Defesa de Dissertação de Mestrado da aluna Mayara Gomes Silva
Título da dissertação: Identificação de horizontes em sísmica usando rede neural convolucional
Resumo: A interpretação estrutural sísmica é um passo essencial na exploração e produção de reservas de hidrocarbonetos. Essa interpretação requer a identificação de feições geológicas como fácies, horizontes e falhas na região de interesse. A identificação manual desses recursos é uma tarefa maçante e demorada. As redes neurais convolucionais (CNN) são amplamente utilizadas em problemas de visão computacional, apresentando excelentes resultados em diversas situações, inclusive no processo de interpretação sísmica. Este trabalho estuda redes neurais convolucionais supervisionadas para segmentar linhas de horizonte separando fácies sísmicas com base na amplitude sísmica. Avaliamos nossa proposta usando o bloco F3 com as anotações de fácies sísmicas. Nas anotações do conjunto de dados original, os rótulos eram áreas anotadas para cada fácies sísmica, então esse conjunto de anotações foi alterado de um problema multiclasse para binário, considerando apenas a fronteira entre uma fácies sísmica e sua vizinha. Na previsão de horizonte duas redes foram analisadas, a rede ResUnet e a DC-Unet, que são redes baseadas na Unet. Além disso, algumas funções de perda são analisadas para otimizar o resultado da segmentação. A função Generalized Dice loss e a Focal Tversky Loss. A métrica Dice atingiu índice acima de 50% com a função de perda Focal Tversky, mostrando resultados promissores.
Orientador: Prof. Dr. Marcelo Gattass
Banca:
Prof. Dr. Aristófanes Corrêa Silva
Prof. Dr. Alberto Barbosa Raposo
Prof. Dr. Jan Jose Hurtado Jauregui
Prof. Dr. Helio Côrtes Vieira Lopes
Acompanhe-nos pelo link: https://puc-rio.zoom.us/j/95961207118?pwd=UzU4OW5UNHJaYjFnQTRUSUkwMks4QT09