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Language design

• many tradeoffs
• similar to any other design process

• designers seldom talk about them
• what a language is not good for
• the myth of the general purpose language

• we need explicit goals to solve tradeoffs



  

Typical tradeoffs

• security x flexibility
• static verification

• compile time x run time
• readability x conciseness
• performance x abstraction

• specially in an interpreted language

• readability x readability
• to whom?



  

Real-world tradeoffs

• conciseness x good error messages
• flexibility x good error messages
• flexibility x strong community
• evolution x “general knowledge”
• good libraries x portability



  

A special tradeoff

• simplicity x almost everything else
• several other conflicts can be solved by 

adding complexity
• smarter algorithms
• multiple mechanisms (“There's more than one 

way to do it”)



  

Lua

• a scripting language
• simplicity as one of its main goals

• small size too

• tricky balance between “as simple as 
possible” x “but not simpler”

• many users and uses



  

embedded devices
TVs (Samsung), routers (Cisco), keyboards 
(Logitech), printers (Olivetti), set-top boxes 
(Verizon), M2M devices (Sierra Wireless), 
calculators (TI-Nspire),  



  

scripting applications
Wireshark, Snort, Nmap, VLC Media Player, 
LuaTeX, … 

http://en.wikipedia.org/wiki/
Category:Luascriptable_software

http://en.wikipedia.org/wiki/


  

Slashdot: News for nerds, Feb 1, 2012:

  “Wikipedia Chooses Lua As Its New template 
language”

among the first comments:

  “Lua comes from Brazil. You know what else 
comes from Brazil? Waxed balls.”

 



  

Adobe Lightroom
One million lines of Lua code



  

Lua in games

The Engine Survey (03/02/09,Gamasutra):
What script languages are most people using?



  



  

Lua main goals

• simplicity
• small size
• portability
• embedability

• scripting!



  

Simplicity

Reference manual with 100 pages (proxy for 
complexity)

(spine)

documents language, 
libraries, and C API



  

Small size



  

Portability

• runs on most platforms we ever heard of
• Symbian, Nintendo DS, PSP, PS3 (PPE & SPE), 

Android, iOS, IBM z/OS, etc.

• runs inside OS kernels
• FreeBSD, Linux

• written in ANSI C ∩ ANSI C++
• avoids #ifdefs
• avoids dark corners of the C standard



  

Embedability

• Emphasis on scripting
• to be used together with a system language
• tight integration between languages
• not only external libraries 

• Provided as a library
• Not only an implementation issue
• Embedded in C/C++, Java, Fortran, C#, Perl, 

Ruby, Python, etc.



  

function fact (n)
  if n == 0 then
    return 1
  else
    return n * fact(n  1)
  end
end

function fact (n)
  local f = 1
  for i=2,n do
    f = f * i
  end
  return f
end

An overview of Lua

• Conventional syntax
• somewhat verbose



  

An overview of Lua

• semantically somewhat similar to Scheme
• similar to JavaScript, too

• Lua predates JS by two years

• dynamically typed
• all objects have unlimited extent

• incremental garbage collector

• functions are first-class values with static 
scoping

• proper tail recursive



  

BTW...

function fact (n)
  local f = 1
  for i=2,n do f = f * i; end 
  return f
end

fact = function (n)
         local f = 1
         for i=2,n do f = f * i; end 
         return f
       end

syntactic sugar



  

An overview of Lua

• numbers are doubles
• Lua does not have full continuations, but have 

one-shot continuations
• in the form of coroutines



  

Design

• tables
• coroutines
• the Lua-C API



  

Tables

• associative arrays
• any value as key

• only data-structure mechanism in Lua



  

Why tables

• VDM: maps, sequences, and (finite) sets
• collections

• any one can represent the others
• only maps represent the others with simple 

and efficient code



  

Data structures

• tables implement most data structures in a 
simple and efficient way

• records: syntactical sugar t.x for t["x"]:

t = {}
t.x = 10
t.y = 20
print(t.x, t.y)
print(t["x"], t["y"])



  

Data Structures

• arrays: integers as indices

• sets: elements as indices

a = {}
for i=1,n do a[i] = 0 end

t = {}
t[x] = true      t = t ∪ {x}
if t[x] then     x ∈ t?
  ...



  

Modules

• Tables populated with functions

• Several facilities come for free
• submodules
• local names

local m = require "math"
print(m.sqrt(20))
local f = m.sqrt
print(f(10))

local math = require "math"
print(math.sqrt(10))



  

function a:foo (x)
  ...
end

a.foo = function (self,x)
  ...
end

a:foo(x) a.foo(a,x)

Objects

• first-class functions + tables ≈ objects
• syntactical sugar for methods

• handles self



  

Delegation

• field-access delegation (instead of method-
call delegation)

• when a delegates to b, any field absent in a 
is got from b
• a[k] becomes (a[k] or b[k])

• allows prototype-based and class-based 
objects

• allows single inheritance



  

Delegation at work

a:foo(x) a.foo(a,x)

k = 0
delegate: 

"class": a: 
foo = function ...
   ...



  

Tables: problems

• the implementation of a concept with tables is 
not as good as a primitive implementation
• access control in objects
• length in sequences

• different implementations confound 
programmers
• DIY object systems



  

Coroutines

• old and well-established concept, but with 
several variations

• variations not equivalent
• several languages implement restricted forms of 

coroutines that are not equivalent to one-shot 
continuations



  

Coroutines in Lua

c = coroutine.create(function ()
                       print(1)
                       coroutine.yield()
                       print(2)
                     end)

coroutine.resume(c)  --> 1
coroutine.resume(c)  --> 2



  

Coroutines in Lua

• first-class values
• in particular, we may invoke a coroutine from any 

point in a program

• stackful 
• a coroutine can transfer control from inside any 

number of function calls

• asymmetrical
• different commands to resume and to yield



  

Coroutines in Lua

• simple and efficient implementation
• the easy part of multithreading

• first class + stackful = complete coroutines
• equivalent to one-shot continuations
• we can implement call/1cc

• coroutines present one-shot continuations in 
a format that is more familiar to most 
programmers



  

Asymmetric coroutines

• asymmetric and symmetric coroutines are 
equivalent

• not when there are different kinds of contexts
• integration with C

• how to do a transfer with C activation 
records in the stack?

• resume fits naturally in the C API



  

Coroutines x continuations

• most uses of continuations can be coded with 
coroutines
• “who has the main loop”  problem

• producer-consumer
• extending x embedding

• iterators x generators
• the same-fringe problem

• collaborative multithreading



  

Coroutines x continuations

• multi-shot continuations are more expressive 
than coroutines

• some techniques need code reorganization to 
be solved with coroutines or one-shot 
continuations
• oracle functions



  

The Lua-C API

• Lua is a library
• formally, an ADT (a quite complex one)
• 79 functions

• the entire language actually describes the 
argument to one function of that library: load
• load gets a stream with source code and 

returns a function that  is semantically equivalent 
to that code



  

Basic (Naive) Lua Interpreter

#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>

int main (int argc, char **argv) {
  lua_State *L = luaL_newstate();
  luaL_openlibs(L);
  luaL_loadfile(L, argv[1]);
  lua_call(L, 0, 0);
  return 0;
}



  

The Lua-C API

• most APIs use some kind of “Value” type in C
• PyObject (Python), jobject (JNI)

• problem: garbage collection
• Python: explicit manipulation of reference counts
• JNI: local and global references

• too easy to create dangling references and 
memory leaks



  

The Lua-C API

• Lua API has no LuaObject  type
• a Lua object lives only inside Lua
• two structures keep objects used by C:

• the registry
• the stack



  

The Registry

• sometimes, a reference to a Lua object must 
outlast a C function
• NewGlobalRef in the JNI

• the registry is a regular Lua table always 
accessible by the API
• no new concepts
• to create a new “global reference”, store the Lua 

object at a unique key in the registry and keeps 
the key



  

The Stack

• keep all Lua objects in use by a C function
• injection functions

•  convert a C value into a Lua value
•  push the result into the stack

• projection functions
•  convert a Lua value into a C value
• get the Lua value from anywhere in the stack



  

/* calling f("hello", 4.5) */
lua_getglobal(L, "f");
lua_pushstring(L, "hello");
lua_pushnumber(L, 4.5);
lua_call(L, 2, 1);
if (lua_isnumber(L, 1))
  printf("%f\n", lua_getnumber(L, 1));

The Stack

• example: calling a Lua function from C
• push function, push arguments, do the call, get 

result from the stack



  

The Stack

• example: calling a C function from Lua
• get arguments from the stack, do computation, 

push arguments into the stack

static int l_sqrt (lua_State *L) {
  double n = luaL_checknumber(L, 1);
  lua_pushnumber(L, sqrt(n));
  return 1;  /* number of results */
}



  

The Lua-C API: problems

• too low level
• some operations need too many calls

• stack-oriented programming sometimes is 
confusing
• what is where

• no direct mapping of complex types
• may be slow for large values



  

Conclusions

• any language design involves conflicting 
goals

• designers must solve conflicts
• consciously or not

• to get simplicity we must give something
• performance, easy of use, particular features or 

libraries,



  

Conclusions

• simplicity is not an absolute goal
• it must be pursued incessantly as the 

language evolve
• it is much easier to add a feature than to 

remove one
• start simple, grow as needed

• it is very hard to anticipate all implications of a 
new feature
• clash with future features



  

Conclusions

• “Mechanisms instead of policies”
• e.g., delegation
• effective way to avoid tough decisions
• this itself is a decision...



  

Trade-offs
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