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Abstract. While sometimes dismissed as an operating systems issue, or
even a matter of systems administration, module management is deeply
linked to programming language design. The main issues are how to
instruct the build and runtime environments to �nd modules and handle
their dependencies; how to package modules into redistributable units;
how to manage interaction of code written in di�erent languages; and how
to map modules to �les. These issues are either handled by the language
itself or delegated to external tools. Language-speci�c package managers
have risen as a solution to these problems, as they can perform module
management portably and in a manner suited to the overall design of
the language. This paper presents LuaRocks, a package manager for Lua
modules. LuaRocks adopts a declarative approach for speci�cations using
Lua itself as a description language and features an extensible build
system that copes with the heterogeneity of the Lua ecosystem.
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1 Introduction

While it is sometimes dismissed as an operating systems issue, or even a mat-
ter of systems administration, module management (and by extension package
management) is deeply linked to programming language design. The questions
of how modules are built, packaged, deployed, detected, and used are mostly
dependent on decisions in the design and implementation of the languages in
which they are written.

In languages that feature a separate compilation step, there's the issue of
how to specify dependencies between modules, and how to instruct the compiler
to �nd them. Some languages take care of this matter internally, such as the
management of units in Pascal or classes in Java. Others, like C, relegate it to
external tools � in the case of C, the preprocessor is used to forward-declare
prototypes and tools like Make are used to handle dependencies between objects
during build. In contrast, the Java compiler extracts the classes and interfaces a
source �le references, �nds the �les where they are de�ned, and compiles them



on demand. Still, building complex projects usually involves more than sources
(including, for instance, generation and conversion of icons, interface description
�les and other assets, as well as inter-language dependencies), leading to the
creation of external tools such as Apache Ant [13].

Packaging modules into redistributable units is another design issue. Some
languages de�ne packaging formats as part of their speci�cation. Java has poli-
cies for the namespace hierarchy and de�nes the JAR format, with rules for the
�le format and its metadata. It also includes a library for reading and writ-
ing such archives in its standard library (java.util.jar). The .NET Common
Language Infrastructure also de�nes package formats for module bundles, called
assemblies, which contain compiled classes and metadata, as well as versioning
information [16]. In the other extreme, languages such as C leave the de�nition
of library formats entirely to the operating system and language implementors:
support for modularization through dynamic libraries is implemented through
OS-speci�c linkers and runtime support libraries. In all cases, the handling of
modules requires some interaction with the operating system due to portability
concerns, including varying installation directories and lookup paths.

Languages also employ di�erent approaches when adding support for mod-
ules written in di�erent languages. Extensible languages like Perl, Python, Ruby
and Lua provide C APIs that allow dynamic libraries to interact with the run-
time state of the language's virtual machine [21], as well as facilities to load those
libraries into the runtime and register them as modules. Some languages also fea-
ture foreign-function interfaces, through which the mapping between functions of
external libraries and the language environment are written in the host language
itself; an example is the Racket FFI [5]. Those interfaces may be bundled into
the language's standard libraries [14], or may be external modules themselves
[22]. Loading those external libraries and modules again requires interaction with
the operating system, and the extent to which this is performed internally or
done by external tools is up to the language's design to de�ne. In the case of
modules written in di�erent languages, this means one has two sets of design
and implementation aspects to deal with (or even three, when C APIs are used
as a bridge between two other languages, as is the case, for example, of LuaJava
[18]).

Finally, there is the issue of deployment. While languages such as C and
Pascal traditionally left the mapping between modules and �les, the physical lo-
cations of those �les, and the installation processes of the modules to be speci�ed
as implementation details, the desire for portability and increased code reuse has
led the communities of many languages to attempt to standardize these de�ni-
tions. From those e�orts, a number of language-speci�c deployment tools have
emerged: CPAN for Perl [8], RubyGems for Ruby [7], PIP for Python [29], Cabal
for Haskell [17], and so on. While originally developed as external tools, many
of these have in fact been integrated into the standard distribution of those lan-
guages, and are now considered to be part of their standard libraries, showing
that deployment has grown from an OS issue into a core language concern.



These tools are essentially portable, language-speci�c package managers.
Package management, however, is a task of the operating system in platforms
such as Linux, and this overlap between OS and language concerns may put
the necessity of these language-speci�c tools into question. This feeling is under-
standable, but comparing the numbers of packages provided by distributions
versus the number of modules available in mature module repositories from
scripting languages, it becomes clear that the approach of converting every-
thing into native packages is untenable: for example, while the repository for the
Ubuntu Linux distribution features 37,000 packages in total, Perl's CPAN alone
contains over 23,000 packages, with the advantage that the language's repository
is portable to various platforms. Besides, some platforms simply lack universal
package management (Microsoft Windows being a notable case). The portability
aspect and the great number of packages make a good case for having package
managers for programming languages.

This paper presents one such language-speci�c package manager: LuaRocks,
for the Lua programming language. Lua was originally designed as an embed-
dable language, to be loaded as a library into other programs. As such, it fea-
tures extensive facilities for inter-language interaction, through a complete and
reentrant C API and a �rst-class type for boxed C pointers. However, features
oriented towards the use of Lua as the host program language are more recent:
Lua only gained a module system two major revisions ago, in version 5.0, ten
years after the �rst release of the language [15]. With the module system, many
of the concerns enumerated above naturally emerged: namespace issues, build
methods, packaging formats, deployment and redistribution of modules. The fo-
cus of the language in being a portable language with a small footprint meant
that Lua would not take the approach of dealing with these issues internally. In-
stead, it provides the minimal core of an extensible module system, concerning
the integration with the language runtime (package loaders, namespace manage-
ment), and all other tasks are left for external tools to perform. LuaRocks is an
integrated solution for these tasks related to module management, providing a
portable build system for both C and Lua code, package format speci�cations
and a package management tool for remote deployment of modules.

2 Related work

This section provides background on package management, tracing its origins as
operating system tools and the history of language-speci�c package managers.
As systems grow in complexity, library dependencies become harder to track.
Package management is the most common solution for this problem [33]; on
environments without system-wide package management, these con�icts have to
be tracked on a �le-by-�le basis [23], which is a more fragile approach [34].

2.1 Operating system package managers

The idea of having a uni�ed system for building and installing packages can
be traced back to open source operating systems in the 1990s. The growth of



both the free software movement and the commercial internet meant that a
large number of independently developed projects were available in source form.
However, much of this software could not be built unmodi�ed in a variety of
platforms, often requiring OS-speci�c patches to adapt them to the peculiarities
of each system. In 1993, the Debian project introduced dpkg [19], a program for
installing, removing and keeping track of installed packages, which are archives
containing all �les that compose a given compiled program. In 1994, FreeBSD
introduced the Ports collection, a system of Make�les that provided a uni�ed
interface for building software from third-party (upstream) developers while au-
tomatically applying compatibility patches [20]. Having a Make�le in the Ports
collection means that a program can be easily installed into FreeBSD by using
standardized commands.

Linux distributions soon adopted this concept. Red Hat Linux was the �rst
distribution to gain popularity on the merits of its package management system,
called RPM [3]. RPM combined both the facilities for creating binary pack-
ages found in dpkg with the uni�ed method for building sources from Ports.
Later, Debian introduced APT, a front-end tool to dpkg which included depen-
dency resolution, recursively scanning for package dependencies, fetching neces-
sary packages over the network and installing them in topologically-sorted or-
der [19]. Over time, many other package management tools emerged, and these
features have grown to become the essential expected feature set: fetching pack-
ages remotely; resolving dependency graphs; and installing, removing and listing
packages. Current versions of FreeBSD Ports also allow the installation of pre-
compiled packages, and RPM performs dependency management. Some of these
features have also evolved in sophistication, for instance, with the distinction
between build dependencies (packages that need to be installed in the system
where the package is being compiled, such as a parser generator or a set of C
header �les) and runtime dependencies (packages that need to be installed in
the system where the package will run, such as a shared library).

In recent years, deployment tools for centralized package management have
been adopted in platforms for distribution and sale of binary packages as well:
these are usually named �application stores�. Some examples are the Apple App
Store, Google Play and the Amazon Appstore.

2.2 Language-speci�c package managers

The history of language-speci�c package managers can be traced to online repos-
itories of software. CPAN [8], the Comprehensive Perl Archive Network, was
mainly in�uenced by CTAN, a repository for TEX class �les. Created in 1995,
CPAN is the oldest repository for language modules and over the years evolved
into a fully-featured package manager. Figure 1 lists 15 of the most popular
language speci�c package managers, along with their start years and number of
available packages. Over the last 15 years, many languages, especially those as-
sociated with the notion of scripting [24], have gained package managers of their
own. Some languages de�ne a o�cial package format as part of their speci�ca-
tion, such as JAR for Java, and some include the package management tool along



Language
package manager /

repository
packages

included in
lang. distr.

o�cial
pkg. format

repository
start year

direct
publishing

Java Maven/Central 56697 no yes 2005 no*

Ruby RubyGems 55035 yes yes 2003 yes

Python pip/PyPI 32180 no yes 2003 yes

JavaScript npm (node.js) 27688 yes yes* 2009 yes

Perl CPAN 24092 yes yes 1995 no

C#/.NET NuGet 11823 no no 2011 yes

PHP Composer/Packagist 9757 no no 2011 yes

Clojure Leiningen/Clojars 6004 no yes 2009 yes

Haskell Cabal/Hackage 5062 no** yes 2007 yes

R CRAN 4450 yes yes 1997 no

Objective-C CocoaPods 1391 no no 2011 no

Common Lisp Quicklisp 850 no no 2010 no

Go go 744 yes no 2009 no***

Racket PLaneT 510 yes yes 2004 yes

Lua LuaRocks 266 no no 2007 no

* The Maven Central is a two-tier repository: it aggregates a number of ap-
proved repository, some of which may provide direct publishing functionality.
** Cabal is not included with Haskell implementations such as GHC and Hugs, but it
is part of the Haskell Platform �batteries� package from haskell.org.
*** The Go repository is in fact just a wiki of links to projects which can be imported
directly with the Go import statement; editing the list requires contributor access.

Fig. 1. Language-speci�c package managers, as of April 16, 2013

with the sources of the language reference implementation. These are identi�ed
in Figure 1 as well.

Following the steps of CPAN, CRAN [1] was started in 1997 as a repository
and later package manager for R, a niche language in the �eld of statistics. In
2003, RubyGems was created for the Ruby language. Unlike its predecessors,
RubyGems [7] allows any developer to publish modules directly in the pub-
lic repository, without any curating process. By lowering the barrier of entry
early on, RubyGems gained enormous popularity and became the largest mod-
ule repository among scripting languages. In fact, the aspect that seems to a�ect
most directly the number of available packages in a repository is whether the
repository allows developers to publish packages directly or if it requires some
kind of approval step. From the 15 languages listed in Figure 1, 8 allow direct
publishing of modules; 7 of them are in the top 9 positions when ranked by num-
ber of available packages. The two exceptions in the top positions are Maven's
Central, which is an aggregator of repositories, and CPAN, which has a large
total of packages due to being much older than the other repositories. Maven
[2] is a build and deployment tool for Java, which eventually evolved into a
full-�edged package manager. Maven Central is currently the largest language-
speci�c package repository in existence, with over 56000 packages [32].



Package management systems for Python have had an eventful evolution
[35]. The package management tool has been added and then removed from the
main Python distribution, and the original tool, easy_install, was eventually
replaced by pip. Still, the package repository, PyPI (Python Package Index) has
seen continuous growth [29]. PHP originally had two o�cial package reposito-
ries, PEAR and PECL, respectively for PHP extensions and library bindings.
These are not open for direct publishing of modules. Eventually, a new package
manager, Composer, was created alongside a new open repository, called Pack-
agist. Composer and Packagist quickly eclipsed the original repositories: while
PEAR/PECL have less than 900 packages, Packagist features over 9700 [26].

The JavaScript world did not have a package manager until 2009, when npm

was created. This tool has the peculiarity among package managers of being not
only language-speci�c, but in fact framework-speci�c, being a tool created to be
used with Node.js, an event-driven platform for server-side development [28].

Objective-C, like C and C++, does not de�ne its own package format, but it
has an uno�cial package management system for class libraries. The CocoaPods
project [9] was started in 2011 and hosts modules for iOS and Mac OS X plat-
forms. It has the distinction of being the only one of the language-speci�c package
management systems studied that is not implemented in the target language it-
self: instead, CocoaPods is written in Ruby, and it is in fact distributed as a
Ruby gem. In the .NET platform, there is also no o�cial package manager, but
NuGet [25] is a popular tool, which integrates with the Visual Studio IDE.

The Go language adopts a very unusual approach towards module manage-
ment. Go bundles the compiler, build and deployment tools, and instead of using
a centralized repository, adds support for decentralized cross-reference of mod-
ules in the language itself: its import statement can refer to full URLs which
point to source code repositories [4].

Cabal [17] is the package manager for Haskell. Due to the language's sophis-
ticated type system, Haskell modules are known for their intricate dependency
relations, as minor interface changes cause incompatibilities and there is no way
for incompatible packages to coexist in an installed environment [31]. Other
package managers worth mentioning are: PLaneT [27], for Racket; Quicklisp [6],
for Common Lisp (which aims to be compatible with several implementations of
the language standard); and Leiningen [12], for Clojure (a language that targets
the Java Virtual Machine and therefore also uses the JAR format for packages).

Architecturally, all these tools are very similar to their OS-level counterparts,
as they perform the same basic tasks: fetching modules; resolving dependencies;
and building, installing, and removing modules. A common issue is avoiding
con�icts with packages installed by the OS package manager, and how to inform
the language runtime about newly installed modules. Old versions of Ruby, for
example, required the user to write require "rubygems" to enable gem-installed
modules, but more recently this support has been integrated by default. Modules
that feature dependencies on external libraries, such as bindings to C libraries,
are another point of concern. Each package manager speci�es its own syntax for
locating these libraries, and they often make OS-speci�c assumptions such as



�lenames and paths. Integration between OS-level and language-level package
managers is a problem that cannot be solved in the general case. For example,
a module providing bindings to a JPEG library may be aware that the library
is provided by an OS package called jpeg-dev in one platform, libjpeg6-dev
in another, or even by a �le called JPEG.DLL available somewhere in the library
path, when the OS does not feature a standard package manager.

3 The design of LuaRocks

LuaRocks is written as a pure Lua application and does not assume the availabil-
ity of any other Lua modules in the system. To perform operations not provided
by stock Lua, such as manipulating directories or downloading remote �les, it can
either launch external programs (e.g. wget) or use additional modules such as
LuaSocket, depending on what is available. On Windows, a set of helper binaries
is included in the distribution that aids the bootstrapping process.

On the surface, LuaRocks behaves like any other package manager. It pro-
vides two command-line tools: luarocks, the main interface; and luarocks-admin,
for managing remote repositories. These tools support typical commands, such as
luarocks install 〈package_name〉 and luarocks remove 〈package_name〉,
respectively for installing and removing packages, while performing recursive de-
pendency matching as expected. While all package managers perform essentially
the same tasks, the speci�cs of each environment impose some design restrictions
while opening up some possibilities. In this section, we discuss the novel aspects
in the design of LuaRocks. They explore the potential of Lua as a data descrip-
tion language, its sandboxing facilities, and the extensible solutions LuaRocks
uses to deal with the heterogeneity of operating systems and build tools that
developers use. We also discuss the approach we take to versioning, which makes
it easier to deal with package con�icts.

3.1 Declarative speci�cations

Package management tools usually de�ne a �le format through which pack-
ages are speci�ed. Those �les can be as simple as a Make�le, as is the case
with FreeBSD Ports [20], or may contain various metadata and embedded build
scripts, such as .spec �les for the RPM package manager. For specifying Lu-
aRocks packages, which we call �rocks�, we devised a �le format called �rockspec�,
which is actually a Lua �le containing a series of assignments to prede�ned vari-
able names such as dependencies and description, de�ning metadata and
build rules for the package.

Rockspecs are loaded by LuaRocks as Lua scripts inside a sandbox that allows
the use of Lua syntactical constructs, but no access to its standard libraries or
external libraries. This ensures that the loading of the package speci�cation
is safe: loading a rockspec �le (for example, for syntax veri�cation with the
luarocks lint command) can at most lock the command-line tool through
an endless loop, but it is not able to access any system resources. Even the



%define luaver 5.1

%define lualibdir %{_libdir}/lua/%{luaver}

%define luapkgdir %{_datadir}/lua/%{luaver}

Name: luasocket

Version: 2.0.2

Release: 8%{?dist}

Summary: Network socket extension for Lua

# ...

Source0: http://.../luasocket-2.0.2.tar.gz

Patch0: lua-socket-unix-sockets.patch

# ...

%prep

%setup -q -n luasocket-%{version}

%patch0 -p1 -b .unix

%build

make %{?_smp_mflags} CFLAGS="%{optflags}

↪→ -fPIC"

%install

rm -rf $RPM_BUILD_ROOT

make install

↪→ INSTALL_TOP_LIB=$RPM_BUILD_ROOT%{lualibdir}

↪→ INSTALL_TOP_SHARE=$RPM_BUILD_ROOT%{luapkgdir}

%clean

rm -rf $RPM_BUILD_ROOT

# ...

package = "LuaSocket"

version = "2.0.2-5"

source = {

url = "http://.../luasocket-2.0.2.tar.gz",

}

description = {

summary = "Network support for the Lua language",

-- ...

}

build = {

type = "make",

build_variables = {

CFLAGS = "$(CFLAGS) -I$(LUA_INCDIR)",

LDFLAGS = "$(LIBFLAG) -O -fpic",

LD = "$(CC)"

},

install_variables = {

INSTALL_TOP_SHARE = "$(LUADIR)",

INSTALL_TOP_LIB = "$(LIBDIR)"

},

-- ...

}

(a) RPM .spec �le3 (b) LuaRocks rockspec4

Fig. 2. Excerpts from speci�cation �les for LuaSocket 2.0.2 using RPM and LuaRocks,
including basic package identi�cation, download URL and build instructions

possibility of an endless loop can be removed using hooks in the Lua virtuam
machine, making the loading of rockspecs completely safe for use by servers that
accept arbitrary rockspecs.

While the loading of a rockspec is imperative, it is not a �build script�, but
a declarative speci�cation of the package and its build process. Imperative build
scripts impose a strict order on operations. A rockspec does not list the sequence
of build operations in order as a make�le or an RPM .spec would (Figure 2a),
but rather contains de�nitions which describe the build method declaratively
(Figure 2b). The use of declarative descriptions gives us more liberty as tool
implementors to make changes to the way the build process is implemented
from one version of LuaRocks to another.

Rockspecs allow developers to make higher-level descriptions of their build
processes, as we will see in more detail in Section 3.2, and let the tool handle
low-level details such as portability adaptations. As a simple example, the in-
vocation of the make command is explicit in Figure 2a and implicit in Figure
2b, which allows LuaRocks to adjust the command name to gmake in some BSD
environments. LuaRocks also provides a general method for conditionally re-
placing entries in a rockspec in a per-platform basis. For example, a �eld named
source.platforms.win32.url will overwrite the source.url �eld on Windows
platforms and will be ignored on other operating systems. Through platforms

subtables, a developer can conditionally specify platform-speci�c build �ags,
module dependencies and external library requirements.

3 Full �le at http://pkgs.fedoraproject.org/cgit/lua-socket.git/tree/

lua-socket.spec?h=f18
4 Full �le at http://luarocks.org/repositories/rocks/luasocket-2.0.2-5.

rockspec



After LuaRocks compiles and installs a rockspec, the rockspec maintainer
can package it as a .rock �le, which is a .zip archive containing all modules, the
rockspec and a manifest �le. Manifest �les are essentially plain-text databases for
package management, implemented as Lua tables which are loaded in the same
sandbox used for rockspecs and saved using a simple serialization procedure.

While each rock has its own manifest in a rock_manifest �le (containing
also the MD5 checksum for each deployed �le), LuaRocks also caches a global
manifest for all packages in a system manifest �le for quicker initialization.
This global manifest has indexes for e�ciently �nding dependencies between
packages, which package owns a module, and which modules a package owns.
This same style of global manifest is used in remote repositories as a directory of
available packages. In short, LuaRocks stores all of its metadata as Lua source
�les, making heavy use of Lua facilities for sandboxes and data description.

3.2 Extensible build system

One aspect in which the design of LuaRocks resembles OS-level package man-
agers more than typical language-speci�c package managers is in its handling
of build tools. Often, language-speci�c repositories are built around one speci�c
tool: for example, easy_install and later pip for Python, Rake for Ruby, Ex-
tUtils::MakeMaker and later Module::Build for Perl. The package manager then
delegates the build process to the build tool and focuses on tracking installed
�les and dependencies. Lua, however, does not have a standard build system.
By the time LuaRocks was created, a number of Lua-based build tools had been
proposed, but none have gained traction in the developer community. Most Lua
modules were distributed by upstream authors along with Unix Make�les only,
or with no build scripts at all, and the user is expected to build and deploy the
modules by hand. Some developers also use other tools, such as CMake.

To support these uses, LuaRocks supports several build tools, like OS-level
package managers normally do. OS-level package managers typically let develop-
ers call their preferred build tools explicitly in imperative speci�cation scripts,
as seen in the call to make in the .spec �le from Figure 2a. This is an open-ended
approach that allows the use of any build tool, at the cost of having hard-coded
references and a low abstraction level, akin to a shell script or a batch �le.

LuaRocks, however, does this in a more controlled manner, with a system
of plugins for the di�erent build tools. Each plugin is implemented as a Lua
module, and selected through the build.type �eld in the rockspec. For example,
using build.type="make" (as in Figure 2b) causes LuaRocks to load the module
luarocks.build.make, which is then responsible for providing the necessary
plumbing that connects LuaRocks with the build tool.

The build �eld has additional entries speci�c for the build type, which are
passed to the plugin. These entries, and a set of context variables describing the
system where LuaRocks is installed, can be used to parameterize the build. For
example, in Figure 2b, the plugin responsible for the �make� build type interprets
the build.build_variables and build.install_variables entries, passing
the appropriate variables to the build tool. Other customizations are possible: for



package = "midialsa"

version = "1.17-1"

source = {

url = "http://www.pjb.com.au/comp/lua/midialsa-1.17.tar.gz",

md5 = "0482df57c2262ff75f09cec5568352a7"

}

description = {

summary = "Provides access to the ALSA sequencer", detailed =

[[ ... ]],

homepage = "http://www.pjb.com.au/comp/lua/midialsa.html",

license = "MIT/X11"

}

dependencies = { "lua >= 5.1" }

external_dependencies = {

ALSA = { header = "alsa/asoundlib.h", library = "asound" }

}

build = {

type = "builtin",

modules = {

['C-midialsa'] = {

incdirs = { "$(ALSA_INCDIR)" },

libdirs = { "$(ALSA_LIBDIR)" },

libraries = { "asound" },

sources = { "C-midialsa.c" }

},

midialsa = "midialsa.lua"

},

copy_directories = { "doc", "test" }

}

Fig. 3. Rockspec for a module using the builtin build type.

instance, the default make target for installation is �install�, but one can over-
ride that using build.install_target. Any of these �elds can be speci�ed in
a platform-speci�c manner. For example, a rockspec may specify build variables
speci�c to theWindows platform in a build.platforms.win32.install_target
�eld.

The �rst release of LuaRocks shipped with support for three build types:
make, cmake and command. The command type is a catch-all backend for unsup-
ported build tools: it allows writing a pair of operating system commands in
the rockspec (build.build_command and build.install_command) which Lu-
aRocks then calls. Early on in its history, however, a fourth standard build type
was added, called builtin.

The builtin build type, as the name suggests, is a lightweight built-in build
tool integrated with LuaRocks. It was designed to cover the common cases when
a module is either written in pure Lua, or contains C code that can be compiled
without sophisticated pre-con�guration.

Figure 3 depicts a complete rockspec that uses the builtin build type. This
is the rockspec for midialsa, Lua bindings for the MIDI features of the Advanced
Linux Sound Architecture (ALSA). This package installs a module written in
Lua, midialsa, which provides a high-level Lua API, and a module written in
C, C-midialsa, which links to the ALSA library and provides core functions for
the Lua module. This is a fairly typical setup for library bindings.

The builtin build type expects a modules map. In the simpler cases, such
as pure Lua modules, it associates the name of each module to the source �le
that implements it. For modules written in C, one can specify more metadata.
These are typically paths where to �nd headers and libraries needed to build the
module, names of libraries the module depends on, and the source �les for the
module. In the example of Figure 3, C-midialsa speci�es that it needs to be



linked to the asound library and has its implementation in the C-midialsa.c

�le.
The example also references two context variables that LuaRocks provides,

ALSA_LIBDIR and ALSA_INCDIR. LuaRocks de�nes these variables after detecting
the location of the alsa/asoundlib.h and asound library the rockspec speci�es
in the external_dependencies section of the rockspec.

To deal with variations between operating systems, external dependencies to
libraries are given as abstractly as possible: based on libraries = "asound",
LuaRocks will look for �les matching one of various possibilities: libasound.so,
libasound.so.*, libasound.dylib, ASOUND.DLL, ASOUND.LIB and so on, de-
pending on the running platform. LuaRocks searches for these �les in a series
of OS-speci�c directories. This �exible approach for dependency veri�cation has
proven to be a good compromise solution that limits the amount of OS-speci�c
information in the speci�cation �le and keeps platform-speci�c metadata to a
minimum. The locations of system header and library directories can, if nec-
essary, be adjusted permanently by the user in a con�guration �le, or on a
case-by-case basis with command-line arguments.

The builtin plugin launches the C compiler and linker, passing proper �ags
for the system it is running on. It has internal support for the GCC and Visual
Studio toolchains by default, but it is also largely con�gurable. All programs and
�ags used can be overridden using familiar variables such as CC, LD and CFLAGS

in the LuaRocks con�guration �le, in particular making it easy to use alternative
compiler toolchains, including cross-compilers.

The builtin build type provides LuaRocks with a build tool that is declara-
tive, like the rest of the rockspec format. Platform-speci�c details are abstracted
as much as possible, and can be added only when needed. This gives an easy
way for developers who often shipped Unix-only make�les to support Windows
builds with little e�ort. Still, developers wishing to continue using other tools
such as make, CMake, and GNU Autotools can easily do so. LuaRocks integrates
well with these tools, as all con�guration variables it provides are available for
all build plugins, including those by detected external dependencies such as
ALSA_LIBDIR in the above example, and others such as PREFIX and CFLAGS.

For all build types, LuaRocks executes the build stage targeting a temporary
sandbox directory in its PREFIX variable, later moving the generated �les to their
�nal locations. This forces relocatability: there is no way for a module compiled
through LuaRocks to hard-code its install location. In other words, any module
built with LuaRocks can be packed into a .rock �le with luarocks pack 〈rock〉
and then installed in a di�erent directory. This is important when deploying
binaries, particularly on Windows environments.

3.3 Versioning

Another feature that sets LuaRocks apart from other package managers is the
fact that it supports multiple simultaneous versions of the same package in a
single installed tree, so that one can, for example, install two modules A and B,
where A depends on C version < 2 and B depends on C version ≥ 2. LuaRocks
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allows all four modules to remain installed in the same directory simultaneously,
and provides runtime support so that the correct version of C is used for either
A or B.

When LuaRocks installs a new version of a module, it renames the old
version so they can coexist in the same directory (adding the rock name and
version as a pre�x). The idea is that Lua will always �nd the latest installed
version of each module, as that �le will have a standard pathname such as
/usr/local/lib/lua/5.1/socket.so.

Users who need support for loading versions other than the latest one can
use a custom module loader that LuaRocks provides. Module loaders are the
extensibility mechanism for the Lua module system. Whenever a module is re-
quested, Lua tries to load it using a series of loader functions registered in a list.
The LuaRocks module loader keeps in memory a �context�, which is the list of
previously loaded modules, the rocks they belong to, and their dependencies, so
that when Lua needs to load a new module, the LuaRocks module loader can
choose a version based on dependencies from the current context.

This approach to versioning alleviates the so called �dependency hell� experi-
enced in many other package managers. If the user wants to write a script using
a module that happens to depend on a version of another module that is di�er-
ent than what is already installed on their system, they are free to install that
additional dependency without worrying that other modules that depend on the
previously installed version will break. When using package managers that lack
this feature, the workaround is to create separate local module trees in di�erent
directories and con�gure the runtime environment accordingly whenever each
script is run. Some languages even feature tools that encapsulate this usage pat-
tern, creating replicated environments to avoid con�icting dependencies: RVM
[30] for Ruby and Virtualenv [11] for Python are two examples.

4 Development history

The initial release of LuaRocks was published in August 2007. After thirteen
0.x releases, LuaRocks 1.0 was released in September 2008 (See Figure 4), and
the rockspec format speci�cation has been frozen ever since. LuaRocks 2.0 was
released in October 2009, introducing the custom module loader.

Given that Lua has a history as a language for embedding into applications
and games, where the only additional modules are those speci�c to the underlying
program, the developer community for reusable modules is small compared to
languages with a focus on areas such as, for example, web development. Still,
the LuaRocks repository has shown a steady growth. Figure 5, generated from
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Fig. 5. Number of packages in the LuaRocks repository during the 2.0 series, from
October 2009 to March 2013

archive snapshots of the repository index, shows the growth of the collection,
from October 2009 when LuaRocks 2.0 was released and the repository contained
exactly 100 packages, up to March 2013, when we just surpassed 250 packages.
During this time, the 2.0 series had a number of point releases. Save for bug�xes,
these releases are essentially compatible. They were mainly driven by feedback
and contributions from users, and were focused on improving portability, adding
new commands to the luarocks and luarocks-admin command-line tools, and
improving user experience with better platform detection.

The builtin build plugin proved to be quite popular. As of this writing,
of the 258 projects in the LuaRocks repositories, 195 of them use the builtin

build type, and only 26 use make5. In particular, from those 195 rocks, 29 of them
originally used the make build type and later switched to builtin, suggesting
that it was a good strategy to allow developers to warm up to the idea of using
LuaRocks by letting them start to use it along with their existing build systems.
The make build type often exposed shortcomings in the developers' make�les,
such as poor support for specifying custom install paths and linker �ags. This
was often noticed when Mac users attempted to install rocks written by Linux
developers and vice versa, and also as developers transitioned from x86 to x86-64.
The builtin type handles those issues transparently.

5 Conclusion

In recent years, language-speci�c package managers have become an essential
part of programming language ecosystems, as the internet allows large commu-
nities of developers to build upon each other's work by reusing modules. The
exact role and scope of language-speci�c package managers vary from language

5 From the 37 remaining projects, 10 use command, mostly for invoking GNU Auto-
tools, and 27 use none, which is a blank build type for merely copying .lua �les (a
predecessor of builtin).



to language, as the de�nitions of what is handled by the language and what is
delegated to the package manager are language design decision themselves. Still,
these developments have been underrepresented in academic literature so far.

This paper presented LuaRocks, a package manager for the Lua program-
ming language. LuaRocks brings some novel concepts to language-speci�c pack-
age manager design, such as a completely declarative integrated build system,
thorough use of the language itself as its data description language (which allows
the tool to bootstrap itself without any external dependencies) and support for
coexisting versions of modules in local repositories, with runtime support for de-
pendency resolution based on the extensibility mechanisms of the Lua language.

LuaRocks is used in production systems around the world and is included in
repositories of several Linux distributions. As of this writing, the rocks repository
features 750 rockspecs for 258 di�erent projects. LuaRocks users have reported
success using it in a number of platforms, such as Windows (either natively, with
Cygwin, or with Mingw32), Linux, Mac OS X, FreeBSD, OpenBSD, NetBSD
and Solaris. The directions of development nowadays are essentially dictated
by the needs of the community, while trying to balance concerns of compatibil-
ity, portability and ease of use. For many developers, especially those used to
other languages that already have similar ecosystems in place, LuaRocks is their
introduction to writing and sharing Lua modules.

The declarative rockspec format proved to be a success among developers,
and its speci�cation remains largely frozen since LuaRocks 1.0. Still, we have
identi�ed some possibilities for improvement of the format over the years, and
the next major release may include a revision of the speci�cation, while keep-
ing backward compatibility. LuaRocks is prepared to recognize incompatibilities
through the rockspec_format �eld, so the transition shouldn't be traumatic.

Another frequent request is implementing support for LuaRocks to upgrade
itself. The tool already has experimental support for that, but it is not enabled by
default, since the interaction with installations made through OS-level package
managers still has to be assessed.

Another plan is to eventually allow direct publishing of modules by develop-
ers. This requires development of server-side infrastructure, but the LuaRocks
community has already started e�orts in this direction, with an alternative repos-
itory called MoonRocks which allows direct publishing [10].
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