

Small is Beautiful: the Design of
Lua

Roberto Ierusalimschy

Language design

• many tradeoffs
• similar to any other design process

• designers seldom talk about them
• what a language is not good for
• the myth of the general purpose language

• we need explicit goals to solve tradeoffs

Typical tradeoffs

• security x flexibility
• static verification

• compile time x run time
• readability x conciseness
• performance x abstraction

• specially in an interpreted language

• readability x readability
• to whom?

Real-world tradeoffs

• conciseness x good error messages
• flexibility x good error messages
• flexibility x strong community
• evolution x “general knowledge”
• good libraries x portability

A special tradeoff

• simplicity x almost everything else
• several other conflicts can be solved by

adding complexity
• smarter algorithms
• multiple mechanisms (“There's more than one

way to do it”)

Lua

• a scripting language
• simplicity as one of its main goals

• small size too

• tricky balance between “as simple as
possible” x “but not simpler”

• many users and uses

embedded devices
TVs (Samsung), routers (Cisco), keyboards
(Logitech), printers (Olivetti), set-top boxes
(Verizon), M2M devices (Sierra Wireless),
calculators (TI-Nspire),

scripting applications
Wireshark, Snort, Nmap, VLC Media Player,
LuaTeX, …

http://en.wikipedia.org/wiki/
Category:Luascriptable_software

http://en.wikipedia.org/wiki/

Slashdot: News for nerds, Feb 1, 2012:

 “Wikipedia Chooses Lua As Its New template
language”

among the first comments:

 “Lua comes from Brazil. You know what else
comes from Brazil? Waxed balls.”

Adobe Lightroom
One million lines of Lua code

Lua in games

The Engine Survey (03/02/09,Gamasutra):
What script languages are most people using?

Lua main goals

• simplicity
• small size
• portability
• embedability

• scripting!

Simplicity

Reference manual with 100 pages (proxy for
complexity)

(spine)

documents language,
libraries, and C API

Small size

Portability

• runs on most platforms we ever heard of
• Symbian, Nintendo DS, PSP, PS3 (PPE & SPE),

Android, iOS, IBM z/OS, etc.

• runs inside OS kernels
• FreeBSD, Linux

• written in ANSI C ∩ ANSI C++
• avoids #ifdefs
• avoids dark corners of the C standard

Embedability

• Emphasis on scripting
• to be used together with a system language
• tight integration between languages
• not only external libraries

• Provided as a library
• Not only an implementation issue
• Embedded in C/C++, Java, Fortran, C#, Perl,

Ruby, Python, etc.

function fact (n)
 if n == 0 then
 return 1
 else
 return n * fact(n 1)
 end
end

function fact (n)
 local f = 1
 for i=2,n do
 f = f * i
 end
 return f
end

An overview of Lua

• Conventional syntax
• somewhat verbose

An overview of Lua

• semantically somewhat similar to Scheme
• similar to JavaScript, too

• Lua predates JS by two years

• dynamically typed
• all objects have unlimited extent

• incremental garbage collector

• functions are first-class values with static
scoping

• proper tail recursive

BTW...

function fact (n)
 local f = 1
 for i=2,n do f = f * i; end
 return f
end

fact = function (n)
 local f = 1
 for i=2,n do f = f * i; end
 return f
 end

syntactic sugar

An overview of Lua

• numbers are doubles
• Lua does not have full continuations, but have

one-shot continuations
• in the form of coroutines

Design

• tables
• coroutines
• the Lua-C API

Tables

• associative arrays
• any value as key

• only data-structure mechanism in Lua

Why tables

• VDM: maps, sequences, and (finite) sets
• collections

• any one can represent the others
• only maps represent the others with simple

and efficient code

Data structures

• tables implement most data structures in a
simple and efficient way

• records: syntactical sugar t.x for t["x"]:

t = {}
t.x = 10
t.y = 20
print(t.x, t.y)
print(t["x"], t["y"])

Data Structures

• arrays: integers as indices

• sets: elements as indices

a = {}
for i=1,n do a[i] = 0 end

t = {}
t[x] = true t = t ∪ {x}
if t[x] then x ∈ t?
 ...

Modules

• Tables populated with functions

• Several facilities come for free
• submodules
• local names

local m = require "math"
print(m.sqrt(20))
local f = m.sqrt
print(f(10))

local math = require "math"
print(math.sqrt(10))

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Objects

• first-class functions + tables ≈ objects
• syntactical sugar for methods

• handles self

Delegation

• field-access delegation (instead of method-
call delegation)

• when a delegates to b, any field absent in a
is got from b
• a[k] becomes (a[k] or b[k])

• allows prototype-based and class-based
objects

• allows single inheritance

Delegation at work

a:foo(x) a.foo(a,x)

k = 0
delegate:

"class": a:
foo = function ...
 ...

Tables: problems

• the implementation of a concept with tables is
not as good as a primitive implementation
• access control in objects
• length in sequences

• different implementations confound
programmers
• DIY object systems

Coroutines

• old and well-established concept, but with
several variations

• variations not equivalent
• several languages implement restricted forms of

coroutines that are not equivalent to one-shot
continuations

Coroutines in Lua

c = coroutine.create(function ()
 print(1)
 coroutine.yield()
 print(2)
 end)

coroutine.resume(c) --> 1
coroutine.resume(c) --> 2

Coroutines in Lua

• first-class values
• in particular, we may invoke a coroutine from any

point in a program

• stackful
• a coroutine can transfer control from inside any

number of function calls

• asymmetrical
• different commands to resume and to yield

Coroutines in Lua

• simple and efficient implementation
• the easy part of multithreading

• first class + stackful = complete coroutines
• equivalent to one-shot continuations
• we can implement call/1cc

• coroutines present one-shot continuations in
a format that is more familiar to most
programmers

Asymmetric coroutines

• asymmetric and symmetric coroutines are
equivalent

• not when there are different kinds of contexts
• integration with C

• how to do a transfer with C activation
records in the stack?

• resume fits naturally in the C API

Coroutines x continuations

• most uses of continuations can be coded with
coroutines
• “who has the main loop” problem

• producer-consumer
• extending x embedding

• iterators x generators
• the same-fringe problem

• collaborative multithreading

Coroutines x continuations

• multi-shot continuations are more expressive
than coroutines

• some techniques need code reorganization to
be solved with coroutines or one-shot
continuations
• oracle functions

The Lua-C API

• Lua is a library
• formally, an ADT (a quite complex one)
• 79 functions

• the entire language actually describes the
argument to one function of that library: load
• load gets a stream with source code and

returns a function that is semantically equivalent
to that code

Basic (Naive) Lua Interpreter

#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>

int main (int argc, char **argv) {
 lua_State *L = luaL_newstate();
 luaL_openlibs(L);
 luaL_loadfile(L, argv[1]);
 lua_call(L, 0, 0);
 return 0;
}

The Lua-C API

• most APIs use some kind of “Value” type in C
• PyObject (Python), jobject (JNI)

• problem: garbage collection
• Python: explicit manipulation of reference counts
• JNI: local and global references

• too easy to create dangling references and
memory leaks

The Lua-C API

• Lua API has no LuaObject type
• a Lua object lives only inside Lua
• two structures keep objects used by C:

• the registry
• the stack

The Registry

• sometimes, a reference to a Lua object must
outlast a C function
• NewGlobalRef in the JNI

• the registry is a regular Lua table always
accessible by the API
• no new concepts
• to create a new “global reference”, store the Lua

object at a unique key in the registry and keeps
the key

The Stack

• keep all Lua objects in use by a C function
• injection functions

• convert a C value into a Lua value
• push the result into the stack

• projection functions
• convert a Lua value into a C value
• get the Lua value from anywhere in the stack

/* calling f("hello", 4.5) */
lua_getglobal(L, "f");
lua_pushstring(L, "hello");
lua_pushnumber(L, 4.5);
lua_call(L, 2, 1);
if (lua_isnumber(L, 1))
 printf("%f\n", lua_getnumber(L, 1));

The Stack

• example: calling a Lua function from C
• push function, push arguments, do the call, get

result from the stack

The Stack

• example: calling a C function from Lua
• get arguments from the stack, do computation,

push arguments into the stack

static int l_sqrt (lua_State *L) {
 double n = luaL_checknumber(L, 1);
 lua_pushnumber(L, sqrt(n));
 return 1; /* number of results */
}

The Lua-C API: problems

• too low level
• some operations need too many calls

• stack-oriented programming sometimes is
confusing
• what is where

• no direct mapping of complex types
• may be slow for large values

Conclusions

• any language design involves conflicting
goals

• designers must solve conflicts
• consciously or not

• to get simplicity we must give something
• performance, easy of use, particular features or

libraries,

Conclusions

• simplicity is not an absolute goal
• it must be pursued incessantly as the

language evolve
• it is much easier to add a feature than to

remove one
• start simple, grow as needed

• it is very hard to anticipate all implications of a
new feature
• clash with future features

Conclusions

• “Mechanisms instead of policies”
• e.g., delegation
• effective way to avoid tough decisions
• this itself is a decision...

Trade-offs

	Small is Beautiful: the design of Lua
	Slide 2
	Slide 3
	Slide 4
	A special tradeoff
	Lua
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Lua main goals
	Slide 14
	Slide 15
	Portability
	Slide 17
	An overview of Lua
	Slide 19
	BTW...
	Slide 21
	Design
	Tables
	Why tables
	Data structures
	Data Structures
	Modules
	Objects
	Delegation
	Slide 30
	Tables: problems
	Coroutines
	Coroutines in Lua
	Slide 34
	Slide 35
	Slide 36
	Coroutines x continuations
	Slide 38
	The Lua-C API
	Basic Lua Interpreter
	Slide 41
	Slide 42
	The Registry
	The Stack
	Slide 45
	Slide 46
	The Lua-C API: problems
	Conclusions
	Slide 49
	Slide 50
	PowerPoint Presentation

