
1

Scripting with Lua
Roberto Ierusalimschy

Curry On 2017

2

Scripting

● Scripting language x dynamic language
– scripting emphasizes inter-language communication

● Program written in two languages.
– a scripting language and a system language

● System language implements the hard parts of the
application.
– algorithms, data structures

– little change

● Scripting glues together the hard parts.
– flexible, easy to change

3

Scripting

● Scripting protects the application from the
programmer.
– or vice versa

● Protects the hardware in embedded systems.
● Protects integrity in sensitive software.

– e.g., World of Warcraft: “Addons cannot do anything
that Blizzard doesn't want them to.”

4

Scripting in Grim Fandango
“[The engine] doesn't know anything about adventure

games, or talking, or puzzles, or anything else that makes
Grim Fandango the game it is. It just knows how to render a
set from data that it's loaded and draw characters in that set.
[…]

“The real heroes in the development of Grim Fandango
were the scripters. They wrote everything from how to
respond to the controls to dialogs to camera scripts to door
scripts to the in-game menus and options screens. […]

“A TREMENDOUS amount of this game is written in Lua.
The engine, including the Lua interpreter, is really just a small
part of the finished product.”

Bret Mogilefsky
Assistant Designer and Lead Programmer of
Grim Fandango

5

Scripting (with Lua) in the Wild

● Widely used in several niches
– Scripting for applications

– Embedded systems

– Games

6

LuaTeX

7

Adobe Lightroom
more than a million lines of
Lua code on top of half a
million lines of C++/C/ObjC.

8

Embedded systems
TVs (Samsung), routers (Cisco), keyboards
(Logitech), printers (Olivetti, Océ),car
panels (Volvo, Mercedes), set-top boxes
(Ginga, Verizon), M2M devices (Sierra
Wireless, Koneki), calculators (TI-Nspire),
mobiles (Huawei), …

9

10

Why Lua?

● Portable
● Small
● Simple
● Emphasis on scripting

11

Portability

● Runs on most platforms we ever heard of.
– Posix (Linux, BSD, etc.), OS X, Windows, Android,

iOS, Arduino, Raspberry Pi, Symbian, Nintendo DS,
PSP, PS3, IBM z/OS, etc.

– written in ANSI C, few platform-specific #ifdef's

● Runs inside OS kernels.
– NetBSD, Linux

● Runs on the bare metal.
– Arduino, AVR32, NodeMCU

12

Size

Lua 5.3

Lua 1.0

Lua 5.2

Lua 5.1
Lua 5.0

Lua4.0

13

$ size /usr/bin/lua
 text data bss dec hex filename
 188875 1344 40 190259 2e733 /usr/bin/lua

14

Simplicity

Reference manual with less than 100 pages
(proxy for complexity)

(spine)

Documents the language, the
libraries, and the C API.

15

Lua and Scripting

● Lua is implemented as a library.
● Lua has been designed for scripting.
● Good for embedding and extending.
● Embedded in C/C++, Java, Fortan, C#, Perl,

Ruby, Python, etc.

16

Aren't those goals about the
implementation, not about
the language?

17

Aren't these goals about the
implementation, not about
the language?

No.

18

Aren't these goals about the
implementation, not about
the language?

No.

(Maybe a little, but big impact on
language design.)

19

Design Principles

● Few but powerful mechanisms.
– associative arrays, functions, and coroutines

● Emphasis on the “eye of the needle”.
– how to pass a mechanism through the Lua-C API

20

Tables

● Tables in Lua are associative arrays.
● All Lua types can be used as keys.

– except nil

● Lua uses tables for all its data structures
– records, lists, arrays and matrices (dense and

sparse), sets, bags

● Tables implement all those data structures in
simple and efficient ways.

21

Structures

a = {x = 10.5, y = -3.2}
print(a.x) --> 10.5
print(a[“x”]) --> 10.5
a.z = 0.0

Short strings are automatically internalized, working
like symbols in other languages.

22

Lists and Arrays

a = {}
for i = 1, N do a[i] = f(i) end

for i = 1, #a do
 print(a[i])
end

● Indices are integers, not strings.
● Lua automatically stores and indexes arrays as

arrays (not as hash tables).
● Sparse arrays come for free:

● a[1e12] = 1 -- goes to the hash

23

“Closures”

● Anonymous functions as first-class values with
lexical scoping.

● Now more common in non-functional
languages, but not that common.
– closing on variables x closing on values

– other idiosyncrasies

● Few non-functional languages use closures as
pervasively as Lua.

24

function add (x, y)
 return x + y
end

add = function (x, y)
 return x + y
end

All functions in Lua are anonymous.

25

load [[
 function add (x, y)
 return x + y
 end
 print(add(3, 5))
]]

eval [[
 return function ()
 add = function (x, y)
 return x + y
 end
 print(add(3, 5))
 end
]]

All functions we
write in Lua are
nested.

26

Modules

● Tables populated with functions

● Several facilities come for free
• submodules
• local names

local m = require "math"
print(m.sqrt(20))
local f = m.sqrt
print(f(10))

local math = require "math"
print(math.sqrt(10))

27

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Objects

● first-class functions + tables ≈ objects
● syntactical sugar for methods

• handles self

28

Delegation

● Field-access delegation (instead of method-
call delegation).

● When a delegates to b, an access to a field
absent in a is delegated to b.
• a[k] becomes (a[k] or b[k])

● Allows prototype-based and class-based
objects.

● Allows single inheritance.

29

Delegation at work

a:foo(x) a.foo(a,x)

k = 0
delegate:

"class": a:
foo = function ...
 ...

30

Environments

● Globals are evil.
● Globals are handy:

> a = 3
> print(a^12)

Lua does not have global variables, but it
goes to great lengths to pretend it does.

31

Environments

● Globals are evil.
● Globals are handy:

> a = 3
> print(a^12)

Lua does not have global variables, but it
goes to great lengths to pretend it does.

32

load([[
 a = 3
 print(a)
]], β)

eval[[
 local _ENV = β
 return function (...)
 _ENV.a = 3
 _ENV.print(_ENV.a)
 end
]]

By default, β is a fixed table,
which works like a global
environment. But it can be
anything.

33

local math = require “math”
local foo = require “foo”

_ENV = <something>

-- From this point on, all accesses to
-- free names are mediated by <something>

< your code >

import list

Using Environments for Modularity

34

Typical Uses

● _ENV = nil

– no more access to globals. Any use of a free name
will raise a run-time error.

● _ENV = {}

– private environment. All accesses to free names go
to the new table.

● _ENV = setmetatable({},{__index = _G})

– environment delegates to global table. Writes go to
new table, reads may access global variables.

35

Coroutines

● Old and well-established concept, but with
several variations.

● Variations are not equivalent:
– several languages implement restricted forms of

coroutines that are not equivalent to one-shot
continuations

36

Coroutines in Lua

c = coroutine.create(function ()
 print(1)
 coroutine.yield()
 print(2)
 end)

coroutine.resume(c) --> 1
coroutine.resume(c) --> 2

37

Coroutines in Lua

● First-class values
– in particular, we may invoke a coroutine from any

point in a program

● Stackful
– a coroutine can yield anywhere in its execution

● Asymmetrical
– different commands to resume and to yield

38

Coroutines in Lua

● Simple and efficient implementation.
– the easy part of multithreading

● First class + stackful = complete coroutines.
– equivalent to one-shot continuations

– we can implement call/1cc

● Coroutines present one-shot continuations in
a format that is more familiar to most
programmers.

39

Coroutines x Continuations

● Most uses of continuations can be coded
with coroutines.
– who has the main loop” problem

● producer-consumer
● extending x embedding

– iterators x generators

– collaborative multithreading

● Weaker than multi-shot continuations
– e.g., oracle functions

40

Final Remarks

● Scripting is a relevant technique for any
programmer's toolbox.

● Language interoperability is not an
implementation detail.

● Lua has been designed for scripting.
– tables, functions, and asymmetric coroutines are

easy to map into an API

– anything built on top of that is also easy to map

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Modules
	Objects
	Delegation
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Coroutines
	Coroutines in Lua
	Slide 37
	Slide 38
	Coroutines x continuations
	Slide 40

