
Roberto Ierusalimschy
Luiz Henrique de Figueiredo

Waldemar Celes

OutlineOutline

 brief introduction: what is Lua
 Lua's evolution

 principles we learned

Lua is...Lua is...

 a scripting language
 interpreted (can run dynamic code)
 dynamically typed
 with (incremental) garbage collection
 strong support for strings
 also with coroutines, first-class functions with

lexical scoping, proper tail calls, etc.

Lua is...Lua is...

 a scripting language
 its main implementation

 (at least) two other implementations
 Lua-ML
 Lua2IL (.Net)

Lua is...Lua is...

 a scripting language
 its main implementation
 an embeddable language

 implemented as a library
 offers a clear API for host applications
 not only an implementation aspect!

Lua is...Lua is...

 a scripting language
 its main implementation
 an embeddable language

 embedded in a fair share of applications
 Adobe Photoshop Lightroom, LuaTeX,

nmap, wireshark, Olivetti printers, ...
 niche in games

The BeginningThe Beginning

1992: Tecgraf1992: Tecgraf

 partnership between PUC-Rio and
Petrobras (the Brazilian Oil Company)

1992: Tecgraf1992: Tecgraf

 two projects using "little languages"

DEL, for data entry PGM, to visualize geologic profiles

d

:e gasket "gasket properties"
mat s # material
d f 0 # distance
y f 0 # settlement stress
t i 1 # facing type

:p gasket.d>30
gasket.d<3000
gasket.y>335.8
gasket.y<2576.8

DELDEL
Data Entry LanguageData Entry Language

 form definition
 parameter list
 types and default values

type @track {x:number, y:number=23, z}

type @line {t:@track=@track{x=8}, z:number*}

-- create an object 't1', of type 'track'
t1 = @track {y=9, x=10, z="hi!"}

l = @line {t=@track{x=t1.y, y=t1.x}, z=[2,3,4]}

SOLSOL
SimpleSimple Object Language Object Language

 data description language
 not totally unlike XML
 BibTeX-like syntax

1992: Tecgraf1992: Tecgraf

 two projects using "little languages"
 DEL and PGM

 both shared several limitations
 decision-making facilites
 arithmetic expressions
 abstraction mechanisms

19931993

 Roberto (PGM), Luiz (DEL) and
Waldemar (PGM) got together to find a
common solution to their common
problems...

What we needed?What we needed?

 a "generic configuration language"
 a "complete" language
 easily embeddable
 portable

 Petrobras had a diverse array of machines

 as simple as possible
 non-intimidating syntax

 for end users (engineers, geologists, etc.)

As we were giving up Sol,

a friend suggested a new name...

...and Lua was born

How was Lua 1.0?How was Lua 1.0?

 not that different from Sol...
t1 = @track{x = 10.3, y = 25.9,
 title = "depth"}

How was Lua 1.0?How was Lua 1.0?

t1 = @track{x = 10.3, y = 25.9,
 title = "depth"}

function track (t)
 if not t.x then t.x = 0.0 end
 if type(t.x) ~= "number" then
 print("invalid 'x' value")
 end
 if type(t.y) ~= "number" then
 print("invalid 'y' value")
 end
end

 but quite different...

LuaLua 1.01.0

 implemented as a library
 called 1.0 a posteriori
 the simplest thing that could possibly work
 standard implementation

 precompiler with yacc/lex
 opcodes for a stack-based virtual machine

 less than 6000 lines of C code

Tables in Lua 1.0Tables in Lua 1.0

 associative arrays
 the only data structure

 still is
 records, lists, objects are just different

constructors for tables

 sugar for records:
 t.x for t["x"]

 primitive implementation
 linked lists!

Lua Lua 11.0.0

 expectations: to solve our problems with
PGM and DEL
 could be useful in other Tecgraf products

 fulfilled our expectations
 both DEL and PGM used Lua successfully
 PGM still in use today in oil platforms

 it was a big success in Tecgraf

Soon, several projects at Tecgraf
were using Lua

Lua 1.1Lua 1.1

 new users brought new demands
 several small improvements
 mainly for performance

 reference manual
 well-defined and well-documented C API

Lua 2.1Lua 2.1

 growing pressure for OO features
 several important changes

 several incompatibilities!

 cleaner C API
 no more direct references from C to Lua

objects

 constructors
 no more '@'
 simpler syntax

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Object OrientationObject Orientation

 tables + first-class functions ≈ objects
 some (syntactical) sugar helped:

FallbacksFallbacks

 similar to exception-handling with
resumption

 delegation
 allowed prototype-based OO
 inspired by Self

 kind of minimum mechanism to get the
label "OO inside"

a = {x = 10}
b = {parent = a, y = 20}
print(b.y, b.x) --> 20, 10

Delegation at workDelegation at work

function a.foo (self)
 return self.x + self.y
end
print(b.foo(b)) --> 30

DelegationDelegation

 Lua provided only a fallback for absent
indices

 call function inherit when an index is
absent from a table

setfallback("index", inherit)

function inherit (t, f)
 if f == "parent" then -- avoid loops
 return nil
 end
 local p = t.parent
 if type(p) == "table" then
 return p[f]
 else
 return nil
 end
end

Most of the work done by the program...

DelegationDelegation

Lua 2.2 Lua 2.2 –– 2.5 2.5

 external precompiler
 faster load for large programs (metafiles)

 debug facilities
 only basic primitives

 pattern matching

Lua 3.0Lua 3.0

 problems with fallbacks
 fallbacks were not built-in, but were global
 different inheritance mechanisms from

different libraries would clash
 not a problem for small programs, without

external code

Lua 3.0Lua 3.0

 problems with fallbacks
 Lua 3.0 introduced tag methods

 each object has a numerical tag
 tag methods = fallbacks associated with tags
 incompatible with previous mechanism

 there was a "compatibility script"

Lua 3.1Lua 3.1

 functional features
 syntax for anonymous, nested functions
 since Lua 1.0, function f ... was sugar

for f = function ..., except that the
latter was not valid syntax!

foreach(t, function (k, v)
 print(k, v)
end)

button.action = function ... end

iterators

callbacks

Lexical scopingLexical scoping

 functional features
 no simple and efficient way to implement

lexical scoping
 on-the-fly compilation with no intermediate

representation + activation records in a stack
 hindered earlier adoption of nested functions

function f (x)
 return function () return %x end
end

upvalue

UpvaluesUpvalues
 "a form of proper lexical scoping"
 the frozen value of an external local variable

inside a nested function
 trick somewhat similar to Java demand for
final when building nested classes

 special syntax to avoid misunderstandings

Lua 3.2Lua 3.2

 multithreading?
 for Web servers

Lua 3.2Lua 3.2

 multithreading?
 multiple "Lua processes"

 multiple independent states in an application
 no shared memory

 would require major change in the API
 each function should get the state as an

extra argument
 instead, a single C global variable in the

code points to the running state
 extra API functions set the running state

Lua 4.0Lua 4.0

 major change in the API
 all functions got a new parameter (the state)
 no more C global variables in the code
 libraries should not use C globals, too
 concurrent C threads can each has its own

state

 we took the opportunity and made
several other improvements in the API
 stack oriented

Plans for Lua 4Plans for Lua 4..11

 multithreading?
 multiple characters in games

Plans for Lua 4Plans for Lua 4..11

 multithreading?
 problems with multithreading

 (preemption + shared memory)
 not portable
 no one can write correct programs when
a=a+1 is non deterministic

 core mechanisms originally proposed for
OS programming

 almost impossible to debug

Plans for Lua 4Plans for Lua 4..11

 multithreading?
 coroutines!

 portable implementation
 deterministic semantics
 coroutines + scheduler =

non-preemptive multithreading
 could be used as a basis for multithreading

for those that really wanted it

Plans for Lua 4Plans for Lua 4..11

 new algorithm for upvales
 allowed "true" lexical scoping!

 new algorithm for tables
 store array part in an actual array

 new register-based virtual machine
 tags replaced by metatables

 regular tables that store metamethods (old
tag methods) for the object

Plans for Lua 4Plans for Lua 4..11

 new algorithm for upvales
 allowed "true" lexical scoping!

 new algorithm for tables
 store array part in an actual array

 new register-based virtual machine
 tags replaced by metatables

 regular tables that store metamethods (old
tag methods) for the object

Too much for a minor version...

Lua 5.0Lua 5.0

 coroutines
 lexical scoping
 metatables
 boolean type, weak tables, proper tail

calls, ...
 module system

 incompatibility

ModulesModules

 tables as modules
 math.sin (sin entry in table math)

 actually not a mechanism, but a policy
 possible since Lua 1.0, but Lua itself did not

use it

 several facilities for free
local m = mod local renaming

local foo = mod.foo unqualified import

mod.submod.foo(...) submodules

Lua 5.Lua 5.11

 incremental garbage collector
 demand from games

 better support for modules
 more policies
 functions to help following "good practice"

 support for dynamic libraries
 not portable!
 the mother of all (non-portable) libraries
 this support cannot be dynamically loaded!

Principles we learnedPrinciples we learned

Principles we learnedPrinciples we learned

 it is much easier to add a missing feature
than to remove an excessive one
 nevertheless, we have removed several

features

 it is very hard to anticipate all implications
of a new feature
 clash with future features

Principles we learnedPrinciples we learned

 "Mechanisms instead of policies"
 effective way to avoid tough decisions
 type definitions in Lua 1.0
 delegation in Lua 2.1
 coroutines
 did not work with modules...

Principles we learnedPrinciples we learned

 emphasis on embedding
 portability

 development for a single and very well
documented platform: ANSI C

 keep it simple
 ?

Growth in Growth in lineslines of of codecode

 a proxy for complexity...

1.0

1.1

2.1

2.2

2.4

2.5

3.0 3.1

3.2 4.0

5.0

5.1

Roberto Ierusalimschy
Luiz Henrique de Figueiredo

Waldemar Celes

