

Lua & Pallene

Roberto Ierusalimschy

DConf'22

Lua is a language with lots of small details.
(collaboration with L. H. de Figueiredo and W. Celes)

Pallene is a language still with few details,
designed to be used as a system language for
Lua in a scripting architecture.
(collaboration with H. Gualandi)

5

Why Lua?
● Yet another scripting language

● With quite specific goals:
– Portable
– Small
– Simple
– Emphasis on scripting

6

Portability
● Runs in virtually any platform with ANSI C.

● Runs inside OS kernels. (e.g., NetBSD)

● Runs directly on the bare metal, without an OS. (e.g.,
NodeMCU ESP8266)

7

01/01/90 01/01/00 01/01/10 01/01/20
0

5000

10000

15000

20000

25000

30000

35000

0

2000

4000

6000

8000

10000

12000

LOC LLOC

Size

Lua 5.3

Lua 1.0

Lua 5.2

Lua 5.1

Lua 5.0

Lua4.0

Lua 5.4

8

Simplicity
Reference manual with ~100 pages

(SPINE)

Documents the language, the C
API, and the standard libraries.

9

Simplicity
● Few but powerful mechanisms

● Tables

● Closures

● Coroutines

10

Tables

- Associative arrays
- Any value as key
- Arrays are tables with integer keys
- Records are tables with literal keys
- Modules are tables, objects are tables

11

Arrays as Tables

Implementation ensures that tables used as arrays
are stored as arrays.

Sparse arrays come for free.

12

Closures

- First-class anonymous functions with lexical scope
- Widely used in regular Lua code
- Modules are tables populated with anonymous functions
- Exception handling through protected calls

 13

try {
 <block/throw>
}
catch (err) {
 <exception code>
}

local ok, err = pcall(function ()
 <block/error>
end)
if not ok then
 <exception code>
end

(Lambda the ultimate block constructor)

14

Coroutines

- Equivalent to cooperative multithreading
- Equivalent to one-shot continuations (call/1cc)
- Covers most uses of full continuations with a fraction
 of the complexity

15

Scripting
● Scripting language x dynamic language

● Program written in two languages: a scripting language and a
system language

● System language implements the hard parts: algorithms, data
structures

● Scripting language connects those parts

16

Lua and Scripting

● Lua is implemented as a library.

● Lua has been designed for scripting.

● Good for embedding and extending.

● Embedded in C/C++, Java, Fortan, C#, Perl, Ruby, Python,
etc.

Embedded Systems

Samsung (TVs), Cisco (routers), Logitech (keyboards), Volvo
(panels), Mercedes (panels), Olivetti (printers), Océ (printers),
Ginga (TV middleware), Verison (set-top boxes), Texas
Instruments (calculators), Sierra Wireless (M2M), NodeMCU
(IoT), Technicolor (gateways), …

19

Scripting and Performance

“If it's slow, rewrite it in C”

20

Easier said than done...

● Data mismatch

● Language mismatch

 21

Data Mismatch

● Data has to be transferred between the two languages.

● Data has to be converted between the two languages.

● This process can kill any gains in performance due to a faster
language.

22

Language Mismatch

● Big differences between Lua and C.

● It can be expensive to convert code from Lua to C.

● It can be hard to predict whether it is worth converting.

 23

What about JITs?
● Don't change the language.

● Can achieve quite good performance.

● Hard to implement, port, and maintain.

● Optimization killers.

Programmers can go to great lengths to appease a JIT. At
what point does it become a good idea to switch to a typed
language?

 24

Pallene: a Companion Language
● Pallene has been designed to act as a system counter-part of

Lua in a scripting architecture.

● To reduce language mismatch, it is a typed subset of Lua.

● To reduce data mismatch, it operates directly on Lua data.

● Scripting + gradual typing.

 25

local function addqueen (N:integer, a:{integer}, i:integer)
 if i > N then
 printsolution(N, a)
 else
 for c = 1, N do
 if isplaceok(a, i, c) then
 a[i] = c
 addqueen(N, a, i + 1)
 end
 end
 end
end

 26

Some Design Principles

● Same selling points from Lua.

● Very simple type system.

● Good on the borders.

● Gradual guarantee.

● Simple AOT compiler.

 27

Selling points

Portable, Small size, Simple, Emphasis on scripting

 28

Simple type system

The primary goal of the type system is to help the
compiler, in particular to allow unboxing!

Everything else can be handled with any, the dynamic
type. Or, better yet, kept in Lua.

 29

Good on the borders

Real programs are seldom fully translated. Only the
performance-critical parts need optimizations.

The change of one single function from Lua to Pallene
should not worsen the performance.

 30

Gradual Guarantee

Pallene functions should have the same semantics of
their translation to Lua (by removing type annotations),
except for type errors.

Hard to ensure to the letter in a real language like Lua.
Simple solution is to remove features from Pallene,
which makes it less expressive.

 31

Simple AOT compiler

Generates C code that can be loaded by the standard
Lua interpreter, as a C module.

Keeps the same standards of portability as Lua itself.

Simplifies the implementation.

 32

 31

 33

 32

 34

Conclusions
● Lua is a mature language with strong niches in games and

embedded software.

● Lua selling points are simplicity, portability, small size, and
emphasis on scripting.

● Performance is an always-present concern for dynamic
languages.

● A companion language is an approach for improving the
performance of Lua that seems compatible with its selling
points.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

