
1

Lua versus Javascript:
Why do we need multiple

languages?

Roberto Ierusalimschy
PUC-Rio, Lua.org

2

Disclaimer: I am hardly an unbiased observer to
compare both languages.

On the other hand, several big companies support
(or pretend to support) Javascript, so I will hardly

affect the “average bias” of this discussion.

Why am I here?

● “Wikipedia Chooses Lua As Its New template
language”
● Slashdot: News for nerds, Feb 1, 2012

● “Meet Wikipedia, the Encyclopedia Anyone Can
Code”
● Wired, Mar 19, 2013

“Why not use javascript, the web's
standard scripting language?”

Wired, Mar 19, 2013

5

Several Arguments in Favor of
Javascript

● “The idea of having a single scripting language
that can be used by our tools/gadgets
community is certainly appealing, and the ever-
growing ecosystem around both client-side and
server-side JS is as well.”

● “I've settled on Lua [...] despite its relative
unfamiliarity among our users ...”

6

Network Effect

● I should learn the most popular language.
● to find a job

● I should use the most popular language.
● to find programmers

● I should use the most popular language.
● to find libraries, documentation, etc.

● I should use the language I am already using.
● to not have to learn a new language

7

Why do we need multiple languages?

Wouldn't the world be better if everybody
used the same programming language?

8

Fact: if we all settled for arguments like “it
would be good to use the same language
as X” or “language X is better known than
Y”, we would all be using Fortran today.

Why are we not?

9

Very Simplified Story

● FORTRAN (FORmula TRANslator) was
specialized for scientific computation.

● COBOL (COmmon Business-Oriented
Language) was created, specialized for
commercial-oriented sofware.

● There were also Algol and Lisp...

But why do we need multiple languages?

10

PL/I

● A truly general-purpose programming language
● “FORTRAN VI is not intended to be compatible with

any known FORTRAN IV. It includes the functional
capabilities of FORTRAN IV as well as those
capabilities normally associated with 'commercial'
and 'algorithmic' languages.”

● Championed by IBM
● this was 1964

● Why was PL/I not a big success?
● compare its usage with Fortran and Cobol

11

A programming
language is not a pile
of features.

12

The “Subset Fallacy”

● I can use only the features I like/need.
● Features that I do not use do not affect me.
● The bigger the pile, the better the language.

13

The “Subset Fallacy”

● Bugs frequently involve parts that you think you
are not using
● so you should know them for debugging

● Other people's code involves parts that you do
not use
● so you should know them for maintenance

14

The “Subset Fallacy”

● Compilers and interpreters must support the
entire language
● extra features make them larger, more complex,

and slower
● many features hamper optimizations

15

The design of a language involves many trade-
offs, and we need explicit goals and priorities to
settle these trade-offs. Different languages choose
different goals, and therefore settle these trade-
offs in different directions. Like any tool, no
language is good for everything.

16

Some PL Trade-offs

● Safety versus flexibility
● type checking

● Readability versus conciseness
● Perl, regexs

● Performance versus abstractions
● Assembler, automatic memory management

17

Some PL Trade-offs

● Flexibility versus good error messages
● Haskell

● Libraries versus portability
● Java (No, Java ME is not Java.)

● Simplicity versus expressiveness

18

Back to Lua and Javascript...

19

Several Unexpected Similarities

● All numbers are double

● Functions are first-class values with lexical scoping
● but Lua has proper scope for variables
● Functions in Lua are not objects

● Function are always anonymous
● function definition is an assignment to a variable

● Objects are associative arrays
● t.x as sugar for t["x"]

● Prototype-based OO

20

Several Unexpected Similarities

● Arrays as objects
● that is, associative arrays
● but Lua uses numbers as keys

● Expressive object constructors (“literal objects”)
● Optional semicolons

● but Lua does not use semicolon insertion; the
syntax itself dispenses semicolons

(Lua predates Javascript by two years)

21

But Several Important Differences

● Lua has much simpler objects
● no property attributes, no object attributes, no

getter-setter methods, no new

● Javascript has a C-like syntax
● Lua has a well-defined FFI
● Javascript has more syntactical constructs

● exception handling, patterns

22

But Several Important Differences

● Javascript has built-in objects and more pre-
defined functions

● Lua has semantics for garbage collection
● finalizers and weak references

● Lua has coroutines

23

Why the Similarities?

● Simplicity
● doubles
● objects as associative arrays
● arrays as associative arrays

● “Fashion” (plus Scheme and Self)
● functions as first-class values
● Functions are always anonymous
● optional semicolons
● prototype-based inheritance

24

Why the Differences?

● Better design :)
● Lua has had the luxury of time to mature

● But mainly, different goals!

25

“ECMAScript was originally designed to be a Web
scripting language, providing a mechanism to enliven
Web pages in browsers and to perform server
computation as part of a Web-based client-server
architecture. ECMAScript can provide core scripting
capabilities for a variety of host environments, and
therefore the core scripting language is specified in this
document apart from any particular host environment.”

ECMAscript language specification, 5.1 edition

Javascript Goals

26

● Despite the “can provide”, there is no sign of a
strong commitment with this goal of being a
scripting language for different hosts.

● Javascript is not the scripting language of the
browser; it is the (only) programming language
of the browser.

Javascript Goals

27

● Being THE language makes its goals quite
different from those of a scripting language
● better support for programming in the large
● better fit as a target language for other language

compilers
● small emphasis on the specification of a FFI and

the behavior of host objects

Javascript Goals

28

“Lua is intended to be used as a powerful, lightweight,
embeddable scripting language for any program that
needs one.”

Lua 5.2 reference manual

Lua Goals

29

Lua Goals

● Embeddability
● Lua is a library, not a language
● good integration with a host language

● Small size
● Simplicity

● leave the complexity to the host

Scripted by Lua

Embedded Systems
TVs (Samsung), routers (Cisco), keyboards
(Logitech), printers (Olivetti), set-top boxes
(Verizon, Ginga), M2M devices (Sierra Wireless),
telecommunications (Huawei), calculators (Texas
Instruments), etc.

Configuration
Adobe Lightroom, Wireshark, Snort, Nmap, VLC
Media Player, lighttpd, LuaTeX, Flame, …

http://en.wikipedia.org/wiki/
Category:Lua­scriptable_software

http://en.wikipedia.org/wiki/

Scripting the Internet of Things

Scripting Games
● The Engine Survey (03/02/09,Gamasutra):
● What script languages are most people using?

1

34

Differences between Lua and
Javascript (Revisited)

● Lua has a more verbose syntax
● easier for end-user programmers

● Lua has a well-defined FFI
● fundamental for a scripting language to be used by

different hosts

● Lua has less syntactical constructs
● easier to pass through an FFI (“the eye of the

needle”)

35

Differences between Lua and
Javascript (Revisited)

● Objects in Lua are simpler
● easier to adapt to different objects in the host
● protection provided (and needed) mostly by host objects

- weaker mechanisms for modularity
● DIY object systems: more work for programmers

● Lua has finalizers and weak references
● essential for connecting host objects with native objects

● Lua has no built-in objects and few predefined
functions
● the host selects the appropriate libraries

36

Conclusions

● Language design involves several trade-offs
● Different languages solve the trade-offs in

different directions
● No language is good for everything
● The Web is too vast for any single language
● Javascript does not have its design focused on

being a general scripting language
● Lua does!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

