
15
Modules and Packages

Usually, Lua does not set policies. Instead, Lua provides mechanisms that are

powerful enough for groups of developers to implement the policies that best

suit them. However, this approach does not work well for modules. One of the

main goals of a module system is to allow different groups to share code. The

lack of a common policy impedes this sharing.

Starting in version 5.1, Lua defines a set of policies for modules and packages

(a package being a collection of modules). These policies do not demand any ex-

tra facility from the language; programmers can implement them using what we

have seen so far: tables, functions, metatables, and environments. However, two

important functions ease the adoption of these policies: require, for using mod-

ules, and module, for building modules. Programmers are free to re-implement

these functions with different policies. Of course, alternative implementations

may lead to programs that cannot use foreign modules and modules that cannot

be used by foreign programs.

From the user point of view, a module is a library that can be loaded through

require and that defines one single global name containing a table. Everything

that the module exports, such as functions and constants, it defines inside this

table, which works as a namespace. A well-behaved module also arranges for

require to return this table.

An obvious benefit of using tables to implement modules is that we can

manipulate modules like any other table and use the whole power of Lua to

create extra facilities. In most languages, modules are not first-class values

(that is, they cannot be stored in variables, passed as arguments to functions,

etc.), so those languages need special mechanisms for each extra facility they

want to offer for modules. In Lua, you get extra facilities for free.

For instance, there are several ways for a user to call a function from a

module. The simplest is this:

137



138 Chapter 15 Modules and Packages

require "mod"

mod.foo()

If she prefers a shorter name for the module, she can set a local name for it:

local m = require "mod"

m.foo()

She can also provide alternative names for individual functions:

require "mod"

local f = mod.foo

f()

The nice thing about these facilities is that they involve no explicit support from

the language. They use what the language already offers.

15.1 The require Function

Lua offers a high-level function to load modules, called require. This function

tries to keep to a minimum its assumptions about what a module is. For require,

a module is just any chunk of code that defines some values (such as functions

or tables containing functions).

To load a module, we simply call require"modname". Typically, this call

returns a table comprising the module functions, and it also defines a global

variable containing this table. However, these actions are done by the module,

not by require, so some modules may choose to return other values or to have

different side effects.

It is a good programming practice always to require the modules you need,

even if you know that they would be already loaded. You may exclude the stan-

dard libraries from this rule, because they are pre-loaded in Lua. Nevertheless,

some people prefer to use an explicit require even for them:

local m = require "io"

m.write("hello world\n")

Listing 15.1 details the behavior of require. Its first step is to check in table

package.loaded whether the module is already loaded. If so, require returns its

corresponding value. Therefore, once a module is loaded, other calls to require

simply return the same value, without loading the module again.

If the module is not loaded yet, require tries to find a loader for this module.

(This step is illustrated by the abstract function findloader in Listing 15.1.) Its

first attempt is to query the given library name in table package.preload. If it

finds a function there, it uses this function as the module loader. This preload

table provides a generic method to handle some non-conventional situations

(e.g., C libraries statically linked to Lua). Usually, this table does not have an

entry for the module, so require will search first for a Lua file and then for a

C library to load the module from.

If require finds a Lua file for the given module, it loads it with loadfile;

otherwise, if it finds a C library, it loads it with loadlib. Remember that both



15.1 The require Function 139

Listing 15.1. The require function:

function require (name)

if not package.loaded[name] then -- module not loaded yet?

local loader = findloader(name)

if loader == nil then

error("unable to load module " .. name)

end

package.loaded[name] = true -- mark module as loaded

local res = loader(name) -- initialize module

if res ~= nil then

package.loaded[name] = res

end

end

return package.loaded[name]

end

loadfile and loadlib only load some code, without running it. To run the code,

require calls it with a single argument, the module name. If the loader returns

any value, require returns this value and stores it in table package.loaded to

return the same value in future calls for this same library. If the loader returns

no value, require returns whatever value is in table package.loaded. As we will

see later in this chapter, a module can put the value to be returned by require

directly into package.loaded.

An important detail of that previous code is that, before calling the loader,

require marks the module as already loaded, assigning true to the respective

field in package.loaded. Therefore, if the module requires another module and

that in turn recursively requires the original module, this last call to require

returns immediately, avoiding an infinite loop.

To force require into loading the same library twice, we simply erase the li-

brary entry from package.loaded. For instance, after a successful require"foo",

package.loaded["foo"] will not be nil. The following code will load the library

again:

package.loaded["foo"] = nil

require "foo"

When searching for a file, require uses a path that is a little different from

typical paths. The path used by most programs is a list of directories wherein to

search for a given file. However, ANSI C (the abstract platform where Lua runs)

does not have the concept of directories. Therefore, the path used by require

is a list of patterns, each of them specifying an alternative way to transform a

module name (the argument to require) into a file name. More specifically, each

component in the path is a file name containing optional question marks. For

each component, require replaces the module name for each ‘?’ and checks

whether there is a file with the resulting name; if not, it goes to the next



140 Chapter 15 Modules and Packages

component. The components in a path are separated by semicolons (a character

seldom used for file names in most operating systems). For instance, if the path

is

?;?.lua;c:\windows\?;/usr/local/lua/?/?.lua

then the call require"sql" will try to open the following files:

sql

sql.lua

c:\windows\sql

/usr/local/lua/sql/sql.lua

The require function assumes only the semicolon (as the component separator)

and the question mark; everything else, such as directory separators or file

extensions, is defined by the path itself.

The path that require uses to search for Lua files is always the current

value of the variable package.path. When Lua starts, it initializes this variable

with the value of the environment variable LUA_PATH or with a compiled-defined

default path, if this environment variable is not defined. When using LUA_PATH,

Lua substitutes the default path for any substring “;;”. For instance, if you set

LUA_PATH to “mydir/?.lua;;”, the final path will be the component “mydir/?.lua”

followed by the default path.

If require cannot find a Lua file compatible with the module name, it looks

for a C library. For this search, it gets the path from variable package.cpath

(instead of package.path). This variable gets its initial value from the environ-

ment variable LUA_CPATH (instead of LUA_PATH). A typical value for this variable

in Unix is like this:

./?.so;/usr/local/lib/lua/5.1/?.so

Note that the file extension is defined by the path (e.g., the previous example

uses .so for all templates). In Windows, a typical path is more like this one:

.\?.dll;C:\Program Files\Lua501\dll\?.dll

Once it finds a C library, require loads it with package.loadlib, which we

discussed in Section 8.2. Unlike Lua chunks, C libraries do not define one single

main function. Instead, they can export several C functions. Well-behaved

C libraries should export one function called luaopen_modname, which is the

function that require tries to call after linking the library. In Section 26.2 we

will discuss how to write C libraries.

Usually, we use modules with their original names, but sometimes we must

rename a module to avoid name clashes. A typical situation is when we need to

load different versions of the same module, for instance for testing. For a Lua

module, either it does not have its name fixed internally (as we will see later)

or we can easily edit it to change its name. But we cannot edit a binary module

to correct the name of its luaopen_* function. To allow for such renamings,

require uses a small trick: if the module name contains a hyphen, require



15.2 The Basic Approach for Writing Modules 141

strips from the name its prefix up to the hyphen when creating the luaopen_*

function name. For instance, if a module is named a-b, require expects its open

function to be named luaopen_b, instead of luaopen_a-b (which would not be a

valid C name anyway). So, if we need to use two modules named mod, we can

rename one of them to v1-mod (or -mod, or anything like that). When we call

m1=require"v1-mod", require will find both the renamed file v1-mod and, inside

this file, the function with the original name luaopen_mod.

15.2 The Basic Approach for Writing Modules

The simplest way to create a module in Lua is really simple: we create a table,

put all functions we want to export inside it, and return this table. Listing 15.2

illustrates this approach. Note how we define inv as a private name simply by

declaring it local to the chunk.

The use of tables for modules does not provide exactly the same functionality

as provided by real modules. First, we must explicitly put the module name

in every function definition. Second, a function that calls another function

inside the same module must qualify the name of the called function. We

can ameliorate these problems using a fixed local name for the module (M,

for instance), and then assigning this local to the final name of the module.

Following this guideline, we would write our previous module like this:

local M = {}

complex = M -- module name

M.i = {r=0, i=1}

function M.new (r, i) return {r=r, i=i} end

function M.add (c1, c2)

return M.new(c1.r + c2.r, c1.i + c2.i)

end

<as before>

Whenever a function calls another function inside the same module (or when-

ever it calls itself recursively), it still needs to prefix the name. At least, the

connection between the two functions does not depend on the module name any-

more. Moreover, there is only one place in the whole module where we write

the module name. Actually, we can avoid writing the module name altogether,

because require passes it as an argument to the module:

local modname = ...

local M = {}

_G[modname] = M

M.i = {r=0, i=1}

<as before>



142 Chapter 15 Modules and Packages

Listing 15.2. A simple module:

complex = {}

function complex.new (r, i) return {r=r, i=i} end

-- defines a constant ’i’

complex.i = complex.new(0, 1)

function complex.add (c1, c2)

return complex.new(c1.r + c2.r, c1.i + c2.i)

end

function complex.sub (c1, c2)

return complex.new(c1.r - c2.r, c1.i - c2.i)

end

function complex.mul (c1, c2)

return complex.new(c1.r*c2.r - c1.i*c2.i,

c1.r*c2.i + c1.i*c2.r)

end

local function inv (c)

local n = c.r^2 + c.i^2

return complex.new(c.r/n, -c.i/n)

end

function complex.div (c1, c2)

return complex.mul(c1, inv(c2))

end

return complex

With this change, all we have to do to rename a module is to rename the file that

defines it.

Another small improvement relates to the closing return statement. It would

be nice if we could concentrate all module-related setup tasks at the beginning

of the module. One way of eliminating the need for the return statement is to

assign the module table directly into package.loaded:

local modname = ...

local M = {}

_G[modname] = M

package.loaded[modname] = M

<as before>

With this assignment, we do not need to return M at the end of the module:

remember that, if a module does not return a value, require returns the current



15.3 Using Environments 143

value of package.loaded[modname].

15.3 Using Environments

A major drawback of that basic method for creating modules is that it calls for

special attention from the programmer. She must qualify names when accessing

other public entities inside the same module. She has to change the calls

whenever she changes the status of a function from private to public (or from

public to private). Moreover, it is all too easy to forget a local in a private

declaration.

Function environments offer an interesting technique for creating modules

that solves all these problems. Once the module main chunk has an exclusive

environment, not only all its functions share this table, but also all its global

variables go to this table. Therefore, we can declare all public functions as global

variables and they will go to a separate table automatically. All the module has

to do is to assign this table to the module name and also to package.loaded. The

next code fragment illustrates this technique:

local modname = ...

local M = {}

_G[modname] = M

package.loaded[modname] = M

setfenv(1, M)

Now, when we declare function add, it goes to complex.add:

function add (c1, c2)

return new(c1.r + c2.r, c1.i + c2.i)

end

Moreover, we can call other functions from the same module without any prefix.

For instance, add gets new from its environment, that is, it gets complex.new.

This method offers a good support for modules, with little extra work for the

programmer. It needs no prefixes at all. There is no difference between calling

an exported and a private function. If the programmer forgets a local, he does

not pollute the global namespace; instead, a private function simply becomes

public.

What is missing, of course, is access to other modules. Once we make the

empty table M our environment, we lose access to all previous global variables.

There are several ways to recover this access, each with its pros and cons.

The simplest solution is inheritance, as we saw earlier:

local modname = ...

local M = {}

_G[modname] = M

package.loaded[modname] = M

setmetatable(M, {__index = _G})

setfenv(1, M)



144 Chapter 15 Modules and Packages

(You must call setmetatable before calling setfenv; can you tell why?) With

this construction, the module has direct access to any global identifier, paying

a small overhead for each access. A funny consequence of this solution is

that, conceptually, your module now contains all global variables. For instance,

someone using your module may call the standard sine function by writing

complex.math.sin(x). (Perl’s package system has this peculiarity, too.)

Another quick method of accessing other modules is to declare a local that

holds the old environment:

local modname = ...

local M = {}

_G[modname] = M

package.loaded[modname] = M

local _G = _G

setfenv(1, M)

Now you must prefix any global-variable name with _G., but the access is a little

faster, because there is no metamethod involved.

A more disciplined approach is to declare as locals only the functions you

need, or at most the modules you need:

-- module setup

local modname = ...

local M = {}

_G[modname] = M

package.loaded[modname] = M

-- Import Section:

-- declare everything this module needs from outside

local sqrt = math.sqrt

local io = io

-- no more external access after this point

setfenv(1, M)

This technique demands more work, but it documents your module dependencies

better. It also results in code that runs faster than code with the previous

schemes.

15.4 The module Function

Probably you noticed the repetitions of code in our previous examples. All of

them started with this same pattern:

local modname = ...

local M = {}

_G[modname] = M

package.loaded[modname] = M

<setup for external access>

setfenv(1, M)



15.5 Submodules and Packages 145

Lua 5.1 provides a new function, called module, that packs this functionality.

Instead of this previous setup code, we can start a module simply like this:

module(...)

This call creates a new table, assigns it to the appropriate global variable and to

the loaded table, and then sets the table as the environment of the main chunk.

By default, module does not provide external access: before calling it, you

must declare appropriate local variables with the external functions or modules

you want to access. You can also use inheritance for external access adding the

option package.seeall to the call to module. This option does the equivalent of

the following code:

setmetatable(M, {__index = _G})

Therefore, simply adding the statement

module(..., package.seeall)

in the beginning of a file turns it into a module; you can write everything else

like regular Lua code. You need to qualify neither module names nor external

names. You do not need to write the module name (actually, you do not even

need to know the module name). You do not need to worry about returning the

module table. All you have to do is to add that single statement.

The module function provides some extra facilities. Most modules do not need

these facilities, but some distributions need some special treatment (e.g., to cre-

ate a module that contains both C functions and Lua functions). Before creating

the module table, module checks whether package.loaded already contains a ta-

ble for this module, or whether a variable with the given name already exists. If

it finds a table in one of these places, module reuses this table for the module; this

means we can use module for reopening a module already created. If the module

does not exist yet, then module creates the module table. After that, it populates

the table with some predefined variables: _M contains the module table itself

(it is an equivalent of _G); _NAME contains the module name (the first argument

passed to module); and _PACKAGE contains the package name (the name without

the last component; see next section).

15.5 Submodules and Packages

Lua allows module names to be hierarchical, using a dot to separate name levels.

For instance, a module named mod.sub is a submodule of mod. Accordingly, you

may assume that module mod.sub will define all its values inside a table mod.sub,

that is, inside a table stored with key sub in table mod. A package is a complete

tree of modules; it is the unit of distribution in Lua.

When you require a module called mod.sub, require queries first the table

package.loaded and then the table package.preload using the original module

name “mod.sub” as the key; the dot has no significance whatsoever in this search.



146 Chapter 15 Modules and Packages

However, when searching for a file that defines that submodule, require

translates the dot into another character, usually the system’s directory separa-

tor (e.g., ‘/’ for Unix or ‘\’ for Windows). After the translation, require searches

for the resulting name like any other name. For instance, assuming the path

./?.lua;/usr/local/lua/?.lua;/usr/local/lua/?/init.lua

and ‘/’ as the directory separator, the call require"a.b" will try to open the

following files:

./a/b.lua

/usr/local/lua/a/b.lua

/usr/local/lua/a/b/init.lua

This behavior allows all modules of a package to live in a single directory. For

instance, if a package has modules p, p.a, and p.b, their respective files can

be named p/init.lua, p/a.lua, and p/b.lua, with the directory p within some

appropriate directory.

The directory separator used by Lua is configured at compile time and can be

any string (remember, Lua knows nothing about directories). For instance, sys-

tems without hierarchical directories can use a ‘_’ as the “directory” separator,

so that require"a.b" will search for a file a_b.lua.

C-function names cannot contain dots, so a C library for submodule a.b

cannot export a function luaopen_a.b. Here require translates the dot into

another character, an underscore. So, a C library named a.b should name

its initialization function luaopen_a_b. We can use the hyphen trick here too,

with some subtle results. For instance, if we have a C library a and we want

to make it a submodule of mod, we can rename the file to mod/-a. When we

write require"mod.-a", require correctly finds the new file mod/-a as well as

the function luaopen_a inside it.

As an extra facility, require has one more option for loading C submodules.

When it cannot find either a Lua file or a C file for a submodule, it again

searches the C path, but this time looking for the package name. For example,

if the program requires a submodule a.b.c, and require cannot find a file when

looking for a/b/c, this last search will look for a. If it finds a C library with

this name, then require looks into this library for an appropriate open function,

luaopen_a_b_c in this example. This facility allows a distribution to put several

submodules together into a single C library, each with its own open function.

The module function also offers explicit support for submodules. When we

create a submodule, with a call like module("a.b.c"), module puts the environ-

ment table into variable a.b.c, that is, into a field c of a table in field b of a

table a. If any of these intermediate tables do not exist, module creates them.

Otherwise, it reuses them.

From the Lua point of view, submodules in the same package have no explicit

relationship other than that their environment tables may be nested. Requiring

a module a does not automatically load any of its submodules; similarly, requir-

ing a.b does not automatically load a. Of course, the package implementer is



15.5 Submodules and Packages 147

free to create these links if she wants. For instance, a particular module a may

start by explicitly requiring one or all of its submodules.


