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What about Lua?

A simple, dynamic, imperative language, 
with tables, coroutines, and functions.
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What are the Goals?

● Portability
● Simplicity
● Small size
● Scripting
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Portability

● Runs on most platforms we ever heard of: Posix 
(Linux, BSD, etc.), OS X, Windows, Android, iOS, 
Arduino, Raspberry Pi, Symbian, Nintendo DS, PSP, 
PS3, IBM z/OS, etc.

● Runs inside OS kernels: FreeBSD, Linux

● Runs directly on the bare metal, without an OS: 
NodeMCU ESP8266
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Simplicity

Reference manual with less than 
100 pages (proxy for complexity).

(spine)

Documents the language, the 
libraries, and the C API.
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Size
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Scripting

● Scripting language is not a synonym for 
dynamic language.

● Program written in two languages.
● System language implements the hard parts of 

the application.
● Scripting glues together the hard parts.
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Lua and Scripting

● Lua is implemented as a library.
● Lua has been designed for scripting.
● Good for embedding and extending.
● Embedded in C/C++, Java, Fortran, C#, Perl, 

Ruby, Python, etc.



Tables

● Only data structure in Lua
● Associative arrays

– maps keys of any type to values of any type
● Arrays: tables with integer keys
● Records: tables with field names (strings) as 

keys: t.x is sugar for t[“x”]



Coroutines

● Collaborative threads
● Equivalent to one-shot continuations

– we can write call/1cc with them
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function values
anonymous functions

lambdas

first-class functions

What does “function” mean?

closures

higher-order functions

Functions
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● Functions are first-class values.
● Functions can be nested.
● Nested functions have lexical scoping (with 

mutable variables).
● There are anonymous functions.



 16

Properties Somewhat Independent 

● C has functions as first-class values, but no 
nesting.

● Lisp (original) has functions as first-class values 
and anonymous functions, but no lexical 
scoping.

● Pascal has lexical scoping, but functions are not 
first-class values.
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Properties Somewhat Independent 

● Blocks in Ruby and Smalltalk are anonymous 
with lexical scoping, but they are not first-class 
values.

● Java has lexical scoping, but only for values.
● C++ needs manual “assigment conversion” for 

mutable external variables.
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How Lua uses functions 
to achieve its goals
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Simplicity/Small size

● All functions are anonymous.
● Syntax sugar for several typical constructs.
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function foo (...) ... end

foo = function (...) ... end

local function foo (...) ... end

local foo;
foo = function (...) ... end
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function foo (...) ... end

foo = function (...) ... end

local function foo (...) ... end

local foo;
foo = function (...) ... end

local foo = function (...) ... end
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Eval

● eval is a hallmark of dynamic languages.
● Lua offers a load function instead, which 

returns a function.

local f = load(“print(10)”)
f()  --> 10
f()  --> 10
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Load

● Clearly separates compilation from execution.
● load is a pure function.
● Any code always runs inside some function.
● It is easier to do eval from load than the 

reverse.
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Modules

● Tables populated with functions

local math = require "math"
local sqrt = math.sqrt
print(sqrt(10))

local math = require "math"
print(math.sqrt(10))
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Modules

● Syntactically, a module is a function that creates 
its table.

● Local variables are private to the module.
● the expression require “math” finds an 

adequate file, then loads and executes it; the 
returned value is the module table.
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Exception Handling

● All done through two functions, pcall and 
error.

● pcall calls a function in protected mode, 
catching any error.

● error raises an error. (It calls the continuation 
of the inner enclosing pcall.)
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try {
  <block/throw>
}
catch (err) {
  <exception code>
}

local ok, err = pcall(function ()
  <block/error>
end)
if not ok then
  <exception code>
end
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Exception Handling

● simple semantics
● no extra syntax
● simple to interface with other languages
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function a:foo (x)
  ...
end

a.foo = function (self,x)
  ...
end

a:foo(x) a.foo(a,x)

Objects

● first-class functions + tables ≈ objects
● syntactic sugar for methods (colon syntax)
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Objects

● Flexible
● easy to interface with other languages
● clear semantics
● Few new concepts: a method is just a regular 

function
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The Lua-C API
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The Lua-C API

● Functions are constructs found in most 
languages, wich compatible basic semantics.

● Constructions based on functions are easier to 
translate between different languages.
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The Lua-C API

● Modules and OO programming need no extra 
features in the Lua-C API.
– all done with standard mechanisms for tables and 

functions.
● Exception handling and load go the opposite 

way: primitives in the API, exported to Lua.
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Implementation Requirements

● One-pass compiler.
● Safe for space.
● No assigment conversion.
● A function may use variables from several 

different stacks (coroutines).
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Implementation

● Geared towards imperative languages.
● Zero cost when not used: All local variables live 

on the stack.
● Lua uses upvalues to intermeditate the access 

to external variables.
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Closure

Basic data structures

GC ...
Prototype Upvalue 1 Upvalue 2

Open upvalue

GC Linked list

Variable in 
the stack

Closed upvalue

GC Lua value
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List of open upvalues (for unicity)

Stack

x

y

top

GC

GC

upvalue

upvalue

...

open 
upvalues

GC x y
closure

GC x
closure
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Closing an upvalue - Closing a scope

Stack

x

y

top

GC

GC

upvalue

upvalue

...

open 
upvalues

Stack

x

top

GC

GC

upvalue

upvalue

...

open 
upvalues
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Several Details...

● Uses flattening for nesting.
● List of open upvalues is limited by program 

syntax.
● Unicity needed for mutability.
● A closure may point to upvalues in different 

stacks.
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Final Remarks

● First-class functions are a key ingredient for 
programming in Lua.

● Lua itself uses functions for several basic 
constructs in the language.

● In Lua, the use of constructors based on first-
class functions greatly helps to make the C API 
general.
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Lua
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