
Functions in Lua

Roberto Ierusalimschy

What about Lua?

A simple, dynamic, imperative language,
with tables, coroutines, and functions.

4

5

 6

What are the Goals?

● Portability
● Simplicity
● Small size
● Scripting

 7

Portability

● Runs on most platforms we ever heard of: Posix
(Linux, BSD, etc.), OS X, Windows, Android, iOS,
Arduino, Raspberry Pi, Symbian, Nintendo DS, PSP,
PS3, IBM z/OS, etc.

● Runs inside OS kernels: FreeBSD, Linux

● Runs directly on the bare metal, without an OS:
NodeMCU ESP8266

 8

Simplicity

Reference manual with less than
100 pages (proxy for complexity).

(spine)

Documents the language, the
libraries, and the C API.

9

Size

01/01/90 01/01/00 01/01/10 01/01/20
0

5000

10000

15000

20000

25000

30000

35000

0

2000

4000

6000

8000

10000

12000

LOC LLOC

Lua 5.4

Lua 1.0

Lua 5.0

 10

Scripting

● Scripting language is not a synonym for
dynamic language.

● Program written in two languages.
● System language implements the hard parts of

the application.
● Scripting glues together the hard parts.

 11

Lua and Scripting

● Lua is implemented as a library.
● Lua has been designed for scripting.
● Good for embedding and extending.
● Embedded in C/C++, Java, Fortran, C#, Perl,

Ruby, Python, etc.

Tables

● Only data structure in Lua
● Associative arrays

– maps keys of any type to values of any type
● Arrays: tables with integer keys
● Records: tables with field names (strings) as

keys: t.x is sugar for t[“x”]

Coroutines

● Collaborative threads
● Equivalent to one-shot continuations

– we can write call/1cc with them

 14

function values
anonymous functions

lambdas

first-class functions

What does “function” mean?

closures

higher-order functions

Functions

 15

● Functions are first-class values.
● Functions can be nested.
● Nested functions have lexical scoping (with

mutable variables).
● There are anonymous functions.

 16

Properties Somewhat Independent

● C has functions as first-class values, but no
nesting.

● Lisp (original) has functions as first-class values
and anonymous functions, but no lexical
scoping.

● Pascal has lexical scoping, but functions are not
first-class values.

 17

Properties Somewhat Independent

● Blocks in Ruby and Smalltalk are anonymous
with lexical scoping, but they are not first-class
values.

● Java has lexical scoping, but only for values.
● C++ needs manual “assigment conversion” for

mutable external variables.

 18

How Lua uses functions
to achieve its goals

 19

Simplicity/Small size

● All functions are anonymous.
● Syntax sugar for several typical constructs.

 20

function foo (...) ... end

foo = function (...) ... end

local function foo (...) ... end

local foo;
foo = function (...) ... end

 21

function foo (...) ... end

foo = function (...) ... end

local function foo (...) ... end

local foo;
foo = function (...) ... end

local foo = function (...) ... end

 22

Eval

● eval is a hallmark of dynamic languages.
● Lua offers a load function instead, which

returns a function.

local f = load(“print(10)”)
f() --> 10
f() --> 10

 23

Load

● Clearly separates compilation from execution.
● load is a pure function.
● Any code always runs inside some function.
● It is easier to do eval from load than the

reverse.

 24

Modules

● Tables populated with functions

local math = require "math"
local sqrt = math.sqrt
print(sqrt(10))

local math = require "math"
print(math.sqrt(10))

 25

Modules

● Syntactically, a module is a function that creates
its table.

● Local variables are private to the module.
● the expression require “math” finds an

adequate file, then loads and executes it; the
returned value is the module table.

 26

Exception Handling

● All done through two functions, pcall and
error.

● pcall calls a function in protected mode,
catching any error.

● error raises an error. (It calls the continuation
of the inner enclosing pcall.)

 27

try {
 <block/throw>
}
catch (err) {
 <exception code>
}

local ok, err = pcall(function ()
 <block/error>
end)
if not ok then
 <exception code>
end

 28

Exception Handling

● simple semantics
● no extra syntax
● simple to interface with other languages

 29

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Objects

● first-class functions + tables ≈ objects
● syntactic sugar for methods (colon syntax)

 30

Objects

● Flexible
● easy to interface with other languages
● clear semantics
● Few new concepts: a method is just a regular

function

 31

The Lua-C API

 32

The Lua-C API

● Functions are constructs found in most
languages, wich compatible basic semantics.

● Constructions based on functions are easier to
translate between different languages.

 33

The Lua-C API

● Modules and OO programming need no extra
features in the Lua-C API.
– all done with standard mechanisms for tables and

functions.
● Exception handling and load go the opposite

way: primitives in the API, exported to Lua.

 34

Implementation Requirements

● One-pass compiler.
● Safe for space.
● No assigment conversion.
● A function may use variables from several

different stacks (coroutines).

 35

Implementation

● Geared towards imperative languages.
● Zero cost when not used: All local variables live

on the stack.
● Lua uses upvalues to intermeditate the access

to external variables.

 36

Closure

Basic data structures

GC ...
Prototype Upvalue 1 Upvalue 2

Open upvalue

GC Linked list

Variable in
the stack

Closed upvalue

GC Lua value

 37

List of open upvalues (for unicity)

Stack

x

y

top

GC

GC

upvalue

upvalue

...

open
upvalues

GC x y
closure

GC x
closure

 38

Closing an upvalue - Closing a scope

Stack

x

y

top

GC

GC

upvalue

upvalue

...

open
upvalues

Stack

x

top

GC

GC

upvalue

upvalue

...

open
upvalues

 39

Several Details...

● Uses flattening for nesting.
● List of open upvalues is limited by program

syntax.
● Unicity needed for mutability.
● A closure may point to upvalues in different

stacks.

 40

Final Remarks

● First-class functions are a key ingredient for
programming in Lua.

● Lua itself uses functions for several basic
constructs in the language.

● In Lua, the use of constructors based on first-
class functions greatly helps to make the C API
general.

41

Lua

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Lua main goals
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Modules
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Objects
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

