
print(hexesc:match("%x7D")) --> }

Now, we only have to include this pattern as another option in the contents:

esc = ESC * lpeg.C(escapes) / t
content = (CC + hexesc + esc)^0
str = Quote * lpeg.Cs(content) * Quote
print(str:match("'a %x27quoted%' word'"))
--> a 'quoted' word

print(str:match("'%x54%x68%x65%x20%x45%x6e%x64'"))

27

--> The End

Manipulating Capture Values ??
Groups, Cb, Carg, patt/n,

28

	Mastering LPeg
	by Roberto Ierusalimschy
	(Version 1.0)

	The Basics
	A note about Unicode

	Repetitions and Choices
	Simple Captures
	Predicates
	Searching
	Example: Identifiers in the real world
	Example: List of assignments

	Aggregating Captures
	Example: Simple arithmetic expressions
	Multiplicative operators

	Grammars
	Searching with grammars
	Left Recursion
	Example: Parenthesized expressions

	Debugging and Error Reporting
	Error Reporting

	Folding
	Group captures

	Substitution Captures
	Example: Literal strings

	Manipulating Capture Values ??

