
Left Recursion in Parsing Expression Grammars

Sérgio Medeiros1, Fabio Mascarenhas2, Roberto Ierusalimschy3

1 Department of Computer Science – UFS – Aracaju – Brazil
sergio@ufs.br

2 Department of Computer Science – UFRJ – Rio de Janeiro – Brazil
fabiom@dcc.ufrj.br

3 Department of Computer Science – PUC-Rio – Rio de Janeiro – Brazil
roberto@inf.puc-rio.br

Abstract. Parsing Expression Grammars (PEGs) are a formalism that
can describe all deterministic context-free languages through a set of
rules that specify a top-down parser for some language. PEGs are easy
to use, and there are efficient implementations of PEG libraries in several
programming languages.
A frequently missed feature of PEGs is left recursion, which is commonly
used in Context-Free Grammars (CFGs) to encode left-associative op-
erations. We present a simple conservative extension to the semantics
of PEGs that gives useful meaning to direct and indirect left-recursive
rules, and show that our extensions make it easy to express left-recursive
idioms from CFGs in PEGs, with similar results. We prove the conser-
vativeness of these extensions, and also prove that they work with any
left-recursive PEG.

Keywords: parsing expression grammars, parsing, left recursion, natu-
ral semantics, packrat parsing

1 Introduction

Parsing Expression Grammars (PEGs) [3] are a formalism for describing a lan-
guage’s syntax, and an alternative to the commonly used Context Free Gram-
mars (CFGs). Unlike CFGs, PEGs are unambiguous by construction, and their
standard semantics is based on recognizing instead of deriving strings. Further-
more, a PEG can be considered both the specification of a language and the
specification of a top-down parser for that language.

PEGs use the notion of limited backtracking: the parser, when faced with
several alternatives, tries them in a deterministic order (left to right), discarding
remaining alternatives after one of them succeeds. They also have an expressive
syntax, based on the syntax of extended regular expressions, and syntactic pred-
icates, a form of unrestricted lookahead where the parser checks whether the rest
of the input matches a parsing expression without consuming the input.

The top-down parsing approach of PEGs means that they cannot handle left
recursion in grammar rules, as they would make the parser loop forever. Left
recursion can be detected structurally, so PEGs with left-recursive rules can be

simply rejected by PEG implementations instead of leading to parsers that do
not terminate, but the lack of support for left recursion is a restriction on the
expressiveness of PEGs. The use of left recursion is a common idiom for express-
ing language constructs in a grammar, and is present in published grammars for
programming languages; the use of left recursion can make rewriting an existing
grammar as a PEG a difficult task [17].

There are proposals for adding support for left recursion to PEGs, but they
either assume a particular PEG implementation approach, packrat parsing [23],
or support just direct left recursion [21]. Packrat parsing [2] is an optimization of
PEGs that uses memoization to guarantee linear time behavior in the presence
of backtracking and syntactic predicates, but can be slower in practice [18, 14].
Packrat parsing is a common implementation approach for PEGs, but there are
others [12]. Indirect left recursion is present in real grammars, and is difficult to
untangle [17].

In this paper, we present a novel operational semantics for PEGs that gives a
well-defined and useful meaning for PEGs with left-recursive rules. The seman-
tics is given as a conservative extension of the existing semantics, so PEGs that
do not have left-recursive rules continue having the same meaning as they had. It
is also implementation agnostic, and should be easily implementable on packrat
implementations, plain recursive descent implementations, and implementations
based on a parsing machine.

We also introduce parse strings as a possible semantic value resulting from a
PEG parsing some input, in parallel to the parse trees of context-free grammars.
We show that the parse strings that left-recursive PEGs yield for the common
left-recursive grammar idioms are similar to the parse trees we get from bottom-
up parsers and left-recursive CFGs, so the use of left-recursive rules in PEGs
with out semantics should be intuitive for grammar writers.

The rest of this paper is organized as follows: Section 2 presents a brief intro-
duction to PEGs and discusses the problem of left recursion in PEGs; Section 3
presents our semantic extensions for PEGs with left-recursive rules; Section 4
reviews some related work on PEGs and left recursion in more detail; finally,
Section 5 presents our concluding remarks.

2 Parsing Expression Grammars and Left Recursion

Parsing Expression Grammars borrow the use of non-terminals and rules (or
productions) to express context-free recursion, although all non-terminals in a
PEG must have only one rule. The syntax of the right side of the rules, the
parsing expressions, is borrowed from regular expressions and its extensions,
in order to make it easier to build parsers that parse directly from characters
instead of tokens from a previous lexical analysis step. The semantics of PEGs
come from backtracking top-down parsers, but in PEGs the backtracking is local
to each choice point.

Our presentation of PEGs is slightly different from Ford’s [3], and comes from
earlier work [12, 13]. This style makes the exposition of our extensions, and their

Empty String
G[ε] x

PEG
; (x, ε)

(empty.1) Terminal
G[a] ax

PEG
; (x, a)

(char.1)

G[b] ax
PEG
; fail

, b 6= a (char.2)
G[a] ε

PEG
; fail

(char.3)

Variable
G[P (A)] xy

PEG
; (y, x′)

G[A] xy
PEG
; (y, A[x′])

(var.1)
G[P (A)] x

PEG
; fail

G[A] x
PEG
; fail

(var.2)

Concatenation
G[p1] xyz

PEG
; (yz, x′) G[p2] yz

PEG
; (z, y′)

G[p1 p2] xyz
PEG
; (z, x′y′)

(con.1)

G[p1] xy
PEG
; (y, x′) G[p2] y

PEG
; fail

G[p1 p2] xy
PEG
; fail

(con.2)
G[p1] x

PEG
; fail

G[p1 p2] x
PEG
; fail

(con.3)

Choice
G[p1] xy

PEG
; (y, x′)

G[p1 / p2] xy
PEG
; (y, x′)

(ord.1)
G[p1] x

PEG
; fail G[p2] x

PEG
; fail

G[p1 / p2] x
PEG
; fail

(ord.2)

G[p1] xy
PEG
; fail G[p2] xy

PEG
; (y, x′)

G[p1 / p2] xy
PEG
; (y, x′)

(ord.3)

Not Predicate
G[p] x

PEG
; fail

G[!p] x
PEG
; (x, ε)

(not.1)
G[p] xy

PEG
; (y, x′)

G[!p] xy
PEG
; fail

(not.2)

Repetition
G[p] x

PEG
; fail

G[p∗] x
PEG
; (x, ε)

(rep.1)
G[p] xyz

PEG
; (yz, x′) G[p∗] yz

PEG
; (z, y′)

G[p∗] xyz
PEG
; (z, x′y′)

(rep.2)

Fig. 1. Semantics of the
PEG
; relation

behavior, easier to understand. We define a PEG G as a tuple (V, T, P, pS) where
V is the finite set of non-terminals, T is the alphabet (finite set of terminals),
P is a function from V to parsing expressions, and pS is the starting expression,
the one that the PEG matches. Function P is commonly described through a
set of rules of the form A← p, where A ∈ V and p is a parsing expression.

Parsing expressions are the core of our formalism, and they are defined in-
ductively as the empty expression ε, a terminal symbol a, a non-terminal symbol
A, a concatenation p1p2 of two parsing expressions p1 and p2, an ordered choice
p1/p2 between two parsing expressions p1 and p2, a repetition p∗ of a parsing
expression p, or a not-predicate !p of a parsing expression p. We leave out exten-
sions such as the dot, character classes, strings, and the and-predicate, as their
addition is straightforward.

We define the semantics of PEGs via a relation
PEG
; among a PEG, a parsing

expression, a subject, and a result. The notation G[p] xy
PEG
; (y, x′) means that

the expression p matches the input xy, consuming the prefix x, while leaving y
and yielding a parse string x′ as the output, while resolving any non-terminals

using the rules of G. We use G[p] xy
PEG
; fail to express an unsuccessful match.

The language of a PEG G is defined as all strings that G’s starting expression

consumes, that is, the set {x ∈ T ∗ | G[ps] xy
PEG
; (y, x′)}.

Figure 1 presents the definition of
PEG
; using natural semantics [11, 25], as a set

of inference rules. Intuitively, ε just succeeds and leaves the subject unaffected;
a matches and consumes itself, or fails; A tries to match the expression P (A);
p1p2 tries to match p1, and if it succeeds tries to match p2 on the part of the
subject that p1 did not consume; p1/p2 tries to match p1, and if it fails tries to
match p2; p∗ repeatedly tries to match p until it fails, thus consuming as much
of the subject as it can; finally, !p tries to match p and fails if p succeeds and
succeeds if p fails, in any case leaving the subject unaffected. It is easy to see
that the result of a match is either failure or a suffix of the subject (not a proper
suffix, as the expression may succeed without consuming anything).

Context-Free Grammars have the notion of a parse tree, a graphical represen-
tation of the structure that a valid subject has, according to the grammar. The
proof trees of our semantics can have a similar role, but they have extra infor-
mation that can obscure the desired structure. This problem will be exacerbated
in the proof trees that our rules for left-recursion yield, and is the reason we in-
troduce parse strings to our formalism. A parse string is roughly a linearization
of a parse tree, and shows which non-terminals have been used in the process
of matching a given subject. Having the result of a parse be an actual tree and
having arbitrary semantic actions are straightforward extensions.

When using PEGs for parsing it is important to guarantee that a given
grammar will either yield a successful result or fail for every subject, so parsing
always terminates. Grammars where this is true are complete [3]. In order to
guarantee completeness, it is sufficient to check for the absence of direct or
indirect left recursion, a property that can be checked structurally using the
well-formed predicate from Ford [3] (abbreviated WF).

Inductively, empty expressions and symbol expressions are always well-formed;
a non-terminal is well-formed if it has a production and it is well-formed; a choice
is well-formed if the alternatives are well-formed; a not predicate is well-formed if
the expression it uses is well-formed; a repetition is well-formed if the expression
it repeats is well-formed and cannot succeed without consuming input; finally, a
concatenation is well-formed if either its first expression is well-formed and can-
not succeed without consuming input or both of its expressions are well-formed.

A grammar is well-formed if its non-terminals and starting expression are
all well-formed. The test of whether an expression cannot succeed while not
consuming input is also computable from the structure of the expression and
its grammar from an inductive definition [3]. The rule for well-formedness of
repetitions just derives from writing a repetition p∗ as a recursion A← pA / ε,
so a non-well-formed repetition is just a special case of a left-recursive rule.

Left recursion is not a problem in the popular bottom-up parsing approaches,
and is a natural way to express several common parsing idioms. Expressing rep-
etition using left recursion in a CFG yields a left-associative parse tree, which
is often desirable when parsing programming languages, either because oper-
ations have to be left-associative or because left-associativity is more efficient
in bottom-up parsers [6]. For example, the following is a simple left-associative
CFG for additive expressions, written in EBNF notation:

E → E + T | E − T | T
T → n | (E)

Rewriting the above grammar as a PEG, by replacing | with the ordered
choice operator, yields a non-well-formed PEG that does not have a proof tree
for any subject. We can rewrite the grammar to eliminate the left recursion,
giving the following CFG, again in EBNF (the curly brackets are metasymbols
of EBNF notation, and express zero-or-more repetition, white the parentheses
are terminals):

E → T{E′}
T → n | (E)

E′ → +T | − T

This is a simple transformation, but it yields a different parse tree, and ob-
scures the intentions of the grammar writer, even though it is possible to trans-
form the parse tree of the non-left-recursive grammar into the left-associative
parse tree of the left-recursive grammar. But at least we can straightforwardly
express the non-left-recursive grammar with the following PEG:

E ← T E′∗

T ← n / (E)

E′ ← +T / − T

Indirect left recursion is harder to eliminate, and its elimination changes the
structure of the grammar and the resulting trees even more. For example, the
following indirectly left-recursive CFG denotes a very simplified grammar for
l-values in a language with variables, first-class functions, and records (where x
stands for identifiers and n for expressions):

L→ P.x | x
P → P (n) | L

This grammar generates x and x followed by any number of (n) or .x, as long
as it ends with .x. An l-value is a prefix expression followed by a field access, or
a single variable, and a prefix expression is a prefix expression followed by an
operand, denoting a function call, or a valid l-value. In the parse trees for this
grammar each (n) or .x associates to the left.

Writing a PEG that parses the same language is difficult. We can elimi-
nate the indirect left recursion on L by substitution inside P , getting P →
P (n) | P.x | x, and then eliminate the direct left recursion on P to get the
following CFG:

L→ P.x | x
P → x{P ′}
P ′ → (n) | .x

But a direct translation of this CFG to a PEG will not work because PEG
repetition is greedy; the repetition on P ′ will consume the last .x of the l-value,
and the first alternative of L will always fail. One possible solution is to not use
the P non-terminal in L, and encode l-values directly with the following PEG
(the bolded parentheses are terminals, the non-bolded parentheses are metasym-
bols of PEGs that mean grouping):

L← x S∗

S ← ((n))∗.x

The above uses of left recursion are common in published grammars, with
more complex versions (involving more rules and a deeper level of indirection)
appearing in the grammars in the specifications of Java [5] and Lua [10]. Having
a straightforward way of expressing these in a PEG would make the process of
translating a grammar specification from an EBNF CFG to a PEG easier and
less error-prone.

In the next session we will propose a semantic extension to the PEG formal-
ism that will give meaningful proof trees to left-recursive grammars. In partic-
ular, we want to have the straightforward translation of common left-recursive
idioms such as left-associative expressions to yield parse strings that are similar
in structure to parse trees of the original CFGs.

3 Bounded Left Recursion

Intuitively, bounded left recursion is a use of a non-terminal where we limit the
number of left-recursive uses it may have. This is the basis of our extension
for supporting left recursion in PEGs. We use the notation An to mean a non-
terminal where we can have less than n left-recursive uses, with A0 being an
expression that always fails. Any left-recursive use of An will use An−1, any
left-recursive use of An−1 will use An−2, and so on, with A1 using A0 for any
left-recursive use, so left recursion will fail for A1.

Subject E0 E1 E2 E3 E4 E5 E6

n fail ε ε ε ε ε ε
n+n fail +n ε +n ε +n ε

n+n+n fail +n+n +n ε +n+n +n ε

Table 1. Matching E with different bounds

For the left-recursive definition E ← E + n / n we have the following pro-
gression, where we write expressions equivalent to En on the right side:

E0 ← fail

E1 ← E0 + n / n = ⊥+ n / n = n

E2 ← E1 + n / n = n + n / n

E3 ← E2 + n / n = (n + n / n) + n / n

...

En ← En−1 + n / n

It would be natural to expect that increasing the bound will eventually reach
a fixed point with respect to a given subject, but the behavior of the ordered
choice operator breaks this expectation. For example, with a subject n+n and the
previous PEG, E2 will match the whole subject, while E3 will match just the
first n. Table 1 summarizes the results of trying to match some subjects against
E with different left-recursive bounds (they show the suffix that remains, not
the matched prefix).

The fact that increasing the bound can lead to matching a smaller prefix
means we have to pick the bound carefully if we wish to match as much of the
subject as possible. Fortunately, it is sufficient to increase the bound until the
size of the matched prefix stops increasing. In the above example, we would pick
1 as the bound for n, 2 as the bound for n+n, and 3 as the bound for n+n+n.

When the bound of a non-terminal A is 1 we are effectively prohibiting a
match via any left-recursive path, as all left-recursive uses of A will fail. An+1

uses An on all its left-recursive paths, so if An matches a prefix of length k,
An+1 matching a prefix of length k or less means that either there is nothing
to do after matching An (the grammar is cyclic), in which case it is pointless to
increase the bound after An, or all paths starting with An failed, and the match
actually used a non-left-recursive path, so An+1 is equivalent with A1. Either
option means that n is the bound that makes A match the longest prefix of the
subject.

We can easily see this dynamic in the E ← E + n / n example. To match
En+1 we have to match En +n /n. Assume En matches a prefix x of the input.
We then try to match the rest of the input with +n, if this succeeds we will have

Left-Recursive Variable

(A, xyz) /∈ L G[P (A)] xyz L[(A, xyz) 7→ fail]
PEG
; (yz, x′)

G[P (A)] xyz L[(A, xyz) 7→ (yz, x′)]
INC
; (z, (xy)′)

G[A] xyz L PEG
; (z,A[(xy)′])

(lvar.1)

(A, x) /∈ L G[P (A)] x L[(A, x) 7→ fail]
PEG
; fail

G[A] x L PEG
; fail

(lvar.2)

L(A, xy) = fail

G[A] xy L PEG
; fail

(lvar.3)
L(A, xy) = (y, x′)

G[A] xy L PEG
; (y,A[x′])

(lvar.4)

Increase Bound

G[P (A)] xyzw L[(A, xyzw) 7→ (yzw, x′)]
PEG
; (zw, (xy)′)

G[P (A)] xyzw L[(A, xyzw) 7→ (zw, (xy)′)]
INC
; (w, (xyz)′)

G[P (A)] xyzw L[(A, xyzw) 7→ (yzw, x′)]
INC
; (w, (xyz)′)

,where y 6= ε (inc.1)

G[P (A)] x L PEG
; fail

G[P (A)] x L INC
; L(A, x)

(inc.2)
G[P (A)] xyz L[(A, xyz) 7→ (z, (xy)′)]

PEG
; (yz, x′)

G[P (A)] xyz L[(A, xyz) 7→ (z, (xy)′)]
INC
; (z, (xy)′)

(inc.3)

Fig. 2. Semantics for PEGs with left-recursive non-terminals

matched x+n, a prefix bigger than x. If this fails we will have matched just n,
which is the same prefix matched by E1.

Indirect, and even mutual, left recursion is not a problem, as the bounds are
on left-recursive uses of a non-terminal, which are a property of the proof tree,
and not of the structure of the PEG. The bounds on two mutually recursive
non-terminals A and B will depend on which non-terminal is being matched
first, if it is A then the bound of A is fixed while varying the bound of B, and
vice-versa. A particular case of mutual left recursion is when a non-terminal is
both left and right-recursive, such as E ← E + E/n. In our semantics, En will
match En−1 +E/n, where the right-recursive use of E will have its own bound.
Later in this section we will elaborate on the behavior of both kinds of mutual
recursion.

In order to extend the semantics of PEGs with bounded left recursion, we
will show a conservative extension of the rules in Figure 1, with new rules for
left-recursive non-terminals. For non-left-recursive non-terminals we will still use
rules var.1 and var.2, although we will later prove that this is unnecessary, and
the new rules for non-terminals can replace the current ones. The basic idea of
the extension is to use A1 when matching a left-recursive non-terminal A for the
first time, and then try to increase the bound, while using a memoization table
L to keep the result of the current bound. We use a different relation, with its
own inference rules, for this iterative process of increasing the bound.

Figure 2 presents the new rules. We give the behavior of the memoization
table L in the usual substitution style, where L[(A, x) 7→ X](B, y) = L(B, y) if
B 6= A or y 6= x and L[(A, x) 7→ X](A, x) = X otherwise. All of the rules in

Figure 1 just ignore this extra parameter of relation
PEG
; . We also have rules for

the new relation
INC
; , responsible for the iterative process of finding the correct

bound for a given left-recursive use of a non-terminal.
Rules lvar.1 and lvar.2 apply the first time a left-recursive non-terminal is

used with a given subject, and they try to match A1 by trying to match the
production of A using fail for any left-recursive use of A (those uses will fail
through rule lvar.3). If A1 fails we do not try bigger bounds (rule lvar.2), but
if A1 succeeds we store the result in L and try to find a bigger bound (rule
lvar.1). Rule lvar.4 is used for left-recursive invocations of An in the process of
matching An+1.

Relation
INC
; tries to find the bound where A matches the longest prefix.

Which rule applies depends on whether matching the production of A using the
memoized value for the current bound leads to a longer match or not; rule inc.1

covers the first case, where we use relation
INC
; again to continue increasing the

bound after updating L. Rules inc.2 and inc.3 cover the second case, where the
current bound is the correct one and we just return its result.

Let us walk through an example, again using E ← E + n / n as our PEG,
with n+n+n as the subject. When first matching E against n+n+n we have
(E, n + n + n) 6∈ L, as L is initially empty, so we have to match E+n / n against
n+n+n with L = {(E, n + n + n) 7→ fail}. We now have to match E +n against
n+n+n, which means matching E again, but now we use rule lvar.3. The first
alternative, E + n, fails, and we have G[E + n /n] n + n + n {(E, n + n + n) 7→
fail} PEG

; (+n + n, n) using the second alternative, n, and rule ord.3.
In order to finish rule lvar.1 and the initial match we have to try to increase

the bound through relation
INC
; with L = {(E, n + n + n) 7→ (+n + n, n)}. This

means we must try to match E + n / n against n+n+n again, using the new L.
When we try the first alternative and match E with n+n+n the result will be
(+n + n, E[n]) via lvar.4, and we can then use con.1 to match E + n yielding
(+n, E[n]+n). We have successfully increased the bound, and are in rule inc.1,
with x = n, y = +n, and zw = +n.

In order to finish rule inc.1 we have to try to increase the bound again using

relation
INC
; , now with L = {(E, n + n + n) 7→ (+n, E[n]+n)}. We try to match

P (E) again with this new L, and this yields (ε, E[E[n]+n]+n) via lvar.4, con.1,
and ord.1. We have successfully increased the bound and are using rule inc.1
again, with x = n + n, y = +n, and zw = ε.

We are in rule inc.1, and have to try to increase the bound a third time with
INC
; , with L = {(E, n + n + n) 7→ (ε, E[E[n]+n]+n)}. We have to match E +n /n
against n+n+n again, using this L. In the first alternative E matches and yields
(ε, E[E[E[n]+n]+n]) via lvar.4, but the first alternative itself fails via con.2. We
then have to match E + n / n against n+n+n using ord.2, yielding (+n + n, n).
The attempt to increase the bound for the third time failed (we are back to the
same result we had when L = {(A, n + n + n) 7→ fail}), and we use rule inc.3

once and rule inc.1 twice to propagate (ε, E[E[n]+n]+n) back to rule lvar.1, and

use this rule to get the final result, G[E] n + n + n {} PEG
; (ε, E[E[E[n]+n]+n]).

We can see that the parse string E[E[E[n]+n]+n] implies left-associativity
in the + operations, as intended by the use of a left-recursive rule.

More complex grammars, that encode different precedences and associativ-
ities, behave as expected. For example, the following grammar has a right-
associative + with a left-associative −:

E ←M + E / M

M ←M − n / n

Matching E with n+n+n yields E[M [n]+E[M [n]+E[M [n]]]], as matching M
against n+n+n, n+n, and n all consume just the first n while generating M [n],

because G[M − n / n] n + n + n {(M, n + n + n) 7→ fail} PEG
; (+n + n, n) via

lvar.3, con.3, and ord.3, and G[M − n / n] n + n + n {(M, n + n + n) 7→
(+n + n, n)} INC

; (+n + n, n) via inc.3. The same holds for subjects n+n and n

with different suffixes. Now, when E matches n+n+n we will have M in M + E
matching the first n, while E recursively matching the second n+n, with M
again matching the first n and E recursively matching the last n via the second
alternative.

Matching E with n-n-n will yield E[M [M [M [n]−n]−n]], as M now matches
n-n-n with a proof tree similar to our first example (E ← E + n / n against
n+n+n). The first alternative of E fails because M consumed the whole subject,
and the second alternative yields the final result via ord.3 and var.1.

The semantics of Figure 2 also handles indirect and mutual left recursion
well. The following mutually left-recursive PEG is a direct translation of the
CFG used as the last example of Section 2:

L← P.x / x

P ← P (n) / L

It is instructive to work out what happens when matching L with a subject
such as x(n)(n).x(n).x. We will use our superscript notation for bounded re-
cursion, but it is easy to check that the explanation corresponds exactly with
what is happening with the semantics using L.

The first alternative of L1 will fail because both alternatives of P 1 fail, as
they use P 0, due to the direct left recursion on P , and L0, due to the indirect left
recursion on L. The second alternative of L1 matches the first x of the subject.
Now L2 will try to match P 1 again, and the first alternative of P 1 fails because
it uses P 0, while the second alternative uses L1 and matches the first x, and so
P 1 now matches x, and we have to try P 2, which will match x(n) through the
first alternative, now using P 1. P 3 uses P 2 and matches x(n)(n) with the first
alternative, but P 4 matches just x again, so P 3 is the answer, and L2 matches
x(n)(n).x via its first alternative.

L3 will try to match P 1 again, but P 1 now matches x(n)(n).x via its sec-
ond alternative, as it uses L2. This means P 2 will match x(n)(n).x(n), while

P 3 will match x(n)(n).x again, so P 2 is the correct bound, and L3 matches
x(n)(n).x(n).x, the entire subject. It is easy to see that L4 will match just x
again, as P 1 will now match the whole subject using L3, and the first alternative
of L4 will fail.

Intuitively, the mutual recursion is playing as nested repetitions, with the
inner repetition consuming (n) and the outer repetition consuming the result
of the inner repetition plus .x. The result is a PEG equivalent to the PEG for
l-values in the end of Section 2 in the subjects it matches, but that yields parse
strings that are correctly left-associative on each (n) and .x.

We presented the new rules as extensions intended only for non-terminals
with left-recursive rules, but this is not necessary: the lvar rules can replace
var without changing the result of any proof tree. If a non-terminal does not
appear in a left-recursive position then rules lvar.3 and lvar.4 can never apply
by definition. These rules are the only place in the semantics where the con-
tents of L affects the result, so lvar.2 is equivalent to var.2 in the absence of

left recursion. Analogously, if G[(P (A)] xy L[(A, xy) 7→ fail]
PEG
; (y, x′) then

G[(P (A)] xy L[(A, xy) 7→ (y, x′)]
PEG
; (y, x′) in the absence of left recursion,

so we will always have G[A] xy L[(A, xy) 7→ (y, x′)]
INC
; (y, x′) via inc.3, and

lvar.1 is equivalent to var.1. We can formalize this argument with the following
lemma:

Lemma 1 (Conservativeness). Given a PEG G, a parsing expression p and

a subject xy, we have one of the following: if G[p] xy
PEG
; X, where X is fail

or (y, x′), then G[p] xy L PEG
; X, as long as (A,w) 6∈ L for any non-terminal A

and subject w appearing as G[A] w in the proof tree of if G[p] xy
PEG
; X.

Proof. By induction on the height of the proof tree for G[p] xy
PEG
; X. Most

cases are trivial, as the extension of their rules with L does not change the table.
The interesting cases are var.1 and var.2.

For case var.2 we need to use rule lvar.2. We introduce (A, xy) 7→ fail in

L, but G[A] xy cannot appear in any part of the proof tree of G[P (A)] xy
PEG
;

fail, so we can just use the induction hypothesis.
For case var.1 we need to use rule lvar.1. Again we have (A, xy) 7→ fail in

L, but we can use the induction hypothesis on G[P (A)] xy L[(A, xy) 7→ fail] to

get (y, x′). We also use inc.3 to get G[P (A)] xy L[(A, xy) 7→ (y, x′)
INC
; (y, x′)]

from G[P (A)] xy L[(A, xy) 7→ (y, x′)] , using the induction hypothesis, finishing
lvar.1.

A non-obvious consequence of our bounded left recursion semantics is that a
rule that mixes left and right recursion is right-associative. For example, match-
ing E ← E+E / n against n+n+n yields the parse string E[E[n]+E[E[n]+E[n]]].
The reason is that E2 already matches the whole string:

E1 ← E0 + E / n = n

E2 ← E1 + E / n = n + E / n

We have the first alternative of E2 matching n+ and then trying to match
E with n+n. Again we will have E2 matching the whole string, with the first
alternative matching n+ and then matching E with n via E1. In practice this
behavior is not a problem, as similar constructions are also problematic in parsing
CFGs, and grammar writers are aware of them.

An implementation of our semantics can use ad-hoc extensions to control
associativity in this kind of PEG, by having a right-recursive use of non-terminal
A with a pending left-recursive use match through A1 directly instead of going
through the regular process. Similar extensions can be used to have different
associativities and precedences in operator grammars such as E ← E +E / E−
E / E ∗ E / (E) / n.

In order to prove that our semantics for PEGs with left-recursion gives mean-
ing to any closed PEG (that is, any PEG G where P (A) is defined for all non-
terminals in G) we have to fix the case where a repetition may not terminate (p
in p∗ has not failed but not consumed any input). We can add a x 6= ε predicate
to rule rep.2 and then add a new rule:

G[p] x L PEG
; (x, ε)

G[p∗] x L PEG
; (x, ε)

(rep.3)

We also need a well-founded ordering < among the elements of the left side

of relation
PEG
; . For the subject we can use x < y if and only if x is a proper suffix

of y as the order, for the parsing expression we can use p1 < p2 if and only if p1
is a proper part of the structure of p2, and for L we can use L[A 7→ (x, y)] < L
if and only if either L(A) is not defined or x < z, where L(A) = (z, w). Now we
can prove the following lemma:

Lemma 2 (Completeness). Given a closed PEG G, a parsing expression p,

a subject xy, and a memoization table L, we have either G[p] xy L PEG
; (y, x′)

or G[p] xy L PEG
; fail.

Proof. By induction on the triple (L, xy, p). It is straightforward to check that
we can always use the induction hypothesis on the antecedent of the rules of our
semantics.

4 Related Work

Warth et al. [23] describes a modification of the packrat parsing algorithm to
support both direct and indirect left recursion. The algorithm uses the packrat
memoization table to detect left recursion, and then begins an iterative process
that is similar to the process of finding the correct bound in our semantics.

Warth et al.’s algorithm is tightly coupled to the packrat parsing approach,
and its full version, with support for indirect left recursion, is complex, as noted
by the authors [22]. The release versions of the authors’ PEG parsing library,
OMeta [24], only implement support for direct left recursion to avoid the extra
complexity [22].

The algorithm also produces surprising results with some grammars, both
directly and indirectly left-recursive, due to the way it tries to reuse the packrat
memoization table [1]. Our semantics does not share these issues, although it
shows that a left-recursive packrat parser cannot index the packrat memoization
table just by a parsing expression and a subject, as the L table is also involved.
One solution to this issue is to have a scoped packrat memoization table, with
a new entry to L introducing a new scope. We believe this solution is simpler to
implement in a packrat parser than Warth et al.’s.

Tratt [21] presents an algorithm for supporting direct left recursion in PEGs,
based on Warth et al.’s, that does not use a packrat memoization table and
does not assume a packrat parser. The algorithm is simple, although Tratt also
presents a more complex algorithm that tries to “fix” the right-recursive bias in
productions that have both left and right recursion, like the E ← E + E / n
example we discussed at the end of Section 3. We do not believe this bias is a
problem, although it can be fixed in our semantics with ad-hoc methods.

IronMeta [20] is a PEG library for the Microsoft Common Language Runtime,
based on OMeta [24], that supports direct and indirect left recursion using an
implementation of an unpublished preliminary version of our semantics. This
preliminary version is essentially the same, apart from notational details, so
IronMeta can be considered a working implementation of our semantics. Initial
versions of IronMeta used Warth et al.’s algorithm for left recursion [23], but in
version 2.0 the author switched to an implementation of our semantics, which
he considered “much simpler and more general” [20].

Parser combinators [8] are a top-down parsing method that is similar to
PEGs, being another way to declaratively specify a recursive descent parser for
a language, and share with PEGs the same issues of non-termination in the
presence of left recursion. Frost et al. [4] describes an approach for supporting
left recursion in parser combinators where a count of the number of left-recursive
uses of a non-terminal is kept, and the non-terminal fails if the count exceeds
the number of tokens of the input. We have shown in Section 3 that such an
approach would not work with PEGs, because of the semantics of ordered choice
(parser combinators use the same non-deterministic choice operator as CFGs).
Ridge [19] presents another way of implementing the same approach for handling
left recursion, and has the same issues regarding its application to PEGs.

ANTLR [16] is a popular parser generator that produces top-down parsers for
Context-Free Grammars based on LL(*), an extension of LL(k) parsing. Version
4 of ANTLR will have support for direct left recursion that is specialized for
expression parsers [15], handling precedence and associativity by rewriting the
grammar to encode a precedence climbing parser [7]. This support is heavily
dependent on ANTLR extensions such as semantic predicates and backtracking.

5 Conclusion

We presented a conservative extension to the semantics of PEGs that gives an
useful meaning for PEGs with left-recursive rules. It is the first extension that

is not based on packrat parsing as the parsing approach, while supporting both
direct and indirect left recursion. The extension is based on bounded left recur-
sion, where we limit the number of left-recursive uses a non-terminal may have,
guaranteeing termination, and we use an iterative process to find the smallest
bound that gives the longest match for a particular use of the non-terminal.

We also presented some examples that show how grammar writers can use our
extension to express in PEGs common left-recursive idioms from Context-Free
Grammars, such as using left recursion for left-associative repetition in expres-
sion grammars, and the use of mutual left recursion for nested left-associative
repetition. We augmented the semantics with parse strings to show how we get
a similar structure with left-recursive PEGs that we get with the parse trees of
left-recursive CFGs.

Finally, we have proved the conservativeness of our extension, and also proved
that all PEGs are complete with the extension, so termination is guaranteed for
the parsing of any subject with any PEG, removing the need for any static
checks of well-formedness beyond the simple check that every non-terminal in
the grammar has a rule.

Our semantics has already been implemented in a PEG library that uses
packrat parsing [20]. We are now working on adapting the semantics to a PEG
parsing machine [12], as the first step towards an alternative implementation
based on LPEG [9]. This implementation will incorporate ad-hoc extensions
for controlling precedence and associativity in grammars mixing left and right
recursion in the same rule, leading to more concise grammars.

References

1. Cooney, D.: Problem with nullable left recursion and trailing rules in Pack-
rat Parsers Can Support Left Recursion. PEG Mailing List (2009), available at
https://lists.csail.mit.edu/pipermail/peg/2009-November/000244.html

2. Ford, B.: Packrat parsing: Simple, powerful, lazy, linear time. In: Proceedings of
the 7th ACM SIGPLAN International Conference on Functional Programming.
pp. 36–47. ICFP ’02, ACM, New York, NY, USA (2002)

3. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. pp. 111–122. ACM, New York, NY, USA
(2004)

4. Frost, R.A., Hafiz, R., Callaghan, P.: Parser combinators for ambiguous
left-recursive grammars. In: Proceedings of the 10th international confer-
ence on Practical aspects of declarative languages. pp. 167–181. PADL’08,
Springer-Verlag, Berlin, Heidelberg (2008), http://dl.acm.org/citation.cfm?

id=1785754.1785766
5. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification.

Addison-Wesley Professional (2005)
6. Grune, D., Jacobs, C.J.: Parsing Techniques – A Practical Guide. Ellis Horwood

(1991)
7. Hanson, D.R.: Compact recursive-descent parsing of expressions. Software: Prac-

tice and Experience 15(12), 1205–1212 (1985), http://dx.doi.org/10.1002/spe.
4380151206

8. Hutton, G.: Higher-order Functions for Parsing. Journal of Functional Program-
ming 2(3), 323–343 (Jul 1992)

9. Ierusalimschy, R.: A text pattern-matching tool based on Parsing Expression
Grammars. Software - Practice and Experience 39(3), 221–258 (2009)

10. Ierusalimschy, R., Figueiredo, L.H.d., Celes, W.: Lua 5.1 Reference Manual.
Lua.Org (2006)

11. Kahn, G.: Natural semantics. In: Proceedings of the 4th Annual Symposium on
Theoretical Aspects of Computer Science. pp. 22–39. STACS ’87, Springer-Verlag,
London, UK (1987)

12. Medeiros, S., Ierusalimschy, R.: A parsing machine for PEGs. In: DLS ’08: Dynamic
languages Symposium. pp. 1–12. ACM, New York, USA (2008)

13. Medeiros, S., Mascarenhas, F., Ierusalimschy, R.: From Regular Expressions to
Parsing Expression Grammars. In: SBLP ’11: Brazilian Programming Languages
Symposium (2011)

14. Mizushima, K., Maeda, A., Yamaguchi, Y.: Packrat parsers can handle practical
grammars in mostly constant space. In: Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. pp.
29–36. PASTE ’10, ACM, New York, NY, USA (2010)

15. Parr, T.: ANTLR’s left-recursion prototype. PEG mailing list (2011), available at
https://lists.csail.mit.edu/pipermail/peg/2011-April/000414.html

16. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. In:
Proceedings of the 32nd ACM SIGPLAN conference on Programming language
design and implementation. pp. 425–436. PLDI ’11, ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/1993498.1993548

17. Redziejowski, R.: Parsing expression grammar as a primitive recursive-descent
parser with backtracking. Fundamenta Informaticae 79(3-4), 513–524 (2008)

18. Redziejowski, R.R.: Some aspects of parsing expression grammar. Fundamenta
Informaticae 85, 441–451 (January 2008)

19. Ridge, T.: Simple, functional, sound and complete parsing for all context-free gram-
mars. In: Proceedings of the First international conference on Certified Programs
and Proofs. pp. 103–118. CPP’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-25379-9_10

20. Tisher, G.: IronMeta parser generator (2012), available at
http://ironmeta.sourceforge.net

21. Tratt, L.: Direct left-recursive parsing expression grammars. Tech. Rep. EIS-10-01,
School of Engineering and Information Sciences, Middlesex University (Oct 2010)

22. Warth, A.: OMeta squeak left recursion? OMeta Mailing List (June 2008), available
at http://vpri.org/pipermail/ometa/2008-June/000006.html

23. Warth, A., Douglass, J., Millstein, T.: Packrat parsers can support left recursion.
In: PEPM ’08: Proceedings of the 2008 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation. pp. 103–110. ACM, New
York, NY, USA (2008)

24. Warth, A., Piumarta, I.: OMeta: an object-oriented language for pattern matching.
In: DLS ’07: Proceedings of the 2007 symposium on Dynamic languages. pp. 11–19.
ACM, New York, NY, USA (2007)

25. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing, MIT Press (1993)

